Measurement of Transverse spin effects with the Forward Pion detector at STAR in Polarized p+p Collisions at 200 GeV

Steve Heppelmann
Penn State University
(for the STAR collaboration)

$$
A_{N}\left(X_{F}, P_{T}\right) \begin{aligned}
& \text { Separating the Feynman "X } X_{F} \text { and Transverse } \\
& \text { Momentum "P } P_{4} \text { " Dependence. }
\end{aligned}
$$

Forward
π^{0} Detected

Overview: The QCD Challenge

STAR has shown that the measured π° cross sections at large rapidity $3<\eta<4$ and modest transverse momentum $\mathrm{P}_{\mathrm{T}}>1 \mathrm{GeV} / \mathrm{c}$ for

$$
p^{\uparrow}+p \Rightarrow \pi^{0}+X
$$

are in good agreement with NLO PQCD calculations.

> Reproduction of spin averaged cross section
> $\quad \rightarrow$ PQCD and Factorization in good shape.

Confirmation of these calculations validates the long held prejudice that events in this kinematic region involve the collisions between a large x quark in one proton and a soft parton (gluon) in the other proton with a factorized hard cross section. Single Transverse Spin asymmetry " A_{N} " for this process require the interference between the real part of a quark helicity non-flip amplitude and the imaginary part of a helicity flip amplitude. Such"T odd, helicity flip" terms are not present in the colinear parton leading twist calculations that now well describe the spin averaged cross section.

> A QCD based description of the spin dependent cross sections leading to A_{N}....... will impact " investigations into perturbative QCD, probing the ultimate limit to the intuitive factorized parton distribution picture.

Transverse Single Spin Asymmetry for Small Angle

$$
p^{\uparrow}+p \Rightarrow \pi^{0}+X
$$

($100 \mathrm{GeV} / \mathrm{c}$ on $100 \mathrm{Gev} / \mathrm{c}$) Proton Collisions @RHIC
The difference between spin up and down (depends on Up vs Down Luminosity)

$$
A_{N} \equiv \frac{\sigma^{\uparrow}\left(x_{F}, p_{t}\right)-\sigma^{\downarrow}\left(x_{F}, p_{t}\right)}{\sigma^{\uparrow}\left(x_{F}, p_{t}\right)+\sigma^{\downarrow}\left(x_{F}, p_{t}\right)}
$$

or the difference between left and right scattering
(Depends upon Left vs Right acceptance).

$$
A_{N}=\frac{\sigma^{\uparrow}\left(x_{F}, p_{t}\right)-\sigma^{\uparrow}\left(x_{F},-p_{t}\right)}{\sigma^{\uparrow}\left(x_{F}, p_{t}\right)+\sigma^{\uparrow}\left(x_{F},-p_{t}\right)}=\frac{\sigma^{\downarrow}\left(x_{F},-p_{t}\right)-\sigma^{\downarrow}\left(x_{F}, p_{t}\right)}{\sigma^{\downarrow}\left(x_{F},-p_{t}\right)+\sigma^{\downarrow}\left(x_{F}, p_{t}\right)}
$$

$$
p_{t}=\vec{P}_{\pi}\left[\frac{\vec{P}_{\text {proton }} \times \vec{s}}{\left|\vec{P}_{\text {proton }} \times \vec{S}\right|}\right]
$$

or the cross ratio
(Insensitive to Left/Right Acceptance or to Up/Down Luminosity).

