

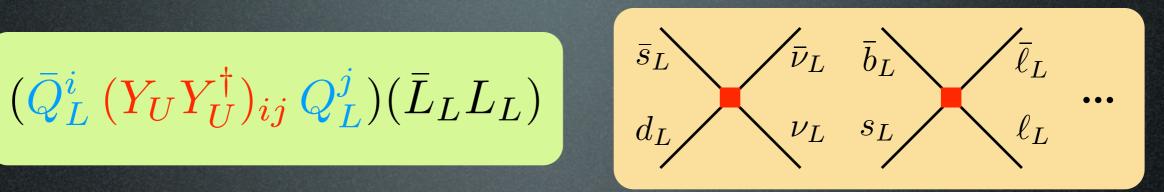
Next 15⁺ minutes ...*

- Setting stage: MFV & CMFV
- Introducing theme: $Z \rightarrow d_{iL}\overline{d_{jL}}$ vs. $Z \rightarrow b_{L}\overline{b_{L}}$
- General observation: small momentum expansion of Z-vertex form factor
- Model calculations: 2HDM, CMFV MSSM, mUED & LHT
- Grand final: Killing Z-penguin, lower & upper bounds on rare decays

^{*}done in collaboration with Andreas Weiler; still preliminary results

Minimal Flavor Violation (MFV)

In limit of vanishing Yukawa couplings $Y_{D,U}$ SM aquires a global symmetry $G_F = U(3)^5 \supset SU(3)_Q \times SU(3)_U \times SU(3)_D$


$$\mathcal{L}_{\text{Yukawa}} = \bar{Q}_{L} Y_{D} D_{R} \phi + \bar{Q}_{L} Y_{U} U_{R} \phi_{c} + \text{h.c.}$$

If Yukawa couplings $Y_{D,U}$ transform as $Y_D \sim (3,1,3)$ & $Y_U \sim (3,3,1)$ global symmetry G_F is restored

MFV = "effective theory constructed from SM fields & Yukawa couplings $Y_{D,U}$ that is invariant under G_F "*

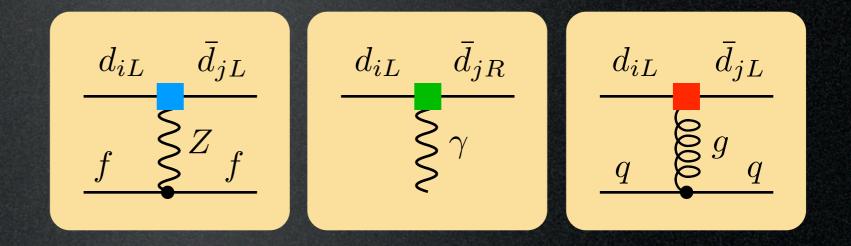
Typical FCNC D=6 Operator

$$(\overline{Q}_L^i (Y_U Y_U^\dagger)_{ij} Q_L^j) (\overline{L}_L L_L)$$

$$(Y_U Y_U^{\dagger})_{ij} = V^{\dagger} \operatorname{diag}(y_u^2, y_c^2, y_t^2) V \approx y_t^2 V_{ti}^* V_{tj}$$

ytVtiVti is effective coupling ruling all FCNCs with external down-type quarks: $K \rightarrow \pi \nu \overline{\nu}$, $\overline{B} \rightarrow X_s \gamma$, $\overline{B} \rightarrow X_s I^+ I^-$, ...

Only flavor-independent magnitude of FCNC amplitudes can be modified by NP contributions to D≤6 operators*

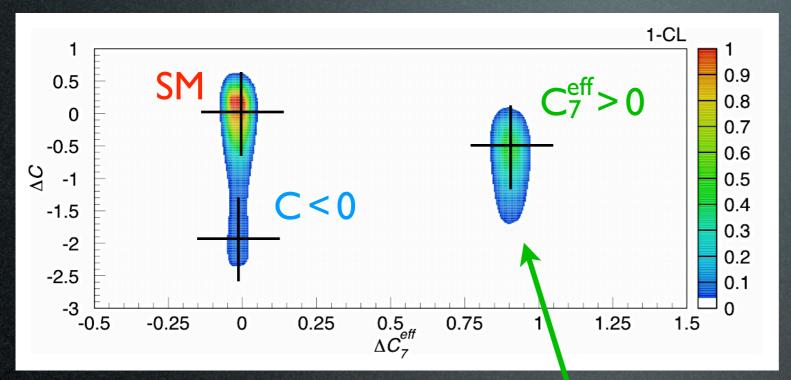

^{*}phase measurements $a(B \rightarrow \psi K_s)$, $\Delta M_{B_s}/\Delta M_{B_d}$, ... unaffected in MFV

Constrained MFV (CMFV)

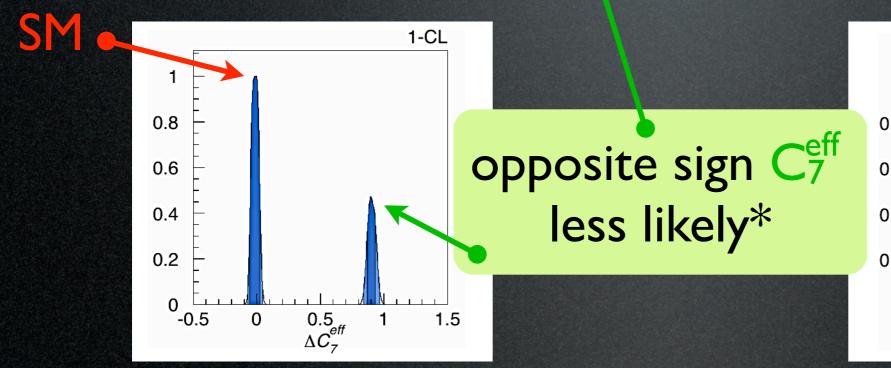
CMFV = "MFV & no other operators beyond SM ones"*

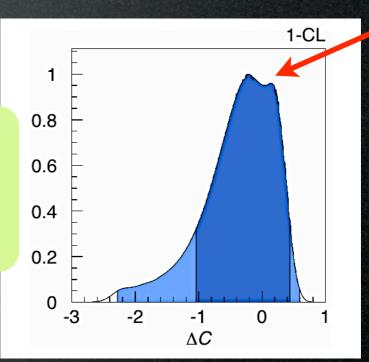
CMFV \equiv MFV under assumption of single φ doublet; large tan β effects in 2HDM/MSSM not covered by CMFV

- D=4 effective FCNC Z-vertex: $C = C_{SM} + \Delta C$
- D=5 (chromo) magnetic operators: $C_7^{\text{eff}} = C_{7,\text{SM}}^{\text{eff}} + \Delta C_7^{\text{eff}}$...
- D=6 subleading penguins and EW boxes: $E = E_{SM} + \Delta E$, ...

