First Physics in ATLAS

(including electroweak and top)

Anne-Catherine Le Bihan (CERN)
On behalf of the ATLAS collaboration

Outline:

- Early data : minimum bias / underlying event / SM candles
- Early top physics & prospects for the top mass

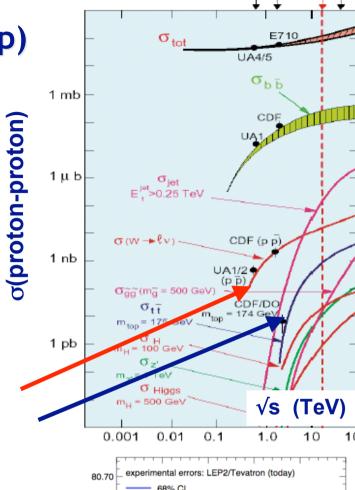
(W mass prospects & TGCs not covered here, not early measurements)

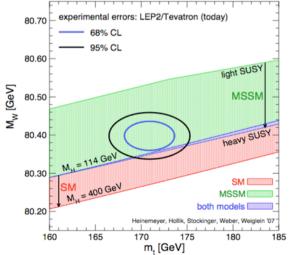
Physics motivation (electroweak & top)

The LHC is a top, W and Z factory:

$$\sigma(W \rightarrow lv) \sim 15 \text{ nb } 10^7 \text{ evts } / 1 \text{ fb}^{-1} \text{ (low lumi)}$$

 $\sigma(Z \rightarrow ll) \sim 1.5 \text{ nb } 10^6 \text{ evts } / 1 \text{ fb}^{-1}$
 $\sigma(tt) \sim 0.8 \text{ nb } 10^6 \text{ evts } / 1 \text{ fb}^{-1}$


→ large samples to study systematic effects, perform precision measurements and search for rare processes!


$$\sigma(W \rightarrow lv)$$
 @ LHC x 10 Tevatron $\sigma(t\bar{t})$ @ LHC x 100 Tevatron

The top and W masses are crucial parameters of the SM: allow to constrain the mass of the Higgs boson.

For equal contribution to the M_H uncertainty:

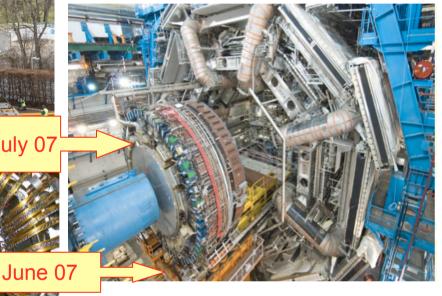
$$\Delta M_W = 0.7 \times 10^{-2} \Delta M_{top}$$

 $\Delta M_{top} < 2 \text{ GeV} \rightarrow \Delta M_W < 15 \text{ MeV}$

LHC possible startup scenario

- End 2007 early 2008 (??):
 - single beam operations @ 450 GeV
 - pp collisions @ $\sqrt{s} = 900 \text{ GeV L} = 10^{29} \text{ cm}^{-2}.\text{s}^{-1}$
- Summer 2008 : pp collisions @ \sqrt{s} = 14 TeV
 - Until 2009 : L = 5.10^{30} 1.10^{33} cm⁻².s⁻¹
 - After 2009 : $L = 10^{34} \text{ cm}^{-2}.\text{s}^{-1}$, bunch spacing = 25 ns

Integrated luminosity end 2008 : 0.5 to 1 fb⁻¹ ?



The ATLAS detector in early days

Major steps remaining:

Inner-detector endcap / pixel / endcap toroid

Cosmics in EM calo

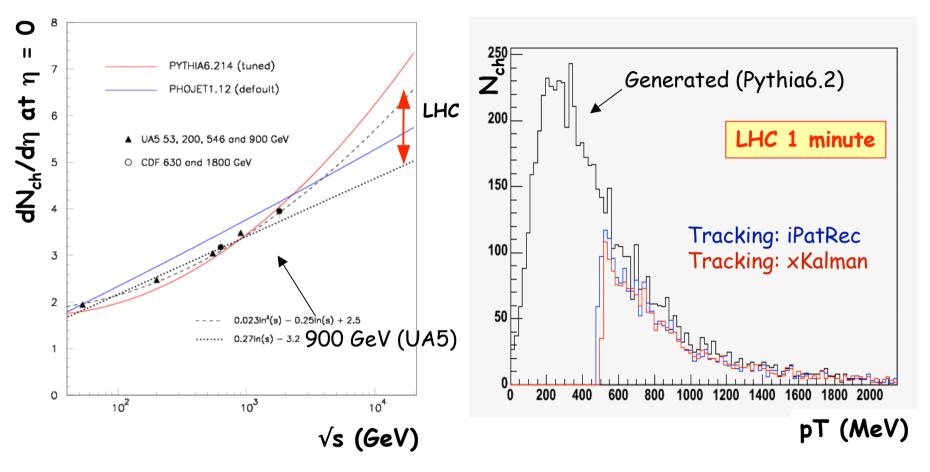
→ ATLAS on a tight schedule to operate almost complete fall 2007