Transverse Polarization at RHIC

Frames from film clip, courtesy of BNL

TAR

spin up x up

- 111 bunches of protons in each RHIC Ring
- Polarization of each bunch prepared independently at injection.
- Half of the bunches are filled with spin up protons and half with spin down protons at injection.
- The polarization is kept transverse as beam circulates in RHIC.
- Bunch collisions every $\sim 100 \mathrm{nS}$
- Each bunch collision involves different but known spin combinations. Spin pattern repeats after 111 bunch crossings.

spin up x down

Single Spin Asymmetries (the historical context)

http://zebu.uoregon.edu/~parton/partongraph.html

The naïve (but perhaps correct) interpretation of many single spin polarization effects in hadronic interaction is:

1. Polarized Partons (transversity): At large x (parton momentum fraction) ... up /down quarks have their transverse spins aligned/opposite the spin of the proton.
2. Parton-parton sub-process: involves scattering between a

- hard up quark and soft parton for π^{+}or π^{0}
- hard down quark and soft parton for π^{-}

3. Parton scattering amplitude: Proportional to interference between real non-helicity flip and imaginary helicity flip amplitudes (properties that exclude the leading and simplest terms of PQCD calculations).
4. Asymmetry vs X_{f} thought to be related to initial-final state (Sivers), final state (Collins) effects or higher twist effects.

$\mathrm{pp} \rightarrow \pi^{0}+X$ cross sections at 200 GeV
 PRL 92, 171801 (2004)
 PRL97:152302,2006

Asymmetry revealed at lower energies persists at $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$

$$
V_{\mathrm{s}}=200 \mathrm{GeV},\langle\eta\rangle=3.8
$$

- Consistent with NLO pQCD calculations at $3.3<\eta<4.0$. NLO pQCD calculations by Vogelsang, et al.
- Data at low p_{T} trend from KKP fragmentation functions toward Kretzer. PHENIX observed similar behavior at mid-rapidity.

Pions identified in this region with severe x_{F} and p_{T} dependence (measured here by STAR in forward region)
tend to carry most of the of the jet momentum (<z>~60\% to 80\%).

$$
x_{F} \sim x Z
$$

$$
\sigma(x) \propto q\left(x \sim \frac{X_{F}}{z}\right) \sigma_{\text {parton }} d(z)
$$

$$
\begin{aligned}
& E \frac{d^{3} \sigma}{d p^{3}} \propto\left(1-x_{F}\right)^{N} p_{T}^{-B} \\
& N \approx 5 \\
& B \approx 6
\end{aligned}
$$

Similar to ISR analysis J. Singh, et al Nucl. Phys. B140 (1978) 189.
TAR

P_{t} Dependence in Calculations of A_{N}

-Sivers Effect / Collins Effect

these types of models involve:
-initial state parton distribution (Sivers)

- or final state fragmentation distributions (Collins)
that introduce transverse spin dependent offsets in transverse momentum independent of the hard scattering (definition of factorization).

$$
P_{T} \Rightarrow P_{T} \pm k_{T}
$$

" \pm " depending on the sign of proton transverse spin direction. Using our (STAR) measured cross section form:

$$
\begin{aligned}
& d \sigma^{\uparrow} \propto \frac{1}{\left(P_{T}-k_{T}\right)^{6}} \quad d \sigma^{\downarrow} \propto \frac{1}{\left(P_{T}+k_{T}\right)^{6}} \\
& A_{n} \equiv \frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}}=\frac{6 k_{T}}{P_{T}}+O\left(\frac{k_{T}}{P_{T}}\right)^{2}
\end{aligned}
$$

Higher Twist Effects:
Off diagonal initial state parton density for hard quark

$$
\rho_{\text {quark }}\left(x, x^{\prime}\right) \quad x^{\prime}=x+x_{\text {gluon }} \quad x_{\text {gluon }} \rightarrow 0
$$

Qiu and Sterman
Kouvaris et. al. Phys.Rev.D74:114013,2006.
Fall as $1 / \mathrm{P}_{\mathrm{T}}$ as required by definition of higher twist.
All of these models

Calculations Involving Traditional Factorization in PQCD seems to require

A_{N} falling with P_{T} for fixed large X_{F}
What about other approaches?
Early STAR data and theory: Highly correlated X_{F} and P_{T} acceptance.