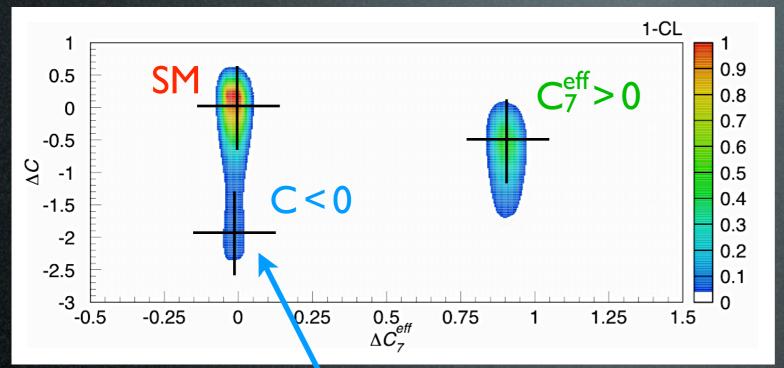

CMFV parameters

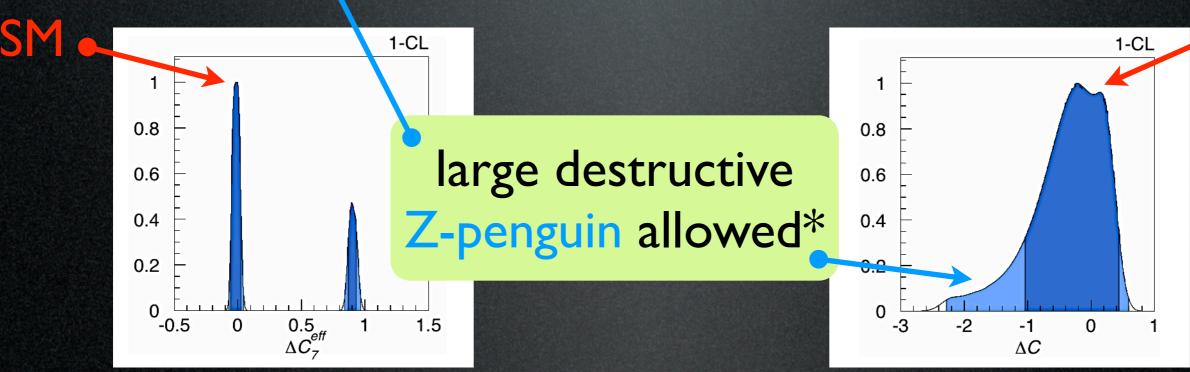
$$K-\bar{K} \text{ mixing } (|\epsilon_K|) \qquad S(v) \qquad Y(v) = C(v) + B^{\nu\nu}(v) \\ B_{d,s}-\bar{B}_{d,s} \text{ mixing } (\Delta M_{B_{d,s}}) \qquad S(v) \qquad Z(v) = C(v) + B^{\ell\ell}(v) \\ K \to \pi\nu\bar{\nu}, \bar{B} \to X_{d,s}\nu\bar{\nu} \qquad X(v) \\ K_L \to \mu^+\mu^-, B_{d,s} \to \mu^+\mu^- \qquad Y(v) \\ K_L \to \pi^0\ell^+\ell^- \qquad Y(v), Z(v), E(v) \\ \epsilon'/\epsilon, |\Delta S| = 1 \qquad X(v), Y(v), Z(v), E(v) \\ \text{non-leptonic } |\Delta B| = 1 \qquad X(v), Y(v), Z(v), E(v), E'(v) \\ \bar{B} \to X_s \gamma \qquad D'(v), E'(v) \qquad \text{drop as } O(10^{-2}) \\ \bar{B} \to X_s g \qquad E'(v) \qquad Y(v), Z(v), E(v), E'(v) \qquad C'(v), E'(v) \\ \bar{B} \to X_s g \qquad E'(v) \qquad C'(v), E'(v), E'(v)$$


dominated by Z-penguin


trade for C₇^{eff} (µ_b)

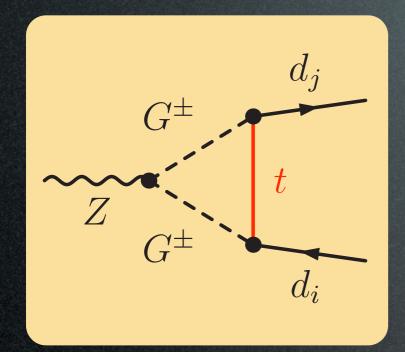
ΔC_7^{eff} vs. ΔC from $\overline{B} \rightarrow X_s \gamma, I^+I^- \& K^+ \rightarrow \pi^+ \nu \overline{\nu}$

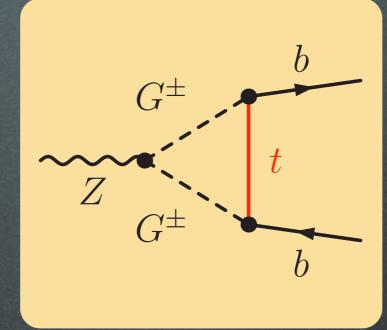

results depend on assumptions $\Delta B = 0$ & $|\Delta D| \le |D_{SM}|$

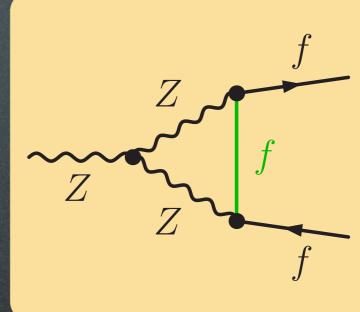


*Gambino, UH, Misiak '04

ΔC_7^{eff} vs. ΔC from $\overline{B} \rightarrow X_s \gamma, I^+I^- \& K^+ \rightarrow \pi^+ \nu \overline{\nu}$




results depend on assumptions $\Delta B = 0$ & $|\Delta D| \leq |D_{SM}|$



*Bobeth et al. '05

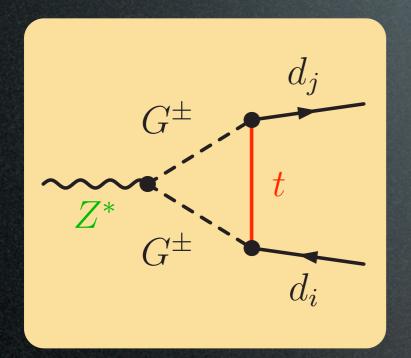
Idea: $Z \rightarrow d_{iL} \overline{d}_{jL} \equiv Z \rightarrow b_L \overline{b}_L$

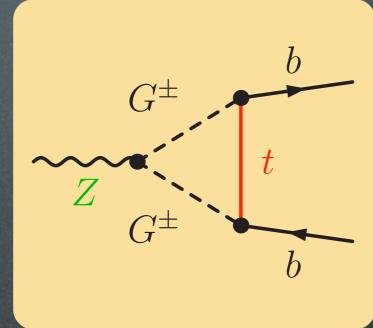
universal Z-penguin:

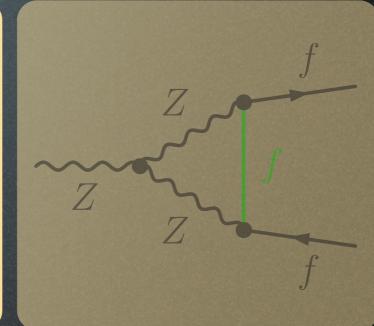
C

 $B(K^+ \rightarrow \pi^+ \nu \overline{\nu}), ...$

non-universal corrections:


