

τ Physics at the B-Factories

Hisaki Hayashii Nara, Japan DIS07 2007/April/16-20, Munich, Germany

Outline

Selected topics of τ -physics from B-factories are presented.

- Lepton Universality
 - tau lepton mass/life time
- High statistic study of $\tau \rightarrow \pi^- \pi^0 \nu$ and CVC
- Search for Lepton Flavor Violation in τ decays
- (Decay with Kaons)
- Summary

τ Lepton Factory

Group	Luminosity,fb ⁻¹	Νττ, 10 ⁶
LEP(Z-peak)	0.34	0.33
CLEO(10.6GeV)	13.8	12.6
Babar(10.6GeV)	300	270
Belle(10.6GeV)	535	477
τ-c(4.2GeV)	10	32
Super-B	50,000	45,000

B-factory is also a τ -factory producing 0.9x10⁶ $\tau^+\tau^-$ pairs per each fb⁻¹.

Lepton Universality

 $\Gamma(\tau \to \ell v_{\tau} \bar{v}_{\ell}) = \frac{\mathsf{G}_{\mathsf{F}}^2 \mathsf{m}_{\tau}^5}{192\pi} \mathsf{f}(\mathsf{m}_{\tau}, \mathsf{m}_{\ell})\mathsf{r}_{\mathsf{EW}}$

$$\mathbf{r} = \left(\frac{\mathbf{G}_{\tau \to e \nu_{\tau} \overline{\nu_{e}}}}{\mathbf{G}_{\mu \to e \nu_{\tau} \overline{\nu_{e}}}}\right)^{2} = \left(\frac{\mathbf{m}_{\mu}}{\mathbf{m}_{\tau}}\right)^{5} \left(\frac{\tau_{\mu}}{\tau_{\tau}}\right) \mathbf{B} \left(\tau \to e \nu_{\tau} \overline{\nu_{e}}\right) \frac{\mathbf{f}_{cor} \left(\mathbf{m}_{\mu}, \mathbf{m}_{e}\right)}{\mathbf{f}_{cor} \left(\mathbf{m}_{\tau}, \mathbf{m}_{e}\right)}$$

r	τ_{τ} , fs	B(τ→evv), %	m _{τ, MeV}	Comments
0.9405	305.6 ±6.0	17.93 ±0.26	1784.1 ± ^{2.7} 3.6	PDG,1992
±0.0249	± 0.0185	± 0.0136	土 ^{0.0095} 土0.0071	-2.4 σ
0.9999	291.0 ±1.5	17.83 ±0.08	1777.0 ± ^{0.30} _{0.27}	PDG, 1996
± 0.0069	± 0.0052	± 0.0045	± 0.0008	-0.01 o
1.0020	290.6 ±1.1	17.84±0.06	1776.99 ±0.29	PDG, 2004
±0.0051	± 0.0038	± 0.0034	± 0.0008	+0.4σ

Tau mass (Belle)

τ -mass with Pseudo-mass method $M_{min}^2 = M_x^2 + 2(E_\tau - E_x)(E_x - P_x)$

■ Mode:τ→3πν (441fb⁻¹)

Error is dominated by the beam energy uncertainty, which is calibration by reconstructed-B and $\mu\mu$.

	m _τ , MeV	Group
	$1776.99 \pm {}^{0.29}_{0.26}$	PDG,2004
scan	$1776.96 \pm \begin{smallmatrix} 0 & . & 1 & 8 \\ 0 & . & 2 & 1 \end{smallmatrix} \pm \begin{smallmatrix} 0 & . & 2 & 5 \\ 0 & . & 1 & 7 \end{smallmatrix}$	BES,1996
scan	$1776.80 \pm 0.25 \pm 0.15$	KEDR,2006
	1776.61 [±] 0.13 [±] 0.35	Belle, 2006

Similar level of accuracy by different method. **CPT test by Mτ+ vs. Mτ-**

Group	Nτ⁺τ⁻, 10 ³	Mτ + - Mτ ⁻ /Mτ
OPAL,2000	160	<3.0 x 10 ⁻³
Belle,2006	370k	<2.8 x 10 ⁻⁴
		DIS07

 P_{τ}

θ

 P_{ν}

2007/04/18

Most precise!