FPD \rightarrow FPD++ for Run 6 (2006)

West end of the STAR interaction region

Caveats:
-RHIC CNI Absolute polarization still preliminary.
-Result Averaged over azimuthal acceptance of detectors.
-Positive X_{F} (small angle scattering of the polarized proton).
Run 2 Published Result.
Run 3 Preliminary Result. -More Forward angles. -FPD Detectors.

Run 3 Preliminary Backward Angle Data. -No significant Asymmetry seen.
(Presented at Spin 2004:
hep-ex/0502040)
Run 3 + Run 5 Preliminary
$\langle\eta>=3.7,4.0$
(Presented SPIN 2005 Dubna Sept 27-Oct 1)

Run 6 (2006) - FPD++

TPC: $-1.0<\eta<1.0$
FTPC: $2.8<|\eta|<3.8$
BBC : $2.2<|\eta|<5.0$
EEMC: $1<\eta<2$
BEMC: $-1<\eta<1$
FPD++/FPD:
$\eta \sim 3.3 /-3.7$

TAR

Detector acceptance

- Strong correlation between x_{F} and p_{T} in the individual detectors
- Rapid change in number of events for either increasing p_{T} at fixed x_{F} or increasing x_{F} at fixed p_{T}
- Broader p_{T} range in x_{F} bins when combining data at $<\eta>=3.3$ and 3.7

Transverse spin runs at STAR with forward calorimetry: $2001 \rightarrow 2006$

	Run2	Run3	Run5	Run6
detector	EEMC and FPD prototypes	6 matrices of FPD	full FPD (8 matrices)	East FPD West FPD++
$P_{\text {BEAM }, \%}$	~ 15	~ 30	~ 45	~ 60
sampled $L d t, p b^{-1}$	0.15	0.25	0.1	6.8
$<\eta\rangle$	3.8	$\pm 3.3 / \pm 4.0$	$\pm 3.7 / \pm 4.0$	$-3.7 / 3.3$

Figure of Merit
($\mathrm{P}_{\text {beam }}{ }^{2} \mathbf{x L}$) in Run 6 is ~ 50 times larger than from previous STAR runs combined
TAR

- Small errors of the data points allow quantitative comparison with theory predictions
- Theory expects the reverse dependence on η

$\mathrm{A}_{\mathrm{N}}\left(\mathrm{p}_{\mathrm{T}}\right)$ at $\mathrm{x}_{\mathrm{F}}>0.4$

Run3+Run5 data (hep-ex/0512013):

Run 6 data:

- consistent with the previous runs in the overlapping p_{T} region
- complicated dependence on p_{T} (not $1 / p_{T}$)
- more precise measurements

$A_{N}\left(p_{T}\right)$ in X_{F}-bins

- Combined data from three runs at $\langle\eta\rangle=3.3,3.7$ and 4.0
- Within each x_{F} bin, $<x_{F}>$ does not significantly change with p_{T}
- Measured A_{N} is not a smooth decreasing function of p_{T}

PHYSICS OBJECTIVES

Au Au

FMS Commissioning Apr 2007

- Summed Energy (ADC cnts)
- Cell multiplicity

FMS for Run 7 NOW!!

FMS 1 12 Wall
FMS Wall
1 Large Pb. Glass Cell

Conclusions

- STAR collected $6.8 \mathbf{p b}^{-1}$ of data for $p+p$ collisions at $\sqrt{ } \mathbf{s}=200$ GeV with transversely polarized beam. With average polarization $\sim \mathbf{6 0 \%}$, this represents 50 fold increase in analyzing power sensitivity in comparison to all previous RHIC runs.
- We present the P_{T} dependence of A_{N} for restricted bins of X_{F} in a kinematic region where the spin summed pion cross section is well described by NLO PQCD.
- In contrast to predictions of conventional calculations, the asymmetry is "NOT" falling with P_{T} for $1 \mathrm{GeV} / \mathrm{c}<\mathrm{P}_{\mathrm{T}}<3 \mathrm{GeV} / \mathrm{c}$ and may indeed be rising.