€_b*


 $R_{b}^{0}, A_{b} & A_{FB}^{0,b}$


universal corrections: $\rho_f \& \sin^2 \theta_{eff}^f$

 $A_f, A_{LR}^0, R_c^0, \dots$

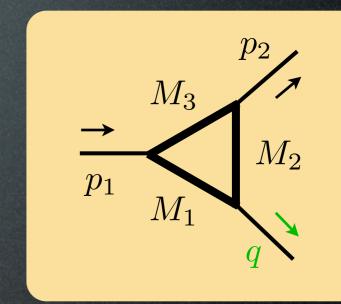
Idea: $Z \rightarrow d_{iL} \overline{d}_{jL} \equiv Z \rightarrow b_L \overline{b}_L$

$$\Gamma_{ji} \propto V_{tj}^* V_{ti} C(q^2) \, \bar{d}_{jL} Z d_{iL}$$

$$\delta C = 1 - \frac{\text{Re } C(q^2 = 0)}{\text{Re } C(q^2 = M_Z^2)}$$

$$Z \to d_{iL}\bar{d}_{jL} \colon C(q^2 = 0)$$

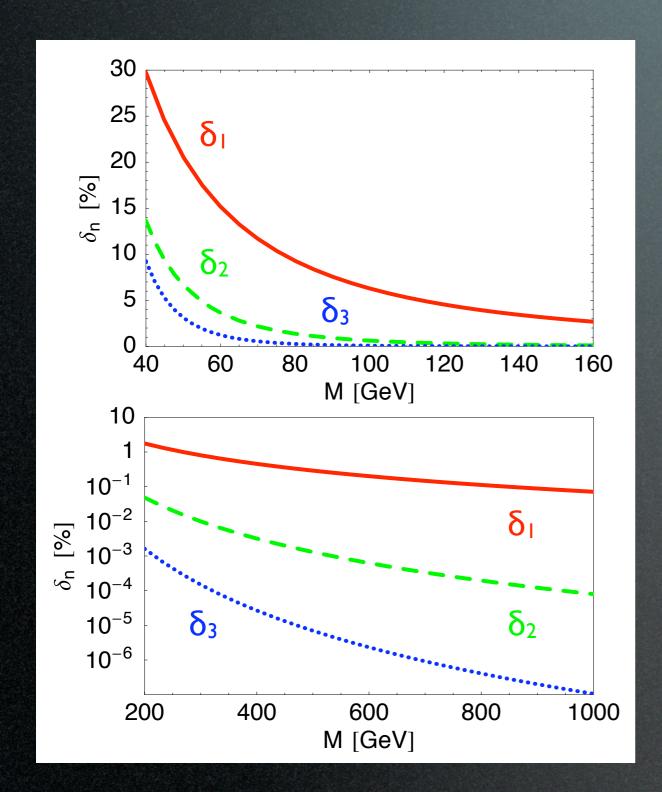
$$Z o b_L \overline{b}_L$$
: $C(q^2 = M_Z^2)$

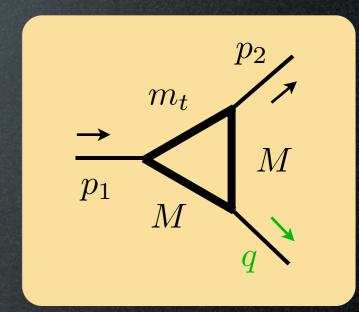

is there a general argument that shows that δC is small?

Small Momentum Expansion of Co

$$C_0 = \frac{M_3^2}{i\pi^2} \int \frac{d^4l}{D_1 D_2 D_3} = \sum_{n=0}^{\infty} a_n \left(\frac{q^2}{M_3^2}\right)^n$$

$$D_1 = (l + m_1)^2 \quad M^2 \quad m_2 = 0$$

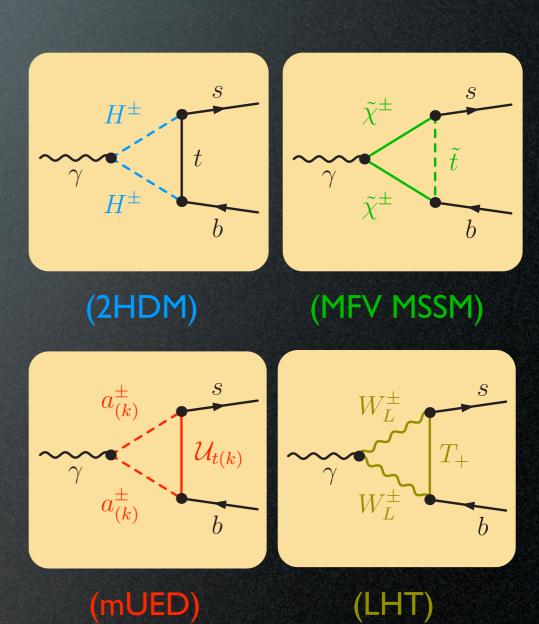

$$D_i = (l + p_i)^2 - M_i^2, \, p_3 = 0$$


$$\frac{\mathbf{a_n}}{\mathbf{a_n}} = \frac{(-1)^n}{(n+1)!} \sum_{l=0}^n \binom{n}{l} x_1^l \frac{\partial}{\partial x_1^l} \frac{\partial}{\partial x_2^n} g(x_1, x_2)$$

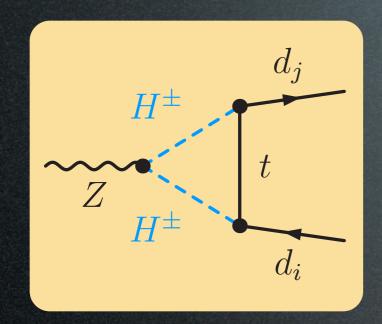
$$g(x_1, x_2) \stackrel{\ddagger}{=} \frac{1}{x_1 - x_2} \left(\frac{x_1 \ln x_1}{1 - x_1} - \frac{x_2 \ln x_2}{1 - x_2} \right)$$

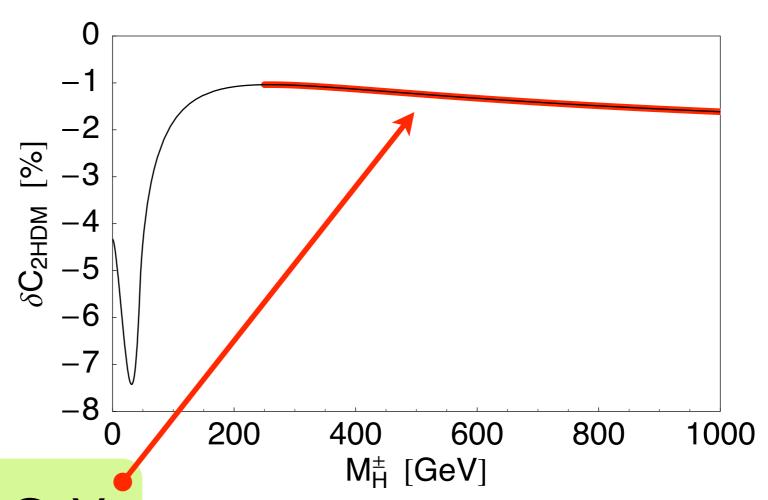
Small Momentum Expansion of Co

$$M_{1,2} = M$$
$$M_3 = m_t$$


$$\delta_n = \mathbf{a_n} \left(\frac{M_Z^2}{m_t^2} \right)^n \left(\sum_{l=0}^{n-1} \mathbf{a_l} \left(\frac{M_Z^2}{m_t^2} \right)^l \right)$$

