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Why new colliders?
There is more to heaven and earth...

■ Collision of two 
galaxy clusters seen 
using the Chandra 
X-ray Observatory, 
Hubble, ESO's Very 
Large Telescope and 
the Magellan optical 
telescopes.

■ “Direct empirical 
proof of the 
existence of dark 
matter.”

■ Now we must study 
dark matter in the 
laboratory.



Why the ILC?  
Electron-positron collisions complement pp

■ pp → HX as expected in ATLAS 
detector at LHC:

■ e+e− → HZ as expected in LDC 
detector at ILC:

b
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The International Linear Collider

■ ILC now (Reference Design Report).

■ Energy stability better than 0.1%.
■ Electron polarisation 80% (e+ 30%).
■ Cost $4.9B + $1.8B + 13k person-years.

■ ILC design July 2006 (Vancouver LCWS)

■ √s = 200...500 GeV, upgrade to 1 TeV.
■ L ~ 2 x 1034 cm-2 s-1, i.e. 500 fb-1 in 

first 4 years.



Superconducting cavities

■ ILC relies on industrial 
production of high gradient 
SC cavities.

■ Need peak gradient 
of 35 MV/m for 
√s = 500 GeV.

■ Material of choice 
niobium.

■ Surface smoothness 
critical.

■ Average gradient after 
standard etch ~ 29 MV/m, 
after electro-polishing 
~ 36 MV/m.

■ Single crystal cavity up to 
45 MV/m.



Beam Delivery System

■ Final focus.
■ Luminosity given by:

where:
♦ nb, number of bunches in train.
♦ N, number of particles per bunch.
♦ frep, bunch train frequency.
♦ A, area of bunch at IP.
♦ HD, beam-beam enhancement 

factor.
■ Need smallest possible cross-

sectional beam areas.

■ Particles pass through intense field of 
opposing beam, radiate photons.

■ These beamstrahlung photons interact 
with field of bunches, and generate 
e+e− pairs.

■ Beam-beam effects characterized by 
disruption parameter:

■ Flat beam, σy < σx, better than round: 
beam height ~5 nm, width ~500 nm.
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Four detector concepts

■ SiD

■ LDC

■ GLD

■ Fourth 



Detector requirements – tracking

■ Excellent momentum resolution to 
reconstruct “recoil” mass, e.g. when 
Higgs decays invisible in process:

■ Must couple with large acceptance 
and robust pattern recognition 
capabilities to cope with multi-jet 
environment, e.g. six jets in 
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Detector requirements – calorimetry 

■ Want to be able to separate final 
states

■ Allows e.g. study of processes:

■ Good jet energy resolution required.

■ σE/E = 0.6/(√E GeV)

■ σE/E = 0.3/(√E GeV)

W q q and Z q q.′→ →



Detector requirements – vertexing 

■ Efficient identification required for τ
leptons, c and b quarks.

■ Average impact parameter δ of B 
decay products ~ 300 μm, of 
charmed particles less than 100 μm.

■ Must resolve all tracks in dense jets.
■ Cover large solid angle: 

forward/backward events are of 
particular significance for studies 
with polarised beams.

■ Stand-alone reconstruction desirable.

■ Implies:
♦ Si pixels ~ 20 x 20 μm2 or smaller. 
♦ Hit resolution better than 5 μm.
♦ First measurement at r ~ 15 mm.
♦ Five layers out to radius of about 

60 mm, i.e. total ~ 109 pixels
♦ Material ~ 0.1% X0 per layer.
♦ Detector covers |cos θ| < 0.96.
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The four detector concepts

■ Approximate relative sizes: ■ ECal and HCal inside coil.
■ SiD:

♦ W/Si ECal, Fe/RPC HCal.
♦ All silicon tracking + VXD.

■ LDC:
♦ W/Si ECal, Fe/Scint or Fe/RPC 

HCal.
♦ TPC + silicon tracking + VXD.

■ GLD:
♦ W/Scint Ecal, Pb/Scint Hcal.
♦ TPC + silicon tracking +VXD.