June / July 07

Expected detector performance on day one:

• ECAL uniformity: ~1%

• e/γ scale : 1-2 %


• HCAL uniformity : ~2-3%

• Jet scale <10%

• Expected alignement of 20-200 μm in R-φ

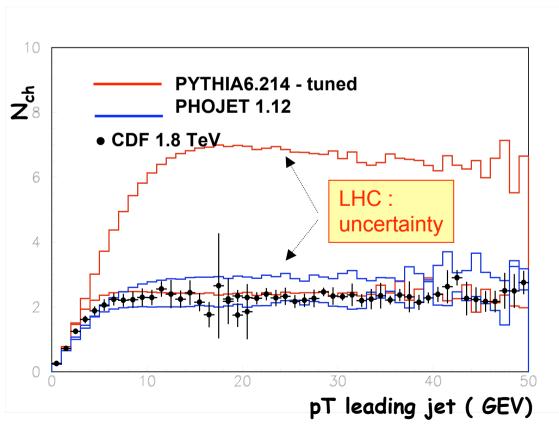
Minimum bias (@ \sqrt{s} = 900 GeV and 14 TeV)

 \rightarrow Large uncertainties in the predicted particle multiplicities @ \sqrt{s} = 14 TeV

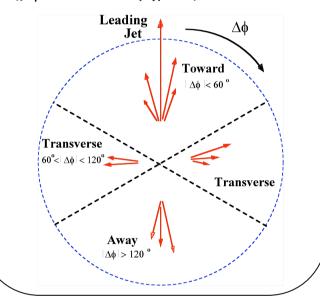
- Expected LHC inelastic cross-section: 70 mb?
- Control the charged particle multiplicities dN_{ch}/dη & dN_{ch}/dp_T
- Track reconstruction straightforward above 500 MeV only (cut-off at ~ 400 MeV)
- Reconstruct track segments in pixels down to ~100 MeV ?

Use minimum bias @ \sqrt{s} = 900 GeV and 14 TeV

Ex.: commissionning of the electromagnetic calorimeter: S2 χ^2 / ndf Constant 1.089e + 05 + 21110⁵ 0.411± 0.047 30.52 ± 0.04 10⁴ Map of all EM calo cells in ~1 day : → dead cells. HV failures ... 10³ 14 TeV 900 GeV 10² noise Monitoring of energy depostion 10 in one cell of 2nd. sampling -200 -100 100 200 300


- Energy flow in second sampling (mainly low energy non converting photons) sensitive to tracker material vs φ
 ⇒ excess of 10% of X₀ in ΔηxΔφ visible with ~2 weeks of data
- (* EM calo uniformity, ATL-LARG-PUB-1007-007 events (10 expected to be better than 1% - from test beam experience) 10 $\Delta \phi$ size of considered region Number of evts $\Delta \phi = 0.1$ $\Delta \Phi = \pi$ $\Delta \phi = 0.025$ to observe a 10% relative increase 0.1 0.3 0.4 in X_∩ Δη size of considered region

E (MeV)


Underlying event in dijet production ($\sqrt{s} = 14 \text{ TeV}$)

Underlying event also uncertain at LHC:

- Depends on : multiple interactions, PDFs, gluon radiation
- Important ingredient for : Isolation of jets and leptons, energy flow, jet tagging ...