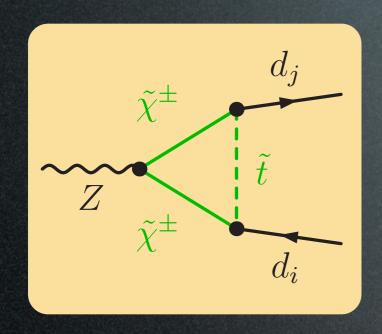
suggests that δC is small if internal masses are ≥ 100 GeV*

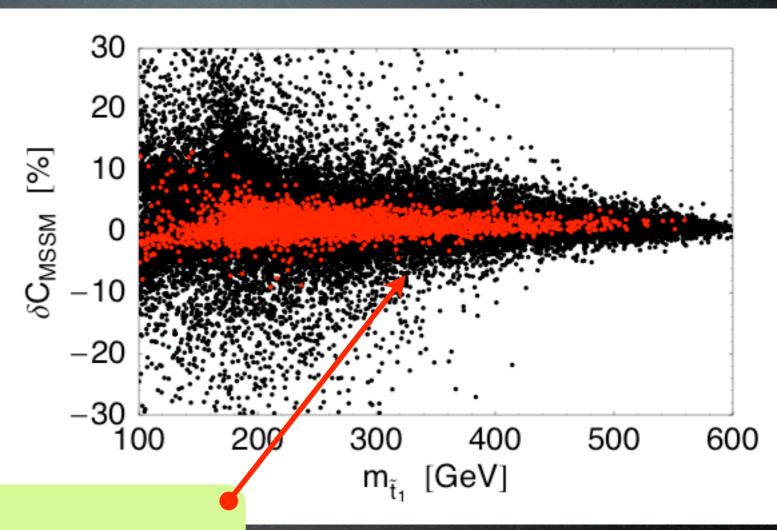

*applies also to case of $Z \rightarrow b_R \overline{b}_R$; argument doesn't rely on MFV assumption!


Assortment of MFV models

- 2-Higgs-Doublet-Model (2HDM)
- MSSM with universal squark mass & diagonal tri-linear terms* (MFV MSSM)
- SM with one flat universal extra dimension (mUED)
- Littlest Higgs model with T-parity
 & degenerate mirror quarks
 (LHT)

δC in 2HDM Type II & low tan $\beta = v_U/v_D$

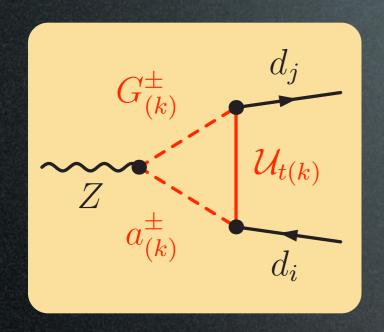


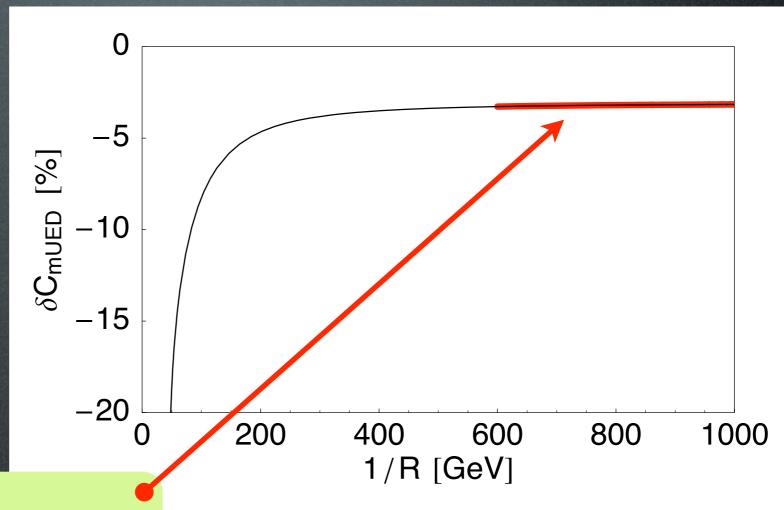


bound $M_H^{\pm} > 250 \text{ GeV}$ from $\overline{B} \rightarrow X_s \gamma^*$

general argument applies to 2HDM: |δC_{2HDM}| ≤ 2%

δC in CMFV MSSM & low tanβ

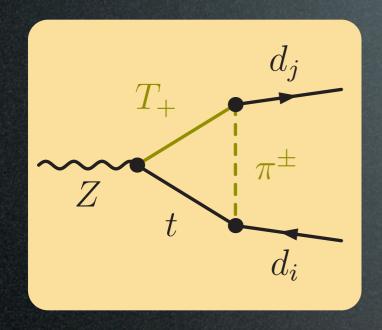


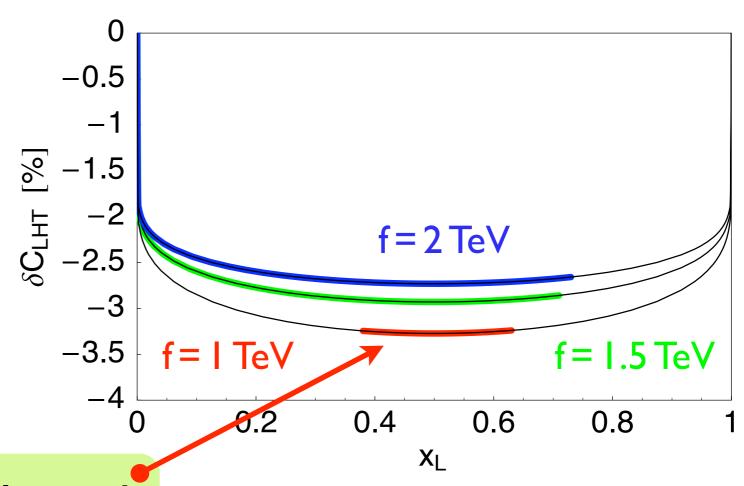


red points satisfy SUSY mass bounds, $m_h > 114.4$ GeV, EW precision & flavor constraints

