New QCD fits to HERA data and looking for exclusive events at the Tevatron

Christophe Royon
DAPNIA-SPP, CEA Saclay

DIS 2007, April 2007, Munich

Contents:

- New DGLAP QCD fits to HERA data and extraction of gluon density in Pomeron
- χ_C production
- Comparison between CDF measurement of dijet mass fraction and pomeron models
- Predictions from Soft Colour Interaction models
- Measurement of exclusive events at the LHC

Work done in collaboration with Oldřich Kepka, Laurent Schoeffel, Robi Peschanski, Murilo Rangel, Maarten Boonekamp

QCD fits to ${\cal F}_2^D$ data

- Use the most recent F_2^D data published by H1, ZEUS
- DGLAP QCD evolution using MRS-like distributions at the starting scale

$$zS(z, Q^{2} = Q_{0}^{2}) = \left[A_{S}z^{B_{S}}(1-z)^{C_{S}}(1+D_{S}z+E_{S}\sqrt{z}) \right] \cdot e^{\frac{0.01}{z-1}}$$

$$zG(z, Q^{2} = Q_{0}^{2}) = \left[A_{G}(1-z)^{C_{G}} \right] \cdot e^{\frac{0.01}{z-1}}$$

- In the fits: $\alpha_S(M_Z) = 0.118$, $Q_0^2 = 3 \text{ GeV}^2$
- Charm quark contribution computed in the fixed flavour scheme using the photon-gluon fusion prescription
- For H1 data: $\alpha_P=1.12$, $\chi^2/dof\sim0.9$
- Differences with respect to H1 parton distributions: Q_0^2 fitted, less parameters/flexibility in initial MRS distributions (NB: we find the same result as H1 if we use their approach
- NB: in the same paper (hep-ph/0609291), study also dipole and saturation GBW models which lead also to a good description of HERA data

Parton densities in Pomeron

DGLAP fits to most recent H1 and ZEUS data (see: hep-ph/0609291, hep-ph/0602228)

Uncertainty on high β gluon

- Important to know the high β gluon since it is a contamination to exclusive events
- Experimentally, quasi-exclusive events indistinguishable from purely exclusive ones
- Uncertainty on gluon density at high β : multiply the gluon density by $(1 \beta)^{\nu}$ (fit: $\nu = 0.0 \pm 0.6$)

DPEMC Monte Carlo

- DPEMC (