■ Fourth:
♦ Cystal ECal, W/multi-fibre HCal.
♦ TPC + silicon tracking +VXD.

SiD 1.3m

GLD 2.1m

LDC, 4th 1.6m



Vertex detectors – constraints due to machine

■ Minimum beam pipe radius ~14 mm.
■ Pair background at this radius in ~4T 

field causes ~0.03 (0.05) hits per BC 
and mm2 at √s = 500 (800) GeV.

■ Bunch train structure:

■ For 109 pixels of size 20 x 20 μm2, 
implies readout or storage of signals  
~20 times during bunch train to obtain 
occupancy less than ~ 0.3% (0.9%). 

■ Must withstand:
♦ Radiation dose of ~50 krad p.a.
♦ Annual dose of neutrons from 

beam and beamstrahlung dumps 
~1 x 109 1 MeV equiv. n/cm2.

■ Must cope with operation in magnetic 
field of up to 5 T.

■ Must be robust against beam-related 
RF pickup and noise from other 
detectors.

■ None of available sensor 
technologies yet satisfies all these 
requirements.

337 (189) ns

2820 (4500)

0.2 s

0.95 ms



Conceptual vertex detector design

■ Example using CCDs:

■ Surrounded by ~2 mm thick Be 
support cylinder.

■ Allows Be beam pipe to be of 
thickness of ~0.25 mm.

■ Pixel size 20 x 20 μm2, 8 x 108 pixels 
in total. 

■ 50 MHz readout of inner layer.
■ Standalone tracking using outer 4 

layers.
■ Hits in first layer improve 

extrapolation of tracks to IP.
■ Sensor operation at ~220 K, gas 

cooling, additional evaporative 
cooling for electronics if needed.

■ Readout and drive connections routed 
along BP.

■ Important that access to vertex 
detector possible, “roll” outer tracker 
along BP as done at SLD.



Sensors for the vertex detector 



Finding decay vertices using the vertex detector

■ E.g. ■ Vertex region:

■ Challenge is to associate all charged 
tracks with correct vertex in high 
track density environment.

e e ZH jet jet.+ − + −→ →μ μ



Topological vertex reconstruction

■ Using VXD hits, tracks approximated 
as  probability tubes,          beam spot 
as ellipsoid,          

■ E.g. N tracks, integrating over z, 

■ From these define vertex function:

■ Returning to e.g.:
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Topological vertex reconstruction

■ Find “seed” maxima in          for 
track-track and vertex-track pairs 
which are “resolvable” and for which 
χ2 good.

■ Search around seeds for true maxima 
in         , including all tracks and 
vertex.

■ Spatially resolved maxima form 
candidate vertices if associated with 
2 or more tracks.

■ Track/vertex association ambiguities 
are decided according to largest          
after quality cuts.

■ Vertex that includes the IP ellipsoid 
is primary vertex.

■ Use identified 
vertices as seeds
to search for 
further 
vertices:

■ Tune cut on L/D to find new vertices, 
possibly “one prong”.

■ (Additional weighting factors can be 
applied to favour vertices near jet core,  
to suppress vertices v. close to IP etc.)

V(r)

V(r)

V(r)



Ghost track algorithm

■ Complementary approach to vertex 
finding.

■ Start with straight “ghost” track at IP 
along jet axis direction.

■ Calculate χ2 of DCA each track in jet 
to ghost track.

■ Swivel ghost track in θ and φ to 
minimise ∑χ2 for all tracks in jet.

■ Now have N (tracks) + 1 (IP) initial 
vertex candidates.

■ Calculate fit probability for all track-
ghost track or track-IP combinations.

■ If prob. high, combine objects to 
form vertex.

■ Iterate.
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Flavour identification

■ Identify variables that provide 
discrimination between uds/gluon 
and c and b jets.

■ E.g., if vertex found, pT corrected 
mass, mpT, is useful variable,

■ mpT distributions:

pT vtx
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Flavour identification

■ Combine variables using neural net. 
■ Input variables: 

♦ Momentum and impact 
parameter significance in r-φ
and z of two most significant 
tracks.