general argument applies to CMFV MSSM: |δCMSSM| ≤ 10%

δC in mUED Model





bound I/R > 600 GeV from $\overline{B} \rightarrow X_s \gamma^*$

general argument applies to mUED model: $|\delta C_{ACD}| < 5\%$

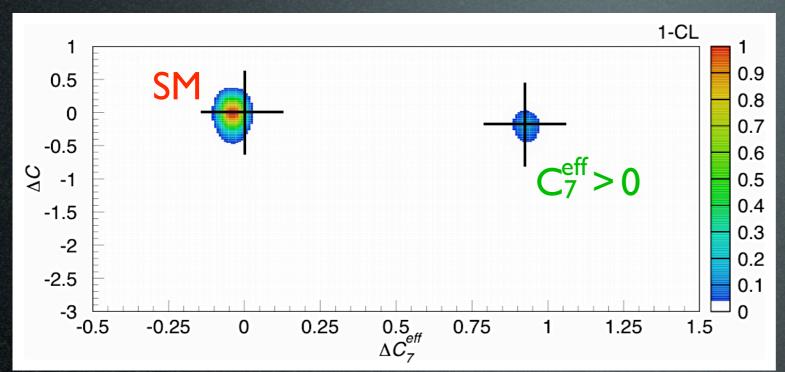
δC in CMFV version of LHT Model*

colored bands allowed by EW precision constraints

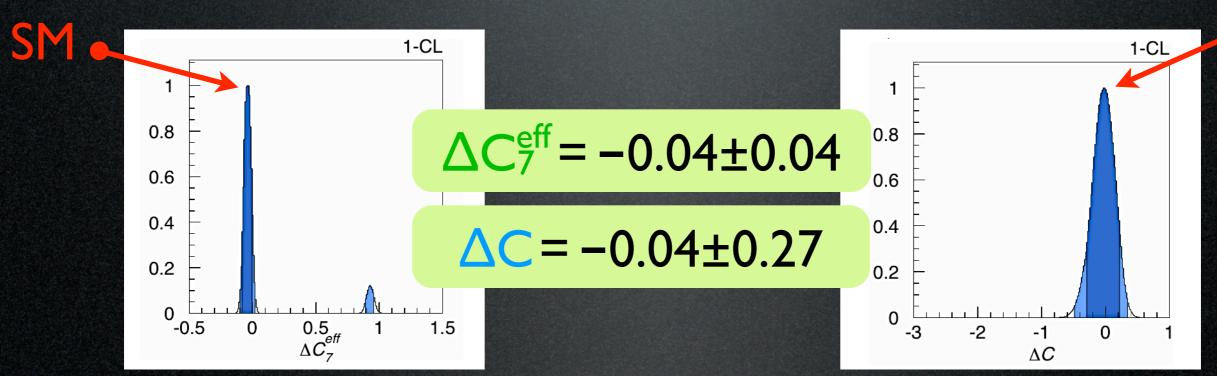
general argument applies to LHT model: δCLHT < 4%

*i.e. assuming degenerate mirror quarks; no left over UV pole in Z-penguin after GIM

ZFITTER* + CKMfitter[†]


ZFITTER includes SM purely EVV, QED & QCD radiative effects needed to extract pseudo observables (POs) Rb, Ab & AFB in model-independent fashion

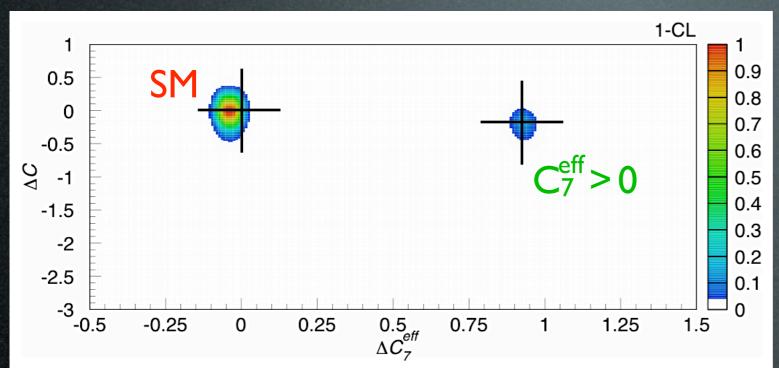
Routines for calculation of POs R_{\bullet}^{0} , A_{\bullet} , A_{\bullet}^{0} , & $B(B \rightarrow X_{\circ})^{*}$, $B(B \rightarrow X_{\circ})^{*}$, $B(B \rightarrow X_{\circ})^{*}$ called by CKMfitter to derive "personal believe unbiased" CLs using frequentist approach Rfit


meaning of experiment & theory remains distinct

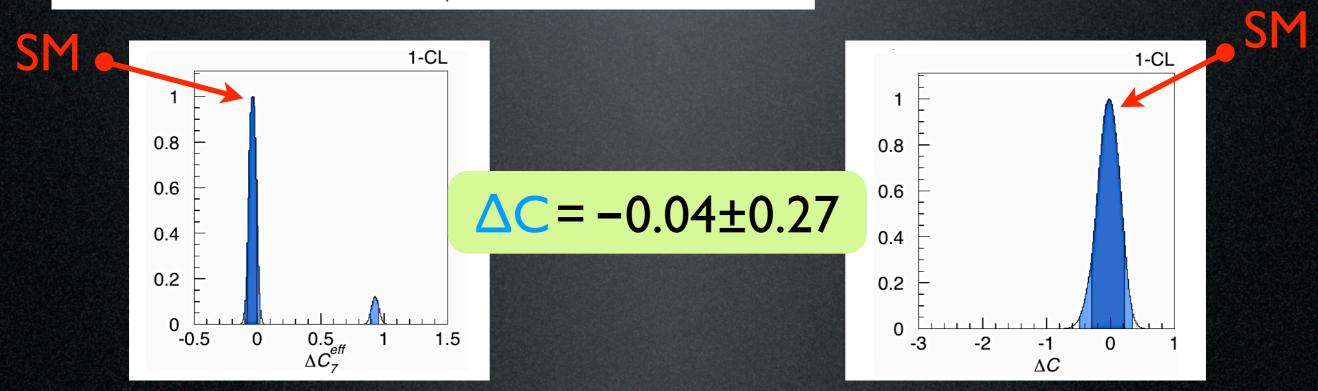
^{*}Bardin et al. '99, Arbuzov et al. '05 †Charles et al. '04

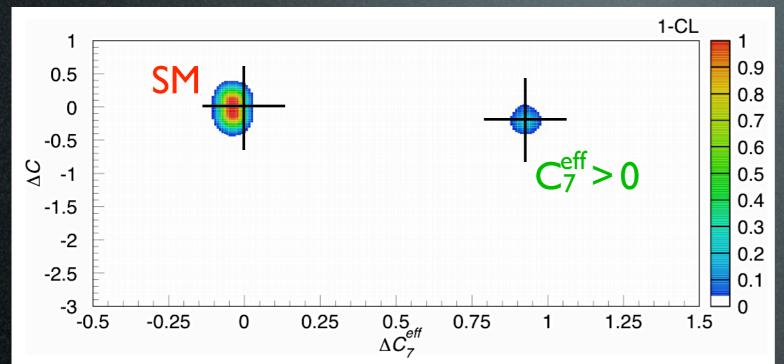
ΔC_7^{eff} vs. ΔC from POs & $\overline{B} \rightarrow X_s \gamma, I^+I^-$