High statistic study of $\tau \rightarrow \pi^- \pi^0 \nu$ and CVC

Motivation: $\tau^- \rightarrow \pi^- \pi^0 v_{\tau}$ and $a_{\mu} = (g_{\mu} - 2)/2$

- It is known that hadronic vacuum polarization (h.v.p.) term plays an important role in the theoretical calculation of the muon anomalous magnetic moment. a_u=(g_u-2)/2
- The dominant part of the h.v.p. term can be evaluated from the 2π spectral function measured with e⁺e⁻ or τ –data.
- Recent data indicate that there is a systematic difference in the 2π system between e⁺e⁻ reaction and τ –decays.

(g_μ-2)/2: Theory vs. Experiment

ICHEP-2006 (M. Davier et al.)

Contribution	a _μ , 10 ⁻¹⁰
Experiment	11659208.0 ± 6.3
QED	11658471.8 ± 0.016
Electroweak	$15.4 \pm 0.1 \pm 0.2$
Hadronic	693.1 ± 5.6 (e+e-)
Theory	11659180.3 ± 5.6
ExpTheory	27.7±8.4(3.3 σ)

ICHEP-2006(M.Davier et al.): $a_{\mu}(exp)-a_{\mu}(th)$ is 3.3 σ (K.Hagiwara et al.,hep-ph/0611102,claim even 3.4 σ !)

Muon anomalous magnetic moment (a_{μ})

Pion Form Factor $|F_{\pi}|^2$ (Belle)

Error bars include both stat. and sys. errors.

Sys. errors are dominated by background sub. and π^0 efficiency uncertainty. **Red lines: Fit with BW forms.**

```
Belle, ALEPH,CLEO data are plotted. 2007/04/18
```

Evaluation of a ππ

$$a_{\mu}^{\pi\pi,LO} = \frac{\alpha^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds \, \frac{K(s)}{s} \, v^{\pi\pi}(s)$$

K(s): Known function.

$$v^{\pi\pi}(s) = \frac{m_{\tau^2}}{6\pi |V_{ud}|^2 S_{EW}} \cdot \frac{B_{\pi\pi^0}}{B_e} \cdot \left[\left(1 - \frac{s}{m_{\tau^2}} \right)^2 \left(1 + \frac{2s}{m_{\tau^2}} \right) \right]^{-1} \cdot \frac{1}{N_{\pi\pi^0}} \frac{dN_{\pi\pi^0}}{ds}$$

✓ Need both mass spectrum $\frac{1}{N_{sr}} \frac{dN_{sr}}{ds}$ and $B_{\pi\pi}$

Ref.Phys.Lett.B513,361(2001)

- averaged value of Belle and PDG2004 is used. $B_{\text{Belle}} = (25.15 \pm 0.04 \pm 0.31)\%$ $B_{\text{ALEPH}} = (25.471 \pm 0.097 \pm 0.085)\%$ **Isospin breaking correction**
 - ρ - ω interference effects
 - $m_{\pi^{\pm}} \neq m_{\pi^{0}}$ in the phase space
 - $m_{\pi^{\pm}} \neq m_{\pi^{0}}$ in the width
 - radiative corrections

 $(-1.8 \pm 2.3) \times 10^{-10}$

 $m_{\pi\pi}^2 \ge 0.25 \text{GeV}^2$

total correction is estimated to be small except for threshold region DIS07 13 2007/04/18