Measure underlying event through flow of charged particles in region transverse to the jets $(p_T>0.5 \text{ GeV } |\eta|<1.)$

Compare plateaus in early runs
 ~20 M events needed to reach
 p_T ~ 30 GeV

Select the Standard Model candles

Low luminosity runs (L=0.5 10³⁰ - 10³³ cm⁻².s⁻¹) will allow to trigger early on on large samples of SM candles:

- Z→II
- $W \rightarrow V$
- \rightarrow I = e/ μ but also τ (hadronic τ + E_t^{miss} trigger)

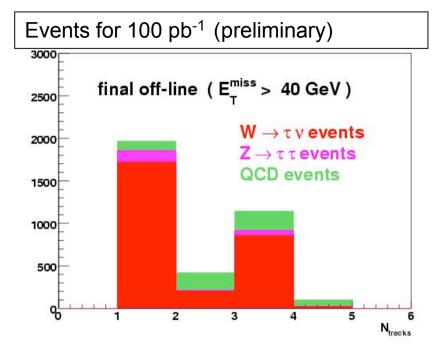
A few analyzes topics:

- Energy and momentum scale calibration from Z→II (I = e/μ)
- E_T^{miss} calibration from W→lv
- Understand W+jets and Z+jets: important background for tt and SuSy!
- Measure the W→τν cross section : validation of τ-id needed for Higgs and SuSy searches!

LVL1 Menu	2x10 ³³ cm ⁻² s ⁻¹
MU20	0.8
2MU6	0.2
E25i	12.0
2E15i	4.0
J200	0.2
3J90	0.2
4J65	0.2
J60+xE60	0.4
TAU25+xE30	2.0
MU10+EM15i	0.1
Others	5.0
Total rate (kHz)	~ 25

(preliminary ...)

Prospects for W→τν


Aim is to extract a $W \rightarrow \tau v$ signal early on with an integrated luminosity of 100 pb⁻¹.

LHC: signal x 10 and multi-jet background x 100 with respect to

Tevatron : E_T^{miss} cut needed .

→ Implement a hadronic τ + E_T^{miss} trigger and profit from low-luminosity operation to trigger at lowest possible E_T thresholds (20-30 GeV), raise E_T^{miss} cut as luminosity goes up.

Event rates assuming eff ~ 80% for τ trigger, ~ 50% for τ reco/id

Signal evidence through N_{track} spectrum

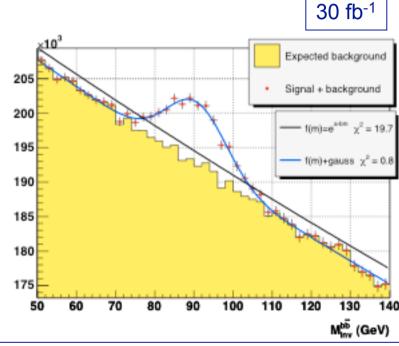
Expected rates for 100 pb ⁻¹	$\begin{array}{c} W \to \tau \nu, \\ \tau \to \text{hadron} \end{array}$	$W \to e \nu$	$Z \rightarrow \tau \tau$, $1\tau \rightarrow hadron$
σ.B (pb)	11200	17300	1500
τ30i + xE35	~ 15 000	~ 250 000	~ 1300
τ20i + xE25	~ 60 000	~ 560 000	~ 3500

Select $Z \rightarrow b\bar{b}$ @ L = 2. 10^{33} cm⁻².s⁻¹?

Crucial for measuring the b jet energy scale.

Offline strategy: Select $Z + jet \rightarrow bb + jet$ events instead of $Z \rightarrow bb$:

- → main selected background : gluon splitting at low M_{bb}-
- → allows to raise the p_T thresholds on b jets w/o cutting away the background low mass side band
- \rightarrow higher S/B thanks to higher $p_{\tau}(b)$ thresholds


Trigger strategy:

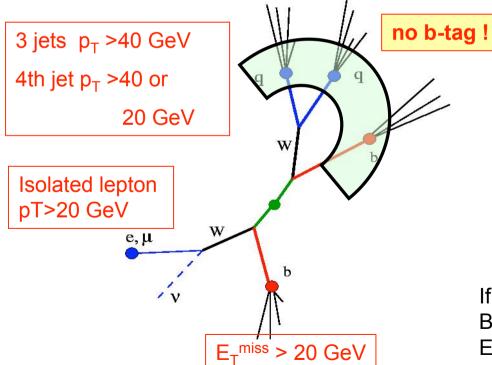
(not (yet ?) in official trigger menu)

Implement at LVL1: 1j120, 2j10 (expected rate ~ 5 kHz)