♦ Probability in r-φ and z that all 
tracks originate from IP.

■ Additionally, if secondary vertex 
found:
♦ mpT.
♦ Momentum associated with 

vertex.
♦ Decay length.
♦ Decay length significance. 

■ Resulting flavour identification 
performance (here at √s = mZ).
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Quark charge identification

■ Assign all charged
tracks to vertices 
using L/D.

■ Sum charge of tracks at secondary 
vertex to form Qsum:

■ Define Qvtx = sgn(Qsum).



Quark charge identification

■ Quantify performance in terms of λ0, 
probability of reconstructing neutral B 
hadron as charged.

■ Degradation at large cos θ caused by 
loss of tracks and multiple scattering.

■ Effect stronger at lower jet energy 
(broader jets, lower momenta...)



Identifying quark charge – dipole method

■ Applicable when

■ Identify secondary and tertiary 
vertices and measure charge.

■ QSV = +1, QTV = −1,
QSV = −1, QTV = +1, 

■ Charge dipole distribution:

■ Here particle ID can help with  
charge measurement.

■ Of course, quark charge 
determination affected by mixing!
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Flavour physics at the ILC – top mass determination

■ LHC will provide mt measurement 
with precision of ~ 1 GeV.

■ Will remain large source of 
uncertainty for many SM  
calculations.

■ Threshold scan at ILC allows 
determination of mt with  precision of 
50...100 MeV.

■ Top width also measured to 3...5%.

■ Top production cross section:

σ
(p
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Higgs branching ratios and couplings

■ Crucial to precisely measure branching 
ratios of Higgs boson.

■ Here √s = 350 GeV, integrated 
luminosity 500 fb-1.

■ Extract couplings and check 
proportional to masses: 

■ Here mH = 120 GeV, 500 Gev (700 
GeV) running for HHH (t t H) couplings.



Determining the Higgs self coupling
and the top Yukawa coupling

■ Quark flavour and charge 
identification important tool in many 
measurements.

■ E.g. study of

■ Identify four b quarks!  

■ Identification of b quarks and 
separation of                   reduces 
significantly combinatorial 
background.

■ Study of this process allows 
determination of Higgs self-coupling.

■ Similarly, b identification aids 
separation of                        from 
background with typically >1000 times 
higher rate.

■ Charge ID also helps through reduction 
of combinatorial BG.

b from b

e e HHZ:+ − →

e e t t H+ − →



Higgs and SUSY at the ILC

■ Such precision studies of Higgs are 
powerful means of checking whether 
Higgs properties are as expected in 
SM...

■ ...or more like predictions from 
Minimal SUSY SM:



Quark charge identification

■ Increases sensitivity to new physics.
■ E.g. effects of large extra dimensions 

on 
■ Study ALR = (σL – σR)/σtot as a function 

of cos θ. 
■ For μ+μ−, effects of ED not visible:

■ Changes from SM much more 
pronounced for c (and b) quarks:

■ Efficient flavour identification and 
charge determination needed out to 
large cos θ.

e e f f .+ − →



Quark charge identification

■ Provides new tools for physics 
studies. 

■ E.g. can measure top polarisation in 
decay

■ Top decays before hadronisation.
■ Anti-strange jet has 1 – cos θ

distribution w.r.t. top polarisation 
direction.

■ Distinguish between t and    by 
tagging b and c jets. 

■ Determine quark charge for (at least) 
one of these jets.

■ Example of physics made accessible 
using this technique:

■ Determine tanβ and tri-linear 
coupling At and Ab through 
measurements of top polarisation in 
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Summary

■ The precision of the International Linear Collider provides an 
excellent complement to the discovery potential of the LHC.

■ A feasible baseline ILC design has been produced.
■ The challenges for experiments at the ILC are different to those

at the LHC and are leading to novel approaches to detector 
design.

■ These offer exciting opportunities for studying the physics of 
heavy flavours and for using heavy flavours as a tool in many 
investigations.

■ Next steps include production of Technical Design Reports for 
ILC machine and detectors around 2010...

■ ...hopefully leading to ILC physics results ~2020.
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