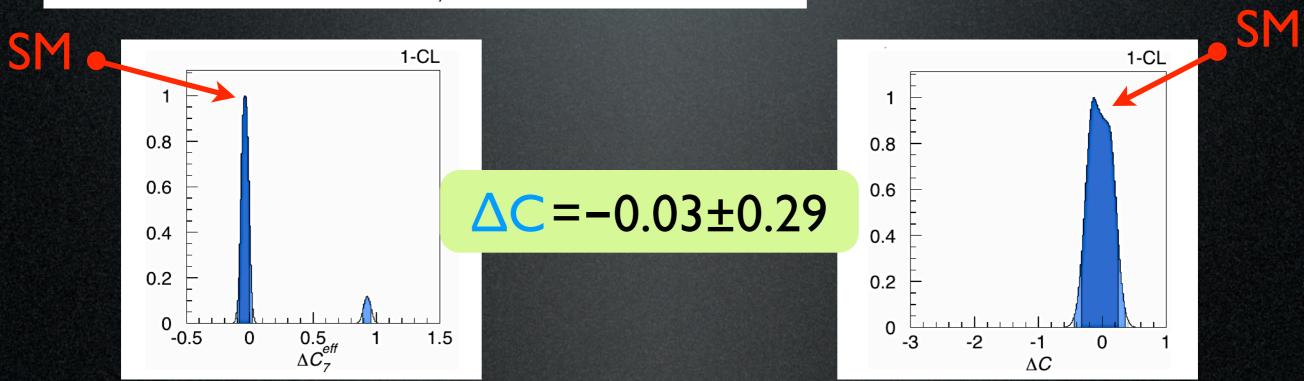
results don't depend on assumptions ΔB = 0 & $|\Delta D| \le |D_{SM}|^*$



*results obtained assuming $\delta C = \pm 10\%$


R.I.P. Large Destructive CMFV Z-Penguin!


2007: ΔC from POs


results don't depend on assumptions ΔB = 0 & $|\Delta D| \le |D_{SM}|$

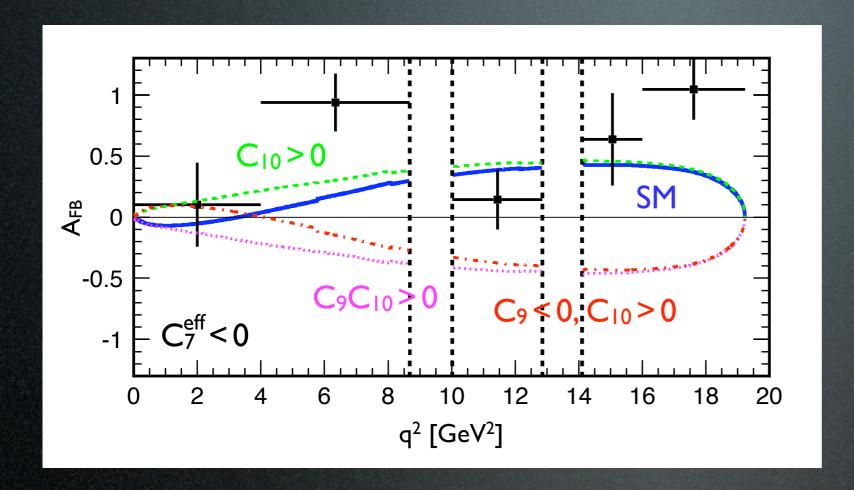
2015(?): Δ C from K⁺→ π ⁺ $\nu \overline{\nu}$ *

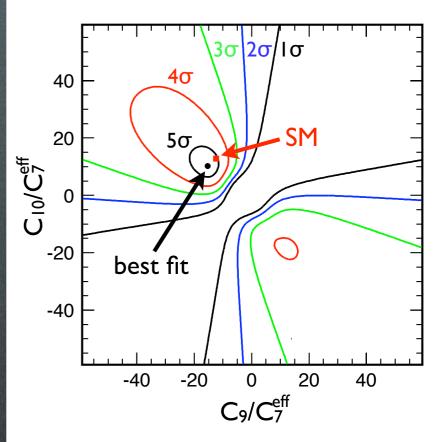
results do depend on assumptions ΔB = 0 & $|\Delta D| \le |D_{SM}|$

*assuming a 10% measurement of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ close to SM prediction

Lower & Upper CMFV Bounds*

· 		_	
Observable	CMFV (95% CL)	SM (95% CL)	Experiment
$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \times 10^{11}$	[4.24, 11.09]	[5.46, 9.41]	$\left(14.7^{+13.0}_{-8.9}\right)$
$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) \times 10^{11}$	[1.56, 4.56]	[2.24, 3.59]	$< 2.1 \times 10^4 \ (90\% \text{CL})$
$\mathcal{B}(K_L \to \mu^+ \mu^-)_{\rm SD} \times 10^9$	[0.30, 1.22]	[0.54, 0.88]	_
$\mathcal{B}(\bar{B} \to X_d \nu \bar{\nu}) \times 10^6$	[0.77, 2.00]	[1.24, 1.45]	_
$\mathcal{B}(\bar{B}\to X_s\nu\bar{\nu})\times 10^5$	[1.88, 4.86]	[3.06, 3.48]	< 64 (90% CL)
$\mathcal{B}(B_d \to \mu^+ \mu^-) \times 10^{10}$	[0.36, 2.03]	[0.87, 1.27]	$< 3.0 \times 10^2 (95\% \mathrm{CL})$
$\mathcal{B}(B_s \to \mu^+ \mu^-) \times 10^9$	[1.17, 6.67]	[2.92, 4.13]	$< 9.3 \times 10^1 \ (95\% \text{CL})$


CMFV deviations now strongly bounded from both sides


Violation of lower & upper bounds could signal additional flavor & CP violation || new operators || sizable box effects

Conclusions & Outlook

- Large CMFV contributions to $Z \rightarrow d_{iL} \overline{d}_{jL}$ excluded by LEP and SLC measurements of POs R_b^0 , $A_b \& A_{FB}^{0,b}$
- Are there other correlations in quark sector?
 b → sγ vs. b → bγ*, ...
- Are there correlations in lepton sector assuming minimal lepton flavor violation? $\mu \rightarrow e \gamma \text{ vs. } (g-2)_{\mu}{}^*,...$
- Despite 5 meetings @ CERN† interplay between flavor & collider physics largely unexplored

$\Delta C \text{ from } \overline{B} \rightarrow K^*I^+I^-$

- FB asymmetry in $\overline{B} \rightarrow K^*I^+I^-$ excludes $C_9C_{10} > 0$ at 95% CL*
- Hints towards exclusion of large destructive Z-penguin: $|\Delta C| \lesssim 1.5$

ΔC_7^{eff} vs. ΔC : Fit Input

*					
O	bservable	Result	R_b^0	\mathcal{A}_b	$A_{ m FB}^{0,b}$
	R_b^0	0.21629 ± 0.00066	1.00	-0.08	-0.10
	\mathcal{A}_b	0.923 ± 0.020		1.00	0.06
	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016			1.00

Observable	Experiment
$\mathcal{B}(\bar{B} \to X_s \gamma) \times 10^4$	3.55 ± 0.26
$\mathcal{B}(\bar{B} \to X_s l^+ l^-) \times 10^6$	1.60 ± 0.51