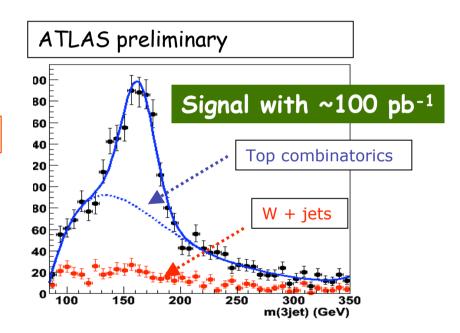
Use impact parameters / b-tagging at LVL2 to keep the multi-jet background low (expected rate ~100 Hz)

ATL-PHYS-PUB-2006-006

 $|\eta|$ < 2.5 p_T (leading jet)>190 GeV (not b-tagged) 2 b-jets p_T >40 GeV


 $S/\sqrt{B} \sim 20 80 < M_{b\bar{b}} < 100 \text{ GeV}$

Early top studies: 100 pb⁻¹


Focus on semileptonic channel:

BR $(t\bar{t} \rightarrow WbW\bar{b} \rightarrow (lvb)(bjj)) \sim 30 \%$ Easy to trigger thanks to isolated lepton (e or μ) Clean topology: t and \bar{t} central and back-to-back

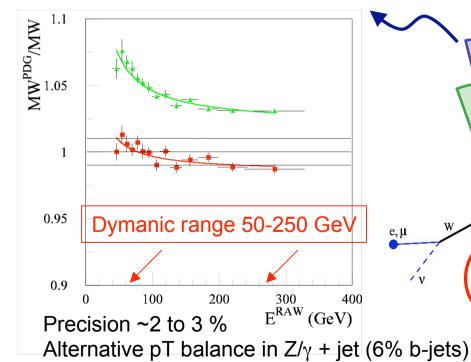
Typical event selection:

Compute invariant mass of 3 jets with highest Σp_T :

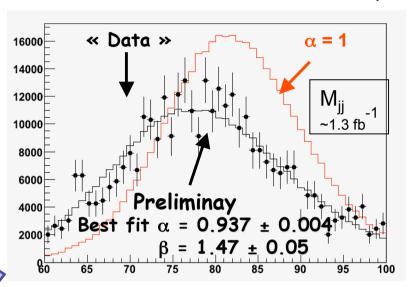
If 2 b-jets requested:

BKG <2% : mainly W/Z+jets, WW, WZ, ZZ

Efficiency 1-2%


Exploiting the semileptonic tt signal

Extract the light jet energy scale (target <1%):


1) Compute the W mass out of the 2 jets in hadronic top with highest momenta (jjj C.M. frame) : purity ~ 80% (2 b-tagged jets)

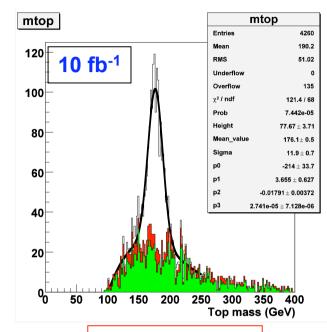
Invariant mass should add up to 80.4 GeV.

$$\begin{cases} M_{jj} = \sqrt{2E_{j1}E_{j2}(1 - \cos\vartheta_{j1j2})} \\ E_{j} \rightarrow \alpha E_{j} M_{jj} \sim M_{W} = 80.4GeV \end{cases}$$

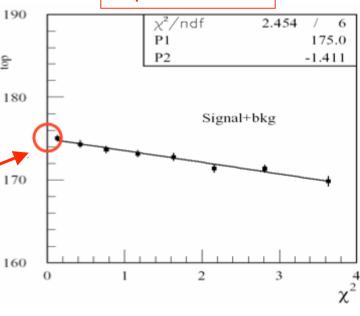
2) Fit template histograms with different E scales α and relative E resolutions β

b-tagging studies:

- → Cut on W_{had} and top_{had} masses to create an enriched tt sample out of the semileptonic selection
- → Look at the b-jet tagging probability & jet-energy scale for the jet on the lepton side : main systematics ISR/FSR

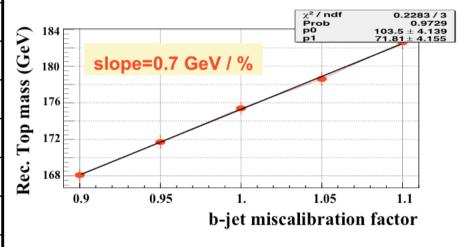

Top mass with semileptonic events: 2 strategies

Reconstruction of the hadronic W and top:


- W_{ii} used to calibrate the light jet scale
- require $|M_W 80.4| < 2 \times \sigma(M_W) & 2 \text{ b-jets}$
- Choose b-jet that maximizes p_T top
- ε =1.1%, top purity = 69 %

Kinematic fit

- Constraint event by event :
 M_{jj}=M_{Iv}=M_W and M_{jjb}=M_{Ib} = M_t fit
 (2 p_z(v) envisaged + leptons and jets resolutions)
- Fit M_t fit by slices of χ^2
- Top purity ~ 80% : χ^2 <4
- Top mass m(top) = M_t^{fit} ($\chi^2 = 0$)



Top mass with semileptonic events: uncertainties

Source of uncertainty	Systematic on m(top) ATLAS 10 fb ⁻¹ kinematic fit / hadronic top	
b-jet scale (±1%)	0.7	0.7
light-jet scale (±1%)	0.2	0.2
Final state radiation	0.5	1.
b-quark fragmentation	0.1	0.1
Initial state radiation	0.1	0.1
Combinatorial bkg	0.1	0.1
Total syst	0.9	1.3
Statistical error	0.1	0.05

$\rightarrow \Delta m(top) \sim 1 \text{ GeV}$ achievable with 10 fb⁻¹

Other channels:

- Full leptonic channel: clean channel but 2 neutrinos (6 equations): $\Delta m(top) \sim 2 \text{ GeV}$ (10 fb⁻¹)
- Full hadronic channel : significant QCD background : $\Delta m(top) \sim 3 \text{ GeV}$ (10 fb⁻¹)
- Semileptonic with b \rightarrow J/ $\psi \rightarrow \mu \mu$: 1 K evts / 100 fb⁻¹ (high lumi) : $\Delta m(top) \sim 1$ GeV (small impact of b-jet scale but small statistics)

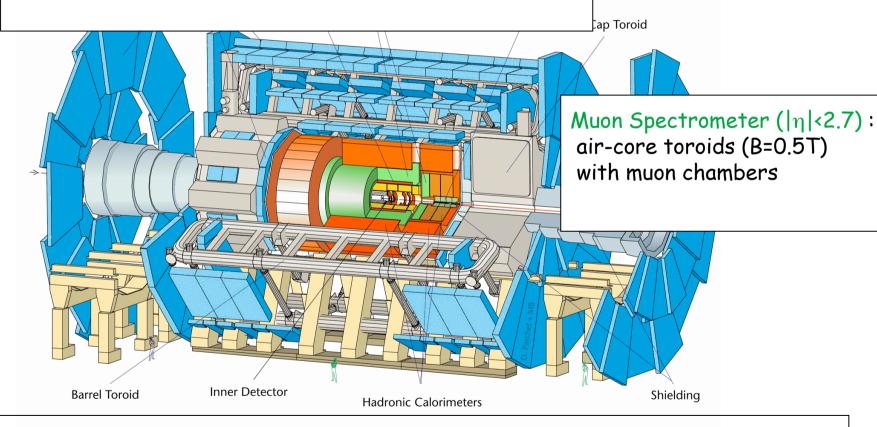
Summary

- ATLAS on tight schedule to operate almost complete in fall 2007
- First measurements : particle multiplicities in minimum bias events and underlying event. Use minimum bias to commission the detector (inner detector material in front of calorimeter + inner detector alignement) in \sqrt{s} = 900 GeV and 14 TeV runs.
- Extract W / Z / top basic measurements with 100 pb⁻¹ to 1 fb⁻¹ of luminosity.
- Look at W→Iv and Z→II: large statistics to understand early on the detector performance (leptons, E_T^{miss}) and to check the MC/data agreement.
- Look at W/Z + jet production including heavy flavours
 ⇔ important background for SuSy.
- Look at initial top samples to calibrate b-tagging, jet-energy scale (light and heavy).
- Precision measurements (top mass, W mass, triple gauge couplings ...) need time!

