SUSY and non-SM Higgs searches at the TEVATRON

Raimund Ströhmer, LMU München, on behalf of the DØ and CDF Collaborations

- non-SM Higgs
- gaugino search in di- and trilepton final states
- squark and gluino searches
- Long-lived neutralinos

SUSY Higgs

- MSSM: 2-Higgs-doublet model:
 - 5 H-bosons: h⁰, H⁰, A⁰, H[±]
 - prediction: m_h < 135 GeV
- Higgs v.e.v.'s v_u , v_d : ratio tan $\beta = v_u/v_d$
 - \Rightarrow $\sigma(gg \rightarrow H)$ and $\sigma(b\overline{b} \rightarrow H)$ enhanced at large tan β
- at large tan β:
 - A is nearly mass-degenerate with h or H: $\sigma(A) \sim \sigma(h/H)$ (ϕ^0 generic name for neutral higgs, analyses will consider contributions from all 3 neutral higgs bosons)
- decays at large tan β:
 - Br($\phi \rightarrow \tau \tau$) ~ 10% $\Rightarrow \phi^0 \rightarrow \tau \tau$
 - Br($\phi \rightarrow b\overline{b}$) ~ 90% $\Rightarrow \phi b\overline{b} \rightarrow b\overline{b}b\overline{b}$, $\phi b \rightarrow b\overline{b}b$

MSSM Higgs: $\phi b(\overline{b}) \rightarrow b\overline{b}b(\overline{b})$

selection:

- 3 b-tagged jets
- search for peak in m(j1, j2)

backgrounds:

- bbjj, bbbb, Z(bb)j ,tt
- shape: 2b-tagged x (mis-)tag
- normalized to 3b-tagged outside signal region

 sensitivity at M_A=120 GeV: tan β > 50 - 60 (depending on assumptions on t̃ -mixing parameter X_t)

MSSM Higgs: $\phi \rightarrow \tau \tau$

- results based on 1 fb⁻¹
 - CDF: eμ, eτ, μτ
 - DØ: μτ selection
- partial reconstruction of M:

$$m_{\text{vis}} = |P_{\tau_1}^{\text{vis}} + P_{\tau_2}^{\text{vis}} + P_t|$$

- CDF: some excess seen (only eτ,μτ)
 but significance < 2 sigma
- DØ: no excess

Higgs $\phi \rightarrow \tau\tau$: Limit Interpretation in MSSM Scenarios

- only minimal change in excluded region for different model assumptions
- t
 -mixing: no-mixing and m_h^{max} (parameters that maximize M_h)
- $\mu > 0$ or $\mu < 0$ (Higgs mass term)

Search for Supersymmetric Particles

- lightest supersymmetric particle (LSP) plays important role
 - ⇒ missing energy (if LSP is stable if R-parity is conserved)
 - ⇒ photons and missing energy (if LSP is gravitino and NLSP neutralino)
 - ⇒ long lived particles (if LSP decays weakly or if SUSY particles couple weakly to the LSP gravitino)
- pair production and cascade decays
 - ⇒ multiple jets or leptons
- SUSY particles are heavy (we have not seen them yet)
 - ⇒ high pt objects are possible

Trilepton Final State

- leptonic decays of gauginos
 - 3 leptons and missing energy
 - clean signal
 - small branching ratio
 - pt of 3rd lepton is relatively small
- only require 2 identified leptons
 - both leptons have same sign
 - or additional isolated track (gives sensitivity to $\boldsymbol{\tau}$)
- CDF 14 analyses, D0 6 analyses

