Measurement of Transverse spin effects with the Forward Pion detector at STAR in Polarized p+p Collisions at 200GeV

Steve Heppelmann
Penn State University
(for the STAR collaboration)

Overview: The QCD Challenge

STAR has shown that the measured π° cross sections at large rapidity 3< η <4 and modest transverse momentum P_{T} >1 GeV/c for

$$p^{\uparrow} + p \Longrightarrow \pi^0 + X$$

are in good agreement with NLO PQCD calculations.

Reproduction of spin averaged cross section

→ PQCD and Factorization in good shape.

Confirmation of these calculations validates the long held prejudice that events in this kinematic region involve the collisions between a large x quark in one proton and a soft parton (gluon) in the other proton with a factorized hard cross section. Single Transverse Spin asymmetry "A_N" for this process require the interference between the real part of a quark helicity non-flip amplitude and the imaginary part of a helicity flip amplitude. Such "T odd, helicity flip" terms are not present in the colinear parton leading twist calculations that now well describe the spin averaged cross section.

A QCD based description of the <u>spin dependent cross</u> <u>sections</u> leading to A_N will impact "next generation" investigations into perturbative QCD, probing the ultimate limit to the intuitive factorized parton distribution picture.

Transverse Single Spin Asymmetry for Small Angle $p^\uparrow + p \Rightarrow \pi^0 + X$

$$p^{\top} + p \Rightarrow \pi^0 + X$$

(100 GeV/c on 100 Gev/c) Proton Collisions @RHIC

The difference between spin **up** and **down** (depends on Up vs Down **Luminosity**)

$$A_{N} \equiv \frac{\sigma^{\uparrow}(x_{F}, p_{t}) - \sigma^{\downarrow}(x_{F}, p_{t})}{\sigma^{\uparrow}(x_{F}, p_{t}) + \sigma^{\downarrow}(x_{F}, p_{t})}$$

or the difference between **left** and **right** scattering (Depends upon Left vs Right acceptance).

$$A_{N} = \frac{\sigma^{\uparrow}(x_{F}, p_{t}) - \sigma^{\uparrow}(x_{F}, -p_{t})}{\sigma^{\uparrow}(x_{F}, p_{t}) + \sigma^{\uparrow}(x_{F}, -p_{t})} = \frac{\sigma^{\downarrow}(x_{F}, -p_{t}) - \sigma^{\downarrow}(x_{F}, p_{t})}{\sigma^{\downarrow}(x_{F}, -p_{t}) + \sigma^{\downarrow}(x_{F}, p_{t})}$$

$$A_{N} \equiv \frac{\sigma^{\uparrow}(x_{F}, p_{t}) - \sigma^{\downarrow}(x_{F}, p_{t})}{\sigma^{\uparrow}(x_{F}, p_{t}) + \sigma^{\downarrow}(x_{F}, p_{t})}$$

$$x_{F} \sim \frac{\left|\vec{P}_{\pi}\right|}{\left|\vec{P}_{proton}\right|}$$
and **right** scattering
$$p_{t} = \vec{P}_{\pi} \left[\frac{\vec{P}_{proton} \times \vec{s}}{\left|\vec{P}_{proton} \times \vec{s}\right|}\right]$$

$$p_{t} = \vec{P}_{\pi} \left[\frac{\vec{P}_{proton} \times \vec{s}}{\left|\vec{P}_{proton} \times \vec{s}\right|}\right]$$

or the cross ratio (Insensitive to Left/Right Acceptance or to Up/Down Luminosity).

Transverse Polarization at RHIC

Frames from film clip, courtesy of BNL

spin up x up

spin up x down

- 111 bunches of protons in each RHIC Ring
- Polarization of each bunch prepared independently at injection.
- Half of the bunches are filled with spin up protons and half with spin down protons at injection.
- The polarization is kept transverse as beam circulates in RHIC.
- Bunch collisions every ~100 nS
- Each bunch collision involves different but known spin combinations. Spin pattern repeats after 111 bunch crossings.

Single Spin Asymmetries (the historical context)

http://zebu.uoregon.edu/~parton/partongraph.html

The <u>naïve (but perhaps correct)</u> interpretation of many single spin polarization effects in hadronic interaction is:

- 1. <u>Polarized Partons (transversity):</u> At large x (parton momentum fraction) ... up /down quarks have their transverse spins aligned/opposite the spin of the proton.
- **2.** Parton-parton sub-process: involves scattering between a
 - hard up quark and soft parton for π^+ or π^0
 - hard down quark and soft parton for π
- 3. Parton scattering amplitude: Proportional to interference between real non-helicity flip and imaginary helicity flip amplitudes (properties that exclude the leading and simplest terms of PQCD calculations).
- 4. Asymmetry vs X_f thought to be related to initial-final state (Sivers), final state (Collins) effects or higher twist effects.

pp $\rightarrow \pi^0$ + X cross sections at 200 GeV

PRL 92, 171801 (2004)

PRL97:152302,2006

Asymmetry revealed at lower energies persists at √s=200 GeV

$$\sqrt{s}$$
=200 GeV, $<\eta>$ = 3.8

- Consistent with NLO pQCD calculations at 3.3 < η < 4.0. NLO pQCD calculations by Vogelsang, et al.
- Data at low p_T trend from KKP fragmentation functions toward Kretzer. PHENIX observed similar behavior at mid-rapidity.