(* First QCD measurements not covered here : see talk by D. Clements «Expectations for Inclusive Jet Cross-sections with Early data in ATLAS» Heavy flavour and QCD session)

The ATLAS detector

Tracking ($|\eta|$ <2.5, B=2T):

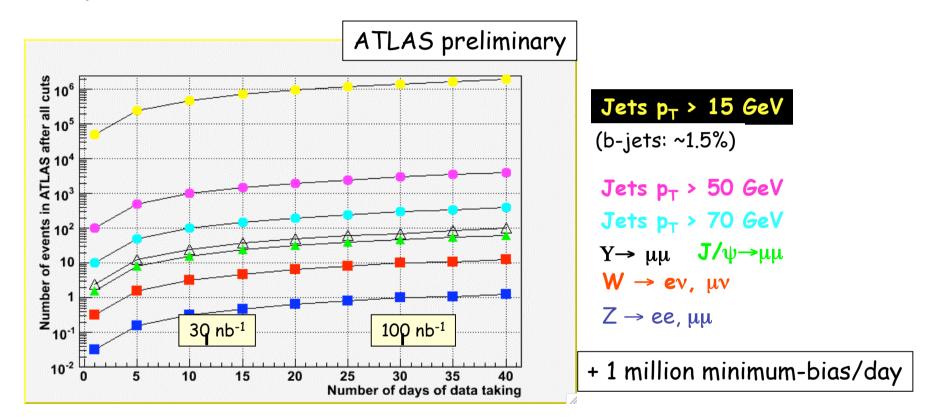

- -- Si pixels and strips
- -- Transition Radiation Detector (e/π separation)

Length: ~45 m Radius: ~12 m

Weight: ~ 7000 tons

Electronic channels: ~ 108

~ 3000 km of cables

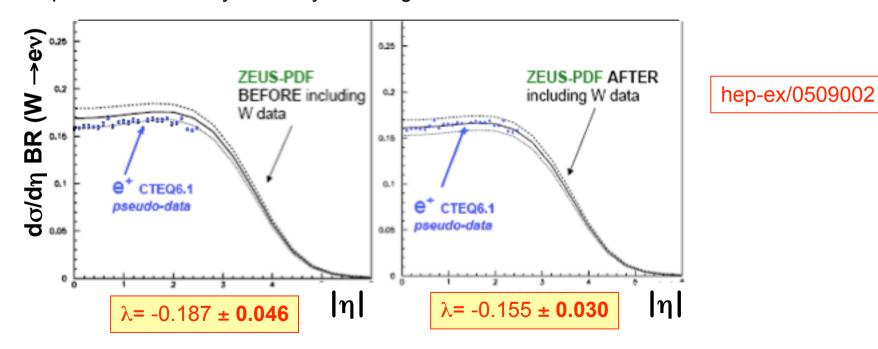


Calorimetry ($|\eta|$ <5):

- -- EM: Pb-LAr with Accordion shape
- -- HAD: Fe/scintillator (central), Cu/W-LAr (fwd)

Expected event rates : \sqrt{s} = 900 GeV operation

- Observe a few Y \rightarrow II, J/ ψ ??
- Mainly minimum bias!

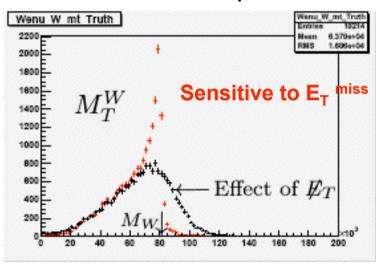


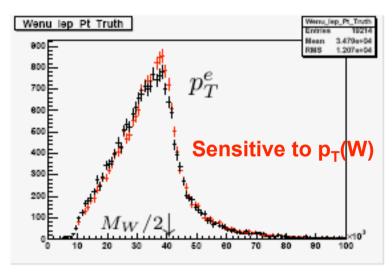
- 30 % data taking efficiency included (machine + detector)
- Trigger and analysis efficiencies included

W production study (~200 pb⁻¹)

- W \rightarrow Iv rapidity is sensitive to the gluon shape parameter λ , $xg(x)=x^{-\lambda}$
- Use W to probe the low-x gluon PDF at $Q^2 = M^2_W$ (x < 10⁻²)
- e-rapidity e+ rapidity

 Generated
- Improve error on λ by ~40% by including ATLAS data in PDF fits




→ Improvements also from analysis of Z distributions, at higher x jets and direct photons will play the prominent role