Quick Estimate: ΔC from ϵ_b

$$\Gamma_{\mu}^{Zb\bar{b}} = \left(\sqrt{2}G_{F}M_{Z}^{2}\right)^{\frac{1}{2}}(g_{V}^{b}\gamma_{\mu} - g_{A}^{b}\gamma_{\mu}\gamma_{5})$$

$$\frac{g_{V}^{b}}{g_{A}^{b}} = \left(1 - \frac{4s_{d}^{2}}{3} + \epsilon_{b}\right)(1 + \epsilon_{b})^{-1}, \quad g_{A}^{b} = g_{A}^{b}(1 + \epsilon_{b})$$

$$\Gamma_{\mu}^{Zb\bar{b}} = \frac{G_F}{\sqrt{2}} \frac{M_Z^2}{\pi^2} \frac{ec_W}{s_W} \gamma_{\mu} P_L C \qquad \epsilon_b = -\frac{G_F}{\sqrt{2}} \frac{M_Z^2}{\pi^2} 2c_W^2 \text{Re} C$$

$$\epsilon_b = -\frac{G_F}{\sqrt{2}} \frac{M_Z^2}{\pi^2} 2c_W^2 \operatorname{Re} C$$

$$\triangle \epsilon_b = (4\pm 25) \times 10^{-3\dagger}$$

 $\Delta C \approx -0.04 \pm 0.26$

 $\delta C = \pm 10\%$

*Altarelli, Barbieri & Caravaglios '93 [†]S. Schael et al. '06; experimental & theory error added linearly

68% CL SM Bounds on Rare Decays

Observable	SM (68% CL)	Experiment
$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \times 10^{11}$	7.32 ± 1.38	$(14.7^{+13.0}_{-8.9})$
$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) \times 10^{11}$	2.86 ± 0.36	$< 2.1 \times 10^4 (90\% \text{ CL})$
$\mathcal{B}(K_L \to \mu^+ \mu^-)_{\rm SD} \times 10^9$	0.70 ± 0.11	<u>—</u>
$\mathcal{B}(\bar{B} \to X_d \nu \bar{\nu}) \times 10^6$	1.34 ± 0.05	<u>—</u>
$\mathcal{B}(\bar{B} \to X_s \nu \bar{\nu}) imes 10^5$	3.27 ± 0.11	< 64 (90% CL)
$\mathcal{B}(B_d \to \mu^+ \mu^-) \times 10^{10}$	1.06 ± 0.16	$< 3.0 \times 10^2 (95\% \text{ CL})$
$\mathcal{B}(B_s \to \mu^+ \mu^-) \times 10^9$	3.51 ± 0.50	$< 9.3 \times 10^1 \ (95\% \text{CL})$

Mini Review: 2HDM

FCNCs naturally suppressed by imposing Z_2 symmetries $\phi_1 \rightarrow -\phi_1 * \& D_R \rightarrow -D_R$

$$\mathcal{L}_{\text{Yukawa}}^{\text{2HDM}} = \bar{Q}_{L} Y_{D} D_{R} \phi_{1} + \bar{Q}_{L} Y_{U} U_{R} (\phi_{2})_{c} + \text{h.c.}$$

Type II (
$$U_R \rightarrow +U_R$$
):

$$\phi_D = \phi_1 \neq \phi_2 = \phi_U$$

$$\frac{y_b}{y_t} = \frac{m_b}{m_t} \frac{v_U}{v_D}$$

Mini Review: MFV MSSM

Soft mass & tri-linear terms that are invariant under GF

$$\tilde{m}_{QL}^{2} = \tilde{m}^{2} \left(a_{1} \mathbf{1} + b_{1} Y_{U} Y_{U}^{\dagger} + b_{2} Y_{D} Y_{D}^{\dagger} + \dots \right)$$

$$\tilde{m}_{UR}^{2} = \tilde{m}^{2} \left(a_{2} \mathbf{1} + b_{5} Y_{U} Y_{U}^{\dagger} \right), \quad \tilde{m}_{DR}^{2} = \tilde{m}^{2} \left(a_{3} \mathbf{1} + b_{6} Y_{D} Y_{D}^{\dagger} \right)$$

$$A_{U} = A \left(a_{4} \mathbf{1} + b_{7} Y_{D} Y_{D}^{\dagger} \right) Y_{U}, \quad A_{D} = A \left(a_{5} \mathbf{1} + b_{8} Y_{U} Y_{U}^{\dagger} \right) Y_{D}$$

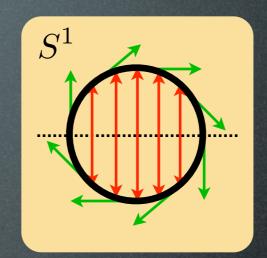
For tanβ not too large terms in YoY can be dropped

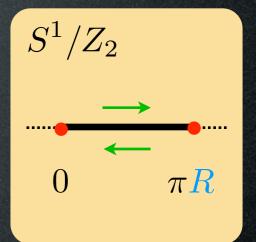
Assumption of universality of soft mass and proportionality of tri-linear terms corresponds to $b_i = 0^{\dagger}$

Mini Review: MFV MSSM cont'd

Physical 6×6 squark masses after EW symmetry breaking

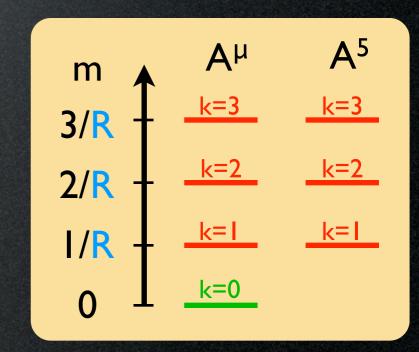
$$\tilde{M}_{U}^{2} = \begin{pmatrix} \tilde{m}_{QL}^{2} + Y_{U}Y_{U}^{\dagger}v_{U} + D_{U}^{LL} & (A_{U} - \mu Y_{U}\cot\beta)v_{U} \\ (A_{U} - \mu Y_{U}\cot\beta)^{\dagger}v_{U} & \tilde{m}_{U_{R}}^{2} + Y_{U}Y_{U}^{\dagger}v_{U} + D_{U}^{RR} \end{pmatrix}$$

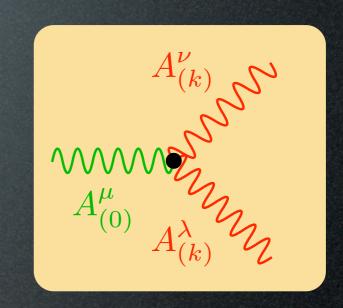

$$\tilde{M}_{D}^{2} \stackrel{*}{=} \begin{pmatrix} \tilde{m}_{QL}^{2} + D_{D}^{LL} & (A_{D} - \mu Y_{D}\tan\beta)v_{D} \\ (A_{D} - \mu Y_{D}\tan\beta)^{\dagger}v_{D} & \tilde{m}_{D_{R}}^{2} + D_{D}^{RR} \end{pmatrix}$$