Example μμ+Isolated Track

Selection criteria		Value
Cut 1	Preselection	Trigger, ID, $p_T^l > 12 \text{ GeV}$ and $p_T^{l'} > 8 \text{ GeV}$ calorimeter isolation $< 4 \text{ (1.5) GeV}$, tracker isolation $< 4 \text{ for the leading (trailing) muon}$ both muons must come from the primary vertex
Cut 2	Mass:	$24 \text{ GeV} < M(\mu_1, \mu_2) < 60 \text{ GeV}$
Cut 3	$\Delta \phi$:	$\Delta\phi(\mu_1,\mu_2) < 2.9$
Cut 4	₽ _T	Missing Transverse Energy $E_T > 20 \text{ GeV}$
Cut 5	$\operatorname{Sig}(\not\!\!E_{\mathrm{T}})$	$\operatorname{Sig}(\not\!\!E_{\mathrm{T}}) \colon \operatorname{Sig}(\not\!\!E_{\mathrm{T}}) > 8 \text{ or } 0 \text{ jets}$
Cut 6	Transverse Mass $\mu_{1,2}$	$M_T(\mu, \not\!\!E_T) > 20$ GeV for both muons
Cut 7	$p_{\mathrm{T}}\ell_{\mathrm{3}}\ (\mathrm{tr})$	$p_T(\ell_3) > 4.0$ GeV, track isolation $\Sigma p_T < 1$ GeV
Cut 8	$p_{\rm T}\ell_3$ (calo)	$p_T(\ell_3) > 4.0$ GeV, calo isolation $E_T < (3 \text{GeV} \text{ and } 0.60 \sqrt{(p_T + 1)^2})$
Cut 9	Transverse Mass ℓ_3	$M_T(\ell_3, \cancel{E}_T) > 8 \text{ GeV for both muons}$
Cut 10	Mass $\mu_1 \ell_3$	$M(\mu_1, \ell_3) < 80 \text{ GeV}$
Cut 11	p_{T} balance	$0.3 < (p_T(\mu) + \not\!\!E_T)/p_T(\ell_3) < 3$
Cut 12	$p_{\rm T}$ product	$E_T * pT(\ell_3) > 150 \text{ GeV}^2$
	<u> </u>	• Data

Raimund Ströhmer Tevatron SUSY Searches/DIS2007

Trilepton Results

mSUGRA (inspired) models

- Set limits on σ×Br as function of chargino mass
- compare to different scenarios

large-m0: heavy \tilde{l} and \tilde{q} \Rightarrow small Br in I heavy \tilde{q} : $M(\tilde{l}) \ll M(\tilde{q}) \Rightarrow$ large σ and Br into I

• 3I-max: $M(\tilde{I}) \simeq M(\tilde{\chi}_1^{\pm}) \Longrightarrow$ maximal Br into I


```
cross section limit for M(\tilde{\chi}^{\pm})=140 GeV CDF: \sigma \times Br(3l) \sim 0.2 \text{ pb}^{-1} (expected: \sigma \times Br(3l) \sim 0.1 \text{ pb}^{-1}) D0: \sigma \times Br(3l) \sim 0.07 \text{ pb}^{-1} (expected: \sigma \times Br(3l) \sim 0.08 \text{ pb}^{-1})
```

Scalar Quarks, Gluinos: Production and Decay

- pair production of q and g via strong interaction
 - large cross section
- signature: two (or more) high-pt jets + missing Et from LSP
 - 3 or 4 jets if one or two \tilde{g} are produced $(\tilde{g} \rightarrow \overline{q}\tilde{q}^*)$
- separate analysis for 2, 3, and 4 jet final state

Scalar Quarks, Gluinos: Limits

- set limits on
 - squark and gluino masses: $M(\tilde{g}) > 289 \; \text{GeV} \; M(\tilde{q}) > 375 \; \text{GeV} \; (\; \text{for tan} \; \beta = 0, \; A_0 = 0, \; \mu < 0 \;)$
 - on the mSUGRA parameters

Long-lived Neutralinos

Many Other SUSY Searches

- search for GMSB signals with isolated photons and missing Et
- long-lived charged particles
- stopped gluinos
- search for stop and sbottom
- R-parity violating SUSY searches
- rare B decays

Conclusions

- SUSY Higgs
 - large potential if SUSY at large tanβ is realized
- searches for SUSY partners
 - large variety of topologies studied
 - only recent results covered in this talk
 - $\tan \beta < 50$ 60 (for SUSY Higgs of M_A ~120 GeV)
 - $M(\tilde{\chi}^{\pm}) > 140 \text{ GeV (3I max scenario)}$
 - $M(\tilde{g}) > 289 \text{ GeV } M(\tilde{q}) > 375 \text{ GeV (for tan } \beta=0, A_0=0, \mu<0)$
 - no indication of new phenomena seen so far, increased coverage well beyond LEP and Tevatron Run I.
- results based on 1fb⁻¹
 - ⇒ expect improved limits or evidence with increased statistics.
- for further details see:
 - CDF: http://www-cdf.fnal.gov/physics/physics.html
 - DØ: http://www-d0.fnal.gov/Run2Physics/WWW/results.htm