W mass: method

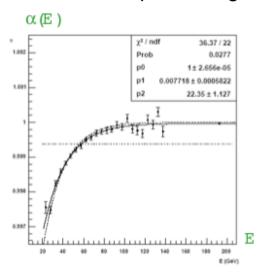
• 10 fb⁻¹: ~30 M of events

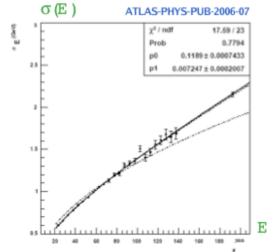
- Iso. lepton $p_T>25$ GeV, no jet with pT>30 GeV E_T miss>25 GeV
- Two main observables : Transverse mass $M_T^W = \sqrt{2p_T^l p_T^v (1 \cos\Delta\varphi_{lv})}$ Lepton momentum : $p_T(l)$

- Predict the $M_T(W)$ and $p_T(l)$ distributions using following ingredients:
 - lepton energy scale and resolution, linearity, reconstruction efficiency
 - W dynamics: rapidity, transverse momentum, polarization, final state radiation
- Compare templates with data \rightarrow perform χ^2 minimization (statistical uncertainty ~2 MeV)

W mass: systematics (W→ev channel) (I)

Source	Estimate on M _W	Tool
Lepton energy scale & resolution	~3 MeV	Z→ee
Lepton reco efficiency	~8 MeV	Z→ee
Lepton resolution	<1 MeV	Z→ee
PDF's	~1 MeV	Rapidity in <mark>Z→ee</mark>
Background in $M_T(W)$ or $p_T(I)$ (mainly $W \rightarrow \tau v \sim 1-2 \%$ & $Z \rightarrow II \sim 1-2 \%$)	~1 MeV	Known acceptances and shapes from each background
QCD corrections	~2 MeV	
QED FSR	< 10 MeV	to be studied further

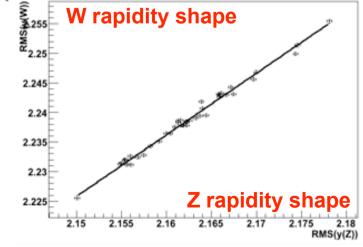

Main envisaged tool : Z→ee


- → Additional systematics ~5 MeV : recoil (if using) $M_T(W)$ $p_T(W)$ if using $p_T(I)$
- → Uncertainty on lepton reconstruction efficiency significant in W→e ν channel (less important for W→ $\mu\nu$ ~2% (stable efficiencies in dynamic range))

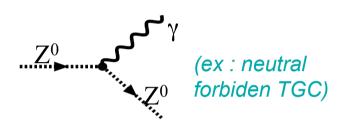
W mass: systematics (II)

Ex : use Z→ee to constrain the lepton energy scale and resolution

- Divide Z→ee depending on lepton momenta in (i,j) bins
- Fit mass scale and resolution using templates
- Use least squares to get the lepton energy scale $\alpha(E)$ and resolution $\sigma(E)$



← Binning in energy improves extrapolation from Z to W

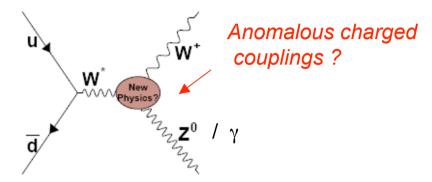

Ex : use Z→ee to constrain the PDF's

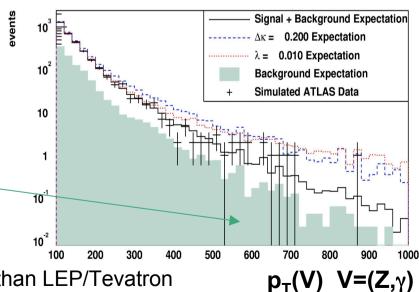
- W and Z rapidity shapes related
- Expect that Z rapidity uncertainty divided by ~20 (10 fb-1)
- PDF uncertainty & W rapidity in turn better constrained

Triple gauge couplings (TGC's)

- Triple gauge couplings WW
 γ and WWZ allowed by SM & observed at LEP
- Any observation of a neutral TGC or anomalous charged TGC is a sign of new physics:

Early running:


reco of Z's and W's easy γ efficiency and jet fake rate more challenging


30 fb⁻¹:

few background events in tail!

Measurements dominated by statistics

10 100 200 300 40 anomalous charged TGC's: ~factor 2-10 better than LEP/Tevatron neutral TGC's: ~factor 100 better than Tevatron (100 fb⁻¹)

23