For $b_i = 0^{\dagger}$ (s)quark mass matrices can be diagonalized simultaneously & tree-level FCNCs governed by CKM matrix appear only in chargino couplings (CMFV MSSM)

Mini Review: mUED Model*

All SM fields promoted to bulk in D=4+1=5


Compactify D=1 to orbifold S^1/Z_2 to allow for $\Psi_{L,R}$ in D=1


Under $y \rightarrow -y$ one has $A^{\mu}(-y) = A^{\mu}(y) & A^{5}(-y) = -A^{5}(y)$

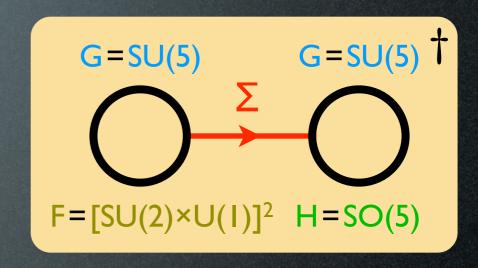
$$A^{\mu}(x, y) = A^{\mu}_{(0)}(x) + \sum_{k=1}^{\infty} A^{\mu}_{(k)}(x) \cos \frac{ky}{R}$$
$$A^{5}(x, y) = \sum_{k=1}^{\infty} A^{5}_{(k)}(x) \sin \frac{ky}{R}$$

Mini Review: mUED Model cont'd

Translation invariance in y broken at fix points: remnant $y \rightarrow y + \pi R$ leads to KK^* -parity $(-1)^k$

Many similarities to MSSM:

KK- vs. sparticles, KK- vs. R-parity, LKP vs. LSP, bosonic extra D vs. fermionic extra D, ...


But:

degenerate towers of KK-modes, same spin, only effective theory, UV completion needed for $\Lambda >> 1/R$, ...[†]

[†]boundary terms receive divergent radiative corrections

Mini Review: LH Model

Higgs is pseudo Goldstone of spontaneously broken global symmetry G → H at f ~ I TeV*

Gauge couplings of $F \to SU(2)_L \times U(1)_Y$ break G explicitly $\&V(\varphi)$ generated radiatively

Higgs mass protected by collective symmetry breaking @ I-loop, i.e., both gauge couplings of F need to be \neq 0

Quadratic divergences cancelled by new heavy partners of SM particles: A_H , Z_H , VV_H^{\ddagger} , T, ...

Mini Review: LHT Model

In LH SU(2)_c broken @ tree-level & large corrections to ρ parameter and POs arise implying $f \gtrsim 2-4$ TeV

T-parity = "discrete symmetry exchanging two gauge factors of $[SU(2)\times U(1)]^{2"*}$

SM particles & top partner T_+ are T_- even, A_H , Z_H , W_H^{\ddagger} , ... are T_- odd; fermion spectrum has to be doubled[†]: T_- , u_H , ...

Again similarities to MSSM, T- vs. R-parity, LTP vs. LSP, ..., but only non-linearly realized effective theory valid up to $\Lambda \sim 4\pi f \sim 10 \,\text{TeV}$

CMFV Hunting Strategy*

determination of universal unitarity triangle from angles & $\Delta M_{B_s}/\Delta M_{B_d}$

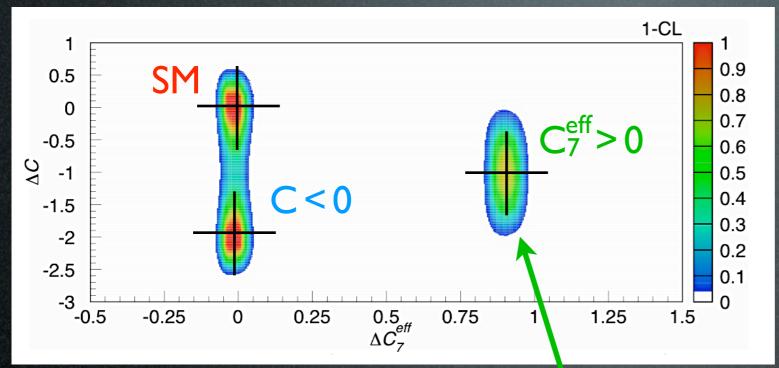
$$B(\overline{B} \to X_s \gamma) \propto |C_7^{eff}(\mu_b)|^2, B(\overline{B} \to X_s I^+ I^-) =$$

$$f(C_7^{eff}(\mu_b), C_9(C), C_{10}(C)) \& B(K^+ \to \pi^+ \nu \overline{\nu}) = g(C)$$

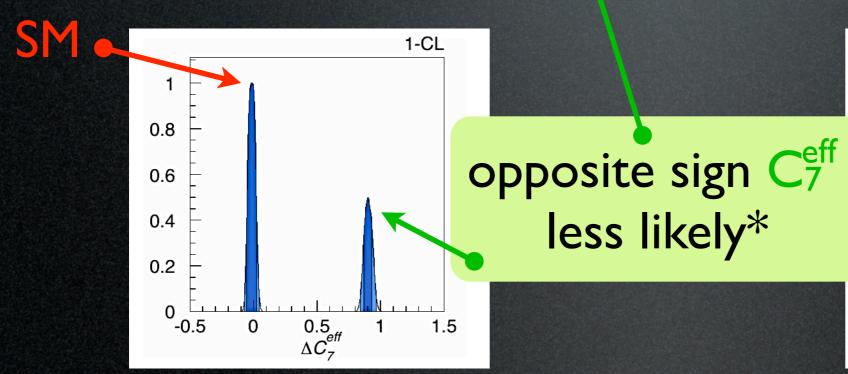
bounds on $\Delta C_7^{eff}(\mu_b)$ & ΔC from $\overline{B} \rightarrow X_s \gamma$, $\overline{B} \rightarrow X_s I^+I^-$ & • $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ data

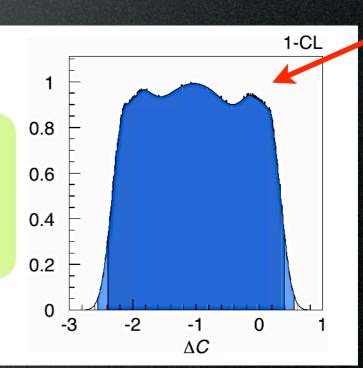
upper bounds!

$$B(K^{+}\rightarrow\pi^{+}\nu\overline{\nu})_{CMFV} < ...$$


$$B(K_{L}\rightarrow\pi^{0}\nu\overline{\nu})_{CMFV} < ...$$

$$B(K_{L}\rightarrow\mu^{+}\mu^{-})_{CMFV}^{SD} < ...$$


$$B(\overline{B}\rightarrow X_{d,s}\nu\overline{\nu})_{CMFV} < ...$$


$$B(B_{d,s}\rightarrow\mu^{+}\mu^{-})_{CMFV} < ...$$

ΔC_7^{eff} vs. ΔC from $\overline{B} \rightarrow X_s \gamma \& \overline{B} \rightarrow X_s I^+ I^-$

results depend on assumptions $\Delta B = 0$ & $|\Delta D| \le |D_{SM}|$