Experimental Systematic Error

source	$\Delta a_{\mu}^{\pi\pi}(unit:\times 10^{-10})$
Background estimation	
•non- τ (ee->hadron)	±0.11
•feed-down $h \ge 2\pi^0 v$	± 0.09
•feed-down $K^-\pi^0\nu$	±0.15
π^0/γ selection	
efficiency/shape cuts	±0.35
Energy scale	±0.10
Gamma veto	±0.93
γ/track overlap	0.24
Tag-side condition	<0.1
Smearing/Migration effect	<0.1
007/04/18 Total DIS07	±1.04

a_{μ} (2 π) from Belle τ data $a_{\mu}(2\pi) = 457.2 \pm 1.0_{\rm SF} \pm 2.3_{\rm BR} \pm 2.3_{\rm SU(2)} \times 10^{-10}$ $m_{\pi\pi}^2 \ge 0.25 \text{GeV}^2$ ✓Most precise on structure function (SF) measurement \checkmark Consistent with previous τ data. SF: structure function error, BR: Br error SU(2):SU(2) breaking correction error τ and e⁺e⁻ data are different yet c.f. τ (ALEPH, CLEO) $a_{\mu}(2\pi) = 464.0 \pm 2.2_{SF} \pm 2.3_{BR} \pm 2.3_{SU(2)}$ Ref. Eur.Phys.C27,497(2003) $\bullet e^+ e^- (C M D 2)$ a_{μ} (2 π) = 4 4 0 .8 ± 4 .9 ± 1 .6 rad

2007/04/18

Search for Lepton Flavor Violation in τ Decays

Lepton Flavor Violation

- = Clean processes to Look for Beyond the SM
- LFV is not forbidden by any known gauge symmetry
- Neutrino oscillation indicates Lepton Flavor is violated in the Neutral Lepton sector.
- LFV for the Charged Lepton Sector is suppressed strongly in SM due to a tiny net

$$BR \propto \left(\frac{\Delta m_{\nu}^2}{m_{w}^2}\right)^2 \approx 10^{-49} - 10^{-52}$$

Charged Lepton Flavor Violation

LFV is expected to occur in the loops of the new physics processes at TeV scale such as SUSY, Extra-D etc.

SUSY+ Seesaw, Left-Right etc.

- Correlation between τ -LFV and μ -LFV($\mu \rightarrow e\gamma$, $\mu \rightarrow III$)
- Predicted Br($\tau^- \rightarrow \mu^- \gamma$) reach 10⁻⁸-10⁻⁷

LFV is related to the physics at GUT scale.

44 different modes are studied!.

General event selection

 \checkmark τ^{\pm} (signal) \rightarrow LFV of exclusive decay mode e & τ^{\pm} (tag) \rightarrow single track with $(n \gamma)$ + missing Single prong mode occupies >80% of decay. Simple but strong constraints does not exist due to neutrino missing. ✓ BG's: ττ, continuum, μμ, ee, γγ, BB signal evaluation: $\mathbf{m}_{inv} - \Delta \mathbf{E}$ \checkmark 7:0- ∆E (GeV) $m_{inv} \sim m_{tau} \& \Delta E = E - E_{beam} \sim 0$ **Blind** analysis \checkmark **Evaluation of upper limit** 1.75 M_{inv} (GeV/c²)

For small numbers of events in signal-region: event-counting is done with Feldman-Cousins method.

✓ For events >= a few 10's in signal-region:

maximum likelihood fit is applied and upper-limit is evaluated with toy-MC.

 e^+

sional side

Generic & decay

1.85

1.8

ag side

New result on $\tau \rightarrow \mu \gamma$ (Belle) 535fb⁻¹

τ**→**31

Belle: 87.1fb⁻¹, BaBar: 91.5fb⁻¹ PLB 598, 103 (2004), PRL 92, 121801 (2004). Br<(1.1~3.5)x10⁻⁷ at 90%C.L.

