Rapidity gap survival and the unitarity limit

Ch. Weiss (JLab), DIS2007, Munich, Apr. 16–20, 2007 [with L. Frankfurt, Ch. Hyde, M. Strikman, PRD **75**, 054009 (2007)]

Parton-based approach to rapidity gap survival in double-gap exclusive diffraction

$$pp \rightarrow p + H + p, \qquad H = \text{dijet}, \ \gamma\gamma, \ \bar{Q}Q, \ \text{Higgs}, \dots$$

- ullet Model-independent treatment $\ \leftrightarrow$ Pomeron exchange
- Unitarity limit in hard spectator interactions (black-disk regime)
- Correlations between partons

Hard and soft interactions in $pp \rightarrow p + H + p$

$$\mu_{
m soft}^2 \ll Q_{
m int}^2 \ll M^2$$
 [Khoze et al. 97] $x_{1,2} \, \sim \, {M \over \sqrt{s}} \, \sim \, 10^{-2} \ {
m Higgs} \ {
m at \ LHC}$

Soft interactions must not produce particles

$$S^2 \equiv rac{\sigma_{
m diff}(
m full)}{\sigma_{
m diff}(
m no\ soft)}$$
 Gap survival probability

 Challenge: Describe interplay of hard and soft interactions!

Independence of hard and soft interactions

$$egin{align} T_{ ext{diff}}(oldsymbol{p}_{1T},\,oldsymbol{p}_{2T}) &= N \!\int\! d^2 \Delta_T \ & imes G(x_1,\,oldsymbol{p}_{1T}-oldsymbol{\Delta}_T) \ & imes G(x_2,\,oldsymbol{p}_{2T}+oldsymbol{\Delta}_T) \ & imes S_{ ext{elast}}(oldsymbol{\Delta}_T) \ \end{split}$$

 Hard process local on distance/time scale of soft interactions

$$\begin{array}{ccc} & \text{independent} \\ \text{hard} & \longleftrightarrow & \text{soft} \end{array}$$

Amplitude calculable through

gluon GPD exclusive
$$J/\psi$$
 pp elastic elastic scattering S -matrix total cross section

Model−independent treatment
 ⇔ eikonalized Pomeron exchange

[Details: FHSW, PRD **75**, 054009 (2007)]

Rapidity gap survival probability

• Gap survival probability

$$S^2 = \int \! d^2 b \;\; P_{\mathsf{hard}}(b) \;\; |1 - \Gamma(b)|^2$$

Probability for two gluons to collide

Probability for "no inelastic interaction"

"Geometric" picture of RGS

RGS probability: Numerical results

ullet Dominant effect: "Blackness" of pp amplitude suppresses small b . . . model—independent!

- Sensitive to functional form of t-dependence of gluon GPD
- Agreement with Khoze et al. partly accidental (different parameters)

[Details: FHSW, PRD **75**, 054009 (2007)]

Spectator interactions in saturation regime

- Parent partons $(k^2 \sim \text{few GeV}^2)$ experience absorptive interactions with small-x gluons in other proton "Black-Disk Regime"
- ullet Use estimate of "critical" $k_{
 m T}^2$ from dipole model
- Effect reduces RGS probability
 at LHC by at least factor 2
 . . . much weaker effect at Tevatron
- Larger impact parameters \rightarrow steeper $p_{1\mathrm{T}}, p_{2\mathrm{T}}$ dependence!

Correlations between partons

- Indications for significant transverse correlations between partons
 - CDF data $p\bar{p} o {\sf dijet} + \gamma + X$
 - "Constituent quarks" of size $r\sim 0.3\,{\rm fm}$ [cf. Instanton vacuum model: Diakonov, Petrov 86]
- General trend: Correlations reduce RGS probability . . . increase local opacity for soft interactions
 [Examples see FHSW, PRD 75, 054009 (2007)]

Potentially large effect; requires detailed modeling

Summary

- RGS probability in independent interaction approximation
 - \ldots Model–independent calculation: Gluon GPD, pp elastic amplitude
 - . . . Numerical results comparable to Pomeron model of Khoze et al.
- Hard spectator interactions in black—disk regime estimated to significantly lower the RGS probability at LHC energies
 - . . . Marginal effect at Tevatron careful with extrapolation!
- Correlations in partonic wavefunction expected to further lower the RGS probability
 - . . . Requires detailed modeling!