# Measurement of Coherent and Incoherent Deeply Virtual Compton Scattering at HERMES from Nuclear Targets

H. Guler, on behalf of the HERMES collaboration

DIS 2007, Munich Germany April 16th-20th 2007



### Outline

- Motivation
- Extraction of BSA amplitudes from data
- 3 Results on A-dependence of the Beam-Spin Asymmetry
- 4 Conclusions

### Motivations

- Reaction: deeply virtual Compton scattering (DVCS)  $ep \rightarrow e'p'\gamma$
- Generalized parton distributions (GPDs) may be modified in nuclear matter: possible access to spatial distributions of energy, angular momentum and shear forces inside the nuclei
- For a nuclear target there exist two distinct processes:
  - the coherent process, in which the scattering occurs on the whole nucleus which stays intact after the emission of a real photon
  - the **incoherent process**, where the reaction takes place on a particular proton or neutron, and the nucleus breaks up.
- Does the Beam-Spin Asymmetry (BSA) depend on nuclear density?



# Interference between DVCS and Bethe-Heitler processes

Photon-production cross section:

$$d\sigma \propto |\tau_{\mathrm{BH}}|^2 + \underbrace{\left(\tau_{\mathrm{DVCS}}^* \tau_{\mathrm{BH}} + \tau_{\mathrm{BH}}^* \tau_{\mathrm{DVCS}}\right)}_{\mathcal{T}} + |\tau_{\mathrm{DVCS}}|^2$$

Dominant  $| au_{
m BH}|^2$  calculable in QED using elastic form factors

$$\frac{\mathcal{I}}{\sim} \pm \left(c_0^I + \sum_{n=1}^3 c_n^I \cos(n\phi) + \lambda \sum_{n=1}^3 s_n^I \sin(n\phi)\right)$$

DVCS amplitudes directly accessible via interference term  $\mathcal{I}$  Beam-Spin Asymmetry at leading twist/order:

$$\begin{split} d\sigma(\overrightarrow{e^+}p) - d\sigma(\overleftarrow{e^+}p) &\sim \sin(\phi) \times \text{Im } M_{unp}^{1,1} \\ M_{unp}^{1,1} &= F_1(t) \, \mathcal{H}(\xi,t) + \frac{x_B}{2-x_B} (F_1(t) + F_2(t)) \, \widetilde{\mathcal{H}}(\xi,t) - \frac{t}{4M^2} F_2(t) \, \mathcal{E}(\xi,t) \end{split}$$

 $\mathcal{H}$ ,  $\mathcal{E}$  and  $\widetilde{\mathcal{H}}$  are the Compton form factors

### DVCS on Nuclei: theoretical predictions



- DVCS on nuclei provides access to GPDs and strong forces inside nuclei
   (M. Polyakov, Phys. Lett. B555:57-62,2003)
- Predictions for  $\frac{A_{LU,Nucleus}^{sin\phi}}{A_{LU,Proton}^{sin\phi}}$ 
  - V. Guzey and M. Strikman, hep-ph/0301216 (Neon, Krypton)
  - V. Guzey and M. Siddikov, hep-ph/0509158v2:

$$egin{array}{l} rac{A_{LU,Nucleus}^{sin\phi}}{A_{LU,Proton}^{sin\phi}} \propto A^{-0.03} \ (\Longrightarrow 1.85 \ldots 1.95 ext{ for } A = 12 \ldots 90) \end{array}$$

# Nuclear targets



- Several gas targets used
   HERMES: from Hydrogen to Xenon
- small -t': "enriched coherent" (reaction with whole nucleus)
- large -t': "enriched incoherent" (reaction with individual nucleon)

### Event selection



- Select events with exactly one DIS-positron/DIS-electron and one trackless cluster in the calorimeter
- Applied DIS lepton cuts:  $Q^2 > 1 \text{ GeV}^2$ ,  $W^2 > 9 \text{ GeV}^2$
- Exclusivity via missing mass constraint:  $-(1.5)^2 \ GeV^2 < M_x^2 < (1.7)^2 \ GeV^2$
- ullet  $heta_{\gamma^*\gamma}$  > 2 mrad for each nucleus
- To reduce background:  $-t' < 0.7 GeV^2$ ,  $\theta_{\gamma^*\gamma} < 45$  mrad



### Systematic uncertainties

Contributions to the systematic uncertainties include:

- Smearing and acceptance effects extracted for each target using a GPD model for the proton: Prog. Part. Nucl. Phys. 47 (2001) 401 (DD formalism + D-term added), neglecting any A-dependence.
- Effects of spectrometer misalignment and calorimeter miscalibration evaluated by MC
- Background from **semi-inclusive**  $\pi^{\mathbf{0}}$  at large z: Lepto and "VGG" MCs give background fraction  $\eta$  in the exclusive bin

$$\delta A_{LU,syst} = rac{1}{1-\eta} A_{LU,meas} - rac{\eta}{1-\eta} A_{LU,bkg}$$

A<sub>LU,bkg</sub> comes from HERMES semi-inclusive data



### Enriched coherent and incoherent samples



LEPTO Bethe-Heitler simulation:

- Coherent contribution dominates at small
   -t'
- Incoherent process dominates at large -t'
- Background contributions: semi-inclusive  $\pi^0$  and resonances
- Chose -t' cut for each enriched sample to provide target-independent  $\langle -t' \rangle$ :
  - coherent:  $\langle -t' \rangle = 0.018 \, GeV^2$
  - incoherent:  $\langle -t' \rangle = 0.2 GeV^2$



# Coherent-enriched sample: -t' cuts and mean kinematics

| Target    | $\langle -t' \rangle = 0.018$ | %coherent | $\langle Q^2  angle$ | $\langle x_B \rangle$ |
|-----------|-------------------------------|-----------|----------------------|-----------------------|
| Proton    | -t' < 0.030                   | 0         | 1.68                 | 0.068                 |
| Deuterium | -t' < 0.030                   | 56%       | 1.70                 | 0.066                 |
| Helium-4  | -t' < 0.030                   | 68%       | 1.74                 | 0.066                 |
| Nitrogen  | -t' < 0.043                   | 82%       | 1.77                 | 0.064                 |
| Neon      | -t' < 0.050                   | 82%       | 1.73                 | 0.064                 |
| Krypton   | -t' < 0.081                   | 82%       | 1.63                 | 0.060                 |
| Xenon     | -t' < 0.085                   | 82%       | 1.60                 | 0.059                 |

- Coherent fraction from LEPTO Bethe-Heitler simulation
- ullet Same  $\simeq$  82% fraction for all but light targets
- $\langle Q^2 \rangle$  and  $\langle x_B \rangle$  very similar.



# InCoherent-enriched sample: -t' cuts and mean kinematics

| Target    | $\langle -t' \rangle = 0.2$ | %incoherent | $\langle Q^2 \rangle$ | $\langle x_B \rangle$ |
|-----------|-----------------------------|-------------|-----------------------|-----------------------|
| Proton    | -t' > 0.081                 | 0           | 2.93                  | 0.112                 |
| Deuterium | -t' > 0.078                 | 69%         | 2.94                  | 0.113                 |
| Helium-4  | -t' > 0.083                 | 68%         | 2.79                  | 0.107                 |
| Nitrogen  | -t' > 0.077                 | 70%         | 2.93                  | 0.113                 |
| Neon      | -t' > 0.075                 | 71%         | 2.92                  | 0.111                 |
| Krypton   | -t' > 0.068                 | 68%         | 2.98                  | 0.112                 |
| Xenon     | -t' > 0.064                 | 68%         | 2.96                  | 0.112                 |

- Coherent fraction from Lepto Bethe-Heitler simulation
- Same  $\simeq 70\%$  fraction for all but light targets
- $\langle Q^2 \rangle$  and  $\langle x_B \rangle$  very similar.



# Results for $A_{LU}^{sin\phi}$ and $A_{LU}^{sin2\phi}$ amplitudes



- No obvious A-dependence.
- $A_{LU}^{\sin 2\phi}$  is consistent with zero for all targets

### BSA ratio: nucleus to hydrogen



- ullet Coherent enriched: mean ratio deviates from unity by  $2\sigma$
- Consistent with predictions between 1.8 and 1.95

# Fit at low-t of Hydrogen $A_{LU}^{sin\phi}$

- When extracting same small  $\langle -t' \rangle$  as for nuclear targets, limited statistics dominates the ratio uncertainties.
- Alternative: use fit anchored by  $A_{III}^{sin\phi} = 0$  at t' = 0
- ullet Theoretical expectation at small -t':  $A_{LU}^{sin\phi}(t') \propto \sqrt{-t'}$



$$A_{LU}^{sin\phi}(t')=rac{a\cdot\sqrt{-t'}}{1+b\cdot\sqrt{-t'}^3}$$
  $a=-0.8692 GeV^{-1}$   $b=11 GeV^{-3}$  Evaluate fit at  $\langle -t'
angle=0.018 GeV^2$ 

### BSA ratio: nucleus to hydrogen fit

- Coherent enriched: reduced statistical uncertainties, small model dependence from functional form for hydrogen
- Deviation from unity still  $2\sigma$
- Incoherent enriched: consistent with unity



### Conclusions

- First extraction of the **A-dependence** of the  $\sin \phi$  and  $\sin 2\phi$  amplitudes of the Beam-Spin Asymmetry in DVCS
- ullet No A-dependence for the  $\sin 2\phi$  amplitude
- Coherent enriched subsample:  $A_{LU}^{sin\phi}$  mean ratio to Hydrogen (2.05  $\pm$  0.33) in agreement with theoretical expectation

# Backup

### BSA ratio: nucleus to deuterium

- No model predictions (yet!) for this ratio to deuterium
- deuterium is spin 1: Not only mass/density effect
- Fit to a constant: mean ratio smaller than ratio to hydrogen



### Smearing and acceptance effect



990

### Other Model for DVCS on Nuclei



Figure 2.10: The ratio of nuclear to proton asymmetries  $A_{LU}^A/A_{LU}^p$  for  $^4$ He, calculated including only coherent scattering terms in both the DVCS and BH contributions to the asymmetry (dashed line), and including only the incoherent terms (dot-dashed line). The nuclear model including off-shell effects was used in these calculations [LT05a].