Background: negligible

• qq around ΔE <0, QED($\mu\mu$ or Bhabha) around ΔE >0

2007/04/07

τ→lη

Data: 401fb⁻¹ (Belle)
 τ→lη; η→γγ, π⁺π⁻π⁰

Br(τ→μη)<0.65x10⁻⁷
Br(τ→eη)<0.92x10⁻⁷
Efficiency x Br(η); 4.1%, 2.9%
Low background
Background: <1 event
τ→μη: a little τ→ππ⁰ν

Status of LFV Studies-I ($\tau \rightarrow I\gamma$, III)

τ-	Belle		Babar		CLEO	
mode	Br, 10 ⁻⁷	Lum. fb ⁻¹	Br, 10 ⁻⁷	Lum. fb ⁻¹	Br,10 ⁻⁷	Lum,fb ⁻¹
μ-γ	<0.45	535	<0.68	232	<11	13.8
e⁻γ	<1.2	535	<1.1	232	<27	4.68
μ [–] e+ μ [–]	<2.0	87.1	<1.3	91.5	<15	4.79
μ− e⁻e +	<1.9	87.1	<2.7	91.5	<17	4.79
μ-μ-μ+	<2.0	87.1	<1.9	91.5	<19	4.79
e-μ–μ+	<3.3	87.1	<2.0	91.5	<18	4.79
μ +e-e-	<2.0	87.1	<1.1	91.5	<15	4.79
e-e-e+	<3.5	87.1	<2.0	91.5	<29	4.79

Status of LFV Studies-II ($\tau \rightarrow$ I+Hadron)

$ au^-$	Belle		Babar		CLEO	
mode	Br, 10 ⁻⁷	Lum. fb ⁻¹	Br, 10 ⁻⁷	Lum. fb ⁻¹	Br,10 ⁻⁷	Lum,fb ⁻¹
e⁻K ⁰ s	<0.56	281			9.1	13.9
μ⁻K ⁰ s	<0.49	281			9.5	13.9
$\mu^- \ \pi^0$	<1.2	401	<1.1	339	40	4.68
μ-η	<0.65	401	<1.5	339	96	4.68
μ-η΄	<1.3	401	<1.4	339	-	-
$\mathbf{e}^{-}\pi^{0}$	<0.8	401	<1.3	339	40	4.68
e⁻η	<0.92	401	<1.6	339	96	4.68
e⁻η′	<1.6	401	<2.4	339	-	-

Status of LFV Studies-IV ($\tau \rightarrow I^-V^0$)

$ au^-$	Belle		Babar		CLEO	
mode	Br, 10 ⁻⁷	Lum. fb ⁻¹	Br, 10 ⁻⁷	Lum. fb ⁻¹	Br,10 ⁻⁷	Lum,fb ⁻¹
e⁻ρ ⁰	<6.4	158	-	-	<20	4.79
e ⁻ K*(892) ⁰	<3.0	158	-	-	<51	4.79
e ⁻ K*(892) ⁰	<4.0	158	-	-	<74	4.79
e⁻∳	<1.5	545	-	-	<69	4.79
μ ⁻ ρ ⁰	<2.0	158	-	-	<63	4.79
μ⁻K*(892) ⁰	<3.9	158	-	-	<75	4.79
μ⁻K*(892) ⁰	<4.0	158	-	-	<75	4.79
μ ⁻ φ	<0.8	545	-	-	<70	4.79
e⁻ω	<1.0	545				
μ ⁻ ω	<1.9	545				

2007/04/07

•N_{obs}: # of Observed Ev.

data \bigcirc signal \bigcirc $\tau\tau$

•S₀: Ev. Upper Limit @90%

2007/04/18

LFV searches: Summary

Progress of LFV Studies- $\tau^- \rightarrow \mu^- \gamma$

Group	Date	Lum, fb ⁻¹	$N_{\tau\tau}^{}$, 10 ⁶	B ⁹⁰ UL
MARK II	1982	0.017	0.048	5.5x10 ⁻⁴
ARGUS	1992	0.387	0.374	3.4x10 ⁻⁵
DELPHI	1995	0.070	0.081	6.2x10 ⁻⁵
CLEO	2000	13.8	12.6	1.1x10 ⁻⁶
Belle	2004	86.3	78.5	3.1x10 ⁻⁷
Babar	2005	232.2	207	6.8x10 ⁻⁸
Belle	2006	535	477	4.5x10 ⁻⁸
Babar&Belle	2006	767.2	684	1.6x10 ⁻⁸

Combining results. S.Banerjee at Tau2006

4 order of magnitude improvement by 25 years.