Pions identified in this region with severe x_F and p_T dependence

tend to carry most of the of the jet momentum (<z>~ 60% to 80%).

$$x_F \sim x z$$

$$\sigma(x) \propto q\left(x \sim \frac{x_F}{z}\right) \sigma_{parton} d(z)$$

$$E \frac{d^3 \sigma}{dp^3} \propto (1 - x_F)^N p_T^{-B}$$

$$N \approx 5$$

$$B \approx 6$$

Similar to ISR analysis J. Singh, et al Nucl. Phys. B140 (1978) 189.

P_t Dependence in Calculations of A_N

Sivers Effect / Collins Effect

these types of models involve:

- •<u>initial state parton distribution</u> (Sivers)
- •or <u>final state fragmentation</u> distributions (Collins)

that introduce transverse spin dependent offsets in transverse momentum independent of the hard scattering (definition of factorization).

$$P_T \Rightarrow P_T \pm k_T$$

"±" depending on the sign of proton transverse spin direction. <u>Using our</u> (STAR) measured cross section form:

$$d\sigma^{\uparrow} \propto \frac{1}{(P_T - k_T)^6} \quad d\sigma^{\downarrow} \propto \frac{1}{(P_T + k_T)^6}$$

$$A_{n} \equiv \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{6k_{T}}{P_{T}} + O\left(\frac{k_{T}}{P_{T}}\right)^{2}$$

Higher Twist Effects

Off diagonal initial state parton density for hard quark

$$\rho_{quark}(x, x')$$
 $x' = x + x_{gluon}$ $x_{gluon} \rightarrow 0$

Qiu and Sterman

Kouvaris et. al. Phys.Rev.D74:114013,2006.

Fall as $1/P_T$ as required by definition of higher twist.

Calculations Involving Traditional Factorization in PQCD seems to require A_N falling with P_T for fixed large X_F

What about other approaches?

Early STAR data and theory: Highly correlated X_F and P_T acceptance.

FPD \rightarrow FPD++ for Run 6 (2006)

West end of the STAR interaction region

Run 6

Caveats:

- -RHIC CNI Absolute polarization still preliminary.
- -Result Averaged over azimuthal acceptance of detectors.
- -Positive X_F (small angle scattering of the polarized proton).

Run 2 Published Result.

Run 3 Preliminary Result.

- -More Forward angles.
- -FPD Detectors.

Run 3 Preliminary
Backward Angle Data.
-No significant Asymmetry
seen.

(Presented at Spin 2004: hep-ex/0502040)

Run 3 + Run 5 Preliminary

(Presented SPIN 2005 Dubna Sept 27-Oct 1)

Run 6 (2006) – FPD++

TPC: $-1.0 < \eta < 1.0$

FTPC: $2.8 < |\eta| < 3.8$

BBC: $2.2 < |\eta| < 5.0$

EEMC: $1 < \eta < 2$

BEMC: $-1 < \eta < 1$

FPD++/FPD:

 $\eta \sim 3.3/-3.7$

Detector acceptance

- Strong correlation between x_F and p_T in the individual detectors
- Rapid change in number of events for either increasing p_T at fixed x_F or increasing x_F at fixed p_T
- Broader p_T range in x_F bins when combining data at <η>=3.3 and 3.7

Transverse spin runs at STAR with forward calorimetry: 2001→2006

	Run2	Run3	Run5	Run6
detector	EEMC and FPD prototypes	6 matrices of FPD	full FPD (8 matrices)	East FPD West FPD++
$P_{\scriptscriptstyle BEAM},\%_{\scriptscriptstyle 0}$	~15	~30	~45	~60
$\int Ldt, pb^{-1}$	0.15	0.25	0.1	6.8
< η >	3.8	±3.3/±4.0	±3.7/±4.0	-3.7/3.3

Figure of Merit

(PBEAM² x L) in Run 6 is ~50 times larger than from previous STAR runs combined

π^0 A_N at \sqrt{s} =200 GeV – x_F-dependence Run 6

- Small errors of the data points allow quantitative comparison with theory predictions
 - Theory expects the reverse dependence on η

$A_{N}(p_{T})$ at $x_{F} > 0.4$

Run3+Run5 data (hep-ex/0512013):

Run 6 data:

- consistent with the previous runs in the overlapping p_T region
- complicated dependence on p_T (not 1/p_T)
- more precise measurements

$A_N(p_T)$ in x_F -bins

- Combined data from three runs at <η>=3.3, 3.7 and 4.0
- Within each x_F bin, <x_F> does not significantly change with p_T
- Measured A_N is not a smooth decreasing function of p_T

PHYSICS OBJECTIVES

Au Au FMS Commissioning Apr 2007

- Summed Energy (ADC cnts)
- Cell multiplicity

FMS for Run 7 NOW!!

FMS 1/2 Wall

FMS Wall

1 Large Pb. Glass Cell

Conclusions

- STAR collected 6.8 pb⁻¹ of data for p+p collisions at √s=200 GeV with transversely polarized beam. With average polarization ~60%, this represents 50 fold increase in analyzing power sensitivity in comparison to all previous RHIC runs.
- We present the P_T dependence of A_N for restricted bins of X_F in a kinematic region where the spin summed pion cross section is well described by NLO PQCD.
- In contrast to predictions of conventional calculations, the asymmetry is "NOT" falling with P_T for 1GeV/c<P_T<3GeV/c and may indeed be rising.