2007/04/18

Implications of LFV Studies for SUSY

2007/04/18

Summary

- B-factories (Belle & Babar) has recorded 10⁹ τ –decays which are now under analysis.
- Big advantage in statistical accuracy and searches for rare modes.
- Lepton universality holds. New measurements on $M_{\tau_1} \tau_{\tau_2}$
- Upper limit on $|M_{\tau^+} M_{\tau^-}|/M\tau$ is 2.8x10⁻⁴ at 90%C.L. (10 times improvement of the previous results.)
- Precise $|F_{\pi}|^2$ is measured in 2π decay. Problems with CVC still exist
- First observation of τ decay including ϕ meson is made.

Br($\tau \rightarrow \phi K v$) = (4.0 ± 0.25 ± 0.26) x 10⁻⁵

Three Kaon modes are best place for neutrino-mass measurement up to 1MeV order.

Sensitivity of LFV searches better than 10⁻⁷.

The most stringent limit is

Br($\tau \rightarrow \mu \gamma$) < 1.6 x 10⁻⁸ (Belle+Babar comb.)

Exploring possible parameter space of New Phys.

Decay with Kaons

Group	$N_{\tau\tau}^{}, 10^{6}$	Nev	Br(φK ⁻ ν _τ), 10 ⁻⁵	
Belle	358	551 ± 33	$4.05 \pm 0.25 \pm 0.26$	400fb ⁻¹
Babar	306	274±16	$3.48 \pm 0.20 \pm 0.26$	

Fit of EXP $K_s \pi^-$ spectrum

 $M_{k\pi}$ spectrum is dominated by K*(892), K*(800)i.e. κ and K*₀(1430).

Indication of the S-wave contribution

Mode	Br, %	Br(PDG-06), %
$K^0_{\ s}\pi^-\nu_\tau$	Belle: $0.395 \pm 0.002 \pm 0.014$	0.45 ± 0.02
$K^{-}\pi^{0}v_{\tau}$	Babar:0.439±0.003±0.021	0.452 ± 0.027

2007/04/18

Mass (Belle systematics)

Beam energy a	nd tracking system	0.26 MeV		
Edge paramete	rization	0.18 MeV		
Limited MC stat	istics	0.14 MeV		
Fit range		0.04 MeV		
Momentum reso	olution	0.02 MeV		
Model of $\tau \rightarrow 3\pi v$	1	0.02 MeV		
Background		0.01 MeV		
Total:		0.35 MeV		
Group	m _τ , MeV			
PDG,2004	$1776.99 \pm ^{0.29}_{0.26}$			
BES,1996 1776.96 $\pm_{0.21}^{0.18} \pm_{0.21}^{0.18}$		scan threshold		
KEDR,2006	1776.80 $\pm_{0.23}^{0.25} \pm$ 0.15	scan threshold		
Belle, 2006 1776.61 [±] 0.13 [±] 0.3		pseudo mass		
2007/04/10	DIS07			

2007/04/18

Sensitivity to the MSSM parameter space

The Problem (revisited)

Relative difference between τ and e^+e^- data:

No correction for $\rho^{\pm} - \rho^{0}$ mass (~ 2.3 ± 0.8 MeV) and width (~ 3 MeV) splitting applied

Davier, hep-ex/0312064

Jegerlehner, hep-ph/0312372

Relative difference between τ data

(ALEPH,CLEO and Belle

$$M_{\pi\pi}^{2}$$
 < 0.8 GeV²;
consistent each
other.

 $a_{\mu}^{2\pi}$ is dominated in the lower M $\pi\pi^{2}$ region.

Systematic in the mass distribution

Unfolding procedure

- Checked by Signal MC (UNF¹)
- Unfolding condition : value ±5 (UNF2)

Acceptance (Accept.)

- $-\pi^0$ efficiency $\pm 3\%$
- Effect of γ-track isolation

 Change a cut on the cluster-track distance (default and tighter one(30cm))

Momentum or energy scale (ENS)

- Change E_{γ} by it's uncertainty estimated from the π^0 mass peak position.
- (±0.2%)

2007/04/18

Systematic in the mass distribution

Background

• continuum BG (BKG1)

- \checkmark estimate at the mass region higher than m_{τ}
- ✓ uncertainty is estimated to be 10%

Feed down BG (BKG2)

- \checkmark dominated by $\tau^- \rightarrow \pi^- 2\pi^0 v_{\tau}$
- ✓ Other contribution from τ -> $\omega \pi^0 \nu$ (ω -> $\pi^0 \gamma$)
- \checkmark systematic is estimated by changing the Br in PDG $\,$ by 1σ

• non- π^0 BG (BKG(3))

- ✓ dominated in the low $(M_{\pi\pi^0})^2$ region.
- ✓ In this region, the size of the non- π^0 background in the lower M_{$\gamma\gamma$} side is different between data and MC. This differences is estimated as a systematic.

τ→Baryons

τ→pγ, pπ⁰
 Belle (preliminary)
 B(τ→pγ)<3.0x10⁻⁷ (87fb⁻¹)
 B(τ→pπ⁰)<6.5x10⁻⁷ (154fb⁻¹)
 Background: many ττ, qq
 γ/π misidentification

• $\tau \rightarrow \Lambda \pi$ • Belle: 154fb⁻¹ • $B(\tau \rightarrow \Lambda \pi) < 1.4 \times 10^{-7}$ • $B(\tau \rightarrow \Lambda \pi) < 0.72 \times 10^{-7}$ PLB 632, 51 (2006). • Background: $\tau \tau(a_1 \nu)$, qq 2007/04/18

<u>New result on τ->eγ (Belle)</u>

(**535**/fb)

Status of LFV Studies-III (τ→e⁻h⁺h'⁻)

τ-	Belle		Babar		CLEO	
mode	Br, 10 ⁻⁷	Lum. fb ⁻¹	Br, 10 ⁻⁷	Lum. fb ⁻¹	Br,10 ⁻⁷	Lum,fb ⁻¹
e ⁻ π ⁺ π ⁻	<7.3	158	<1.2	221	<22	4.79
e ⁺ π ⁻ π ⁻	<2.0	158	<2.7	221	<19	4.79
e ⁻ π ⁺ K ⁻	<7.2	158	<3.2	221	<64	4.79
e ⁻ π ⁻ K ⁺	<1.6	158	<1.7	221	<38	4.79
e+π-K-	<1.9	158	<1.8	221	<21	4.79
e-K+K-	<3.0	158	<1.4	221	<60	4.79
e+K-K-	<3.1	158	<1.5	221	<38	4.79

Status of LFV Studies-V (τ→I⁻⁺Baryon)

τ^{-}	Belle		Babar		CLEO	
mode	Br, 10 ⁻⁷	Lum. fb ⁻¹	Br, 10 ⁻⁷	Lum. fb ⁻¹	Br,10 ⁻⁷	Lum,fb ⁻¹
ργ	<3.0	158	-	-	<35	4.7
$\overline{p}\pi^0$	<6.5	158	-	-	<150	4.7
$\overline{\Lambda}\pi^-$	<1.4	158	<0.59	237	-	-
$\Lambda\pi^-$	<0.72	158	<0.58	237	-	-
$\overline{\Lambda}K^{-}$	-	-	<0.72	237	-	-
ΛK^-	-	-	<1.5	237	-	-

Event display : τ→μφ

Event display : $\tau \rightarrow e\omega$

2007/04/18

Future prospect for LFV searches

Based on MC simulation assuming the current level of efficiency and background.

DIS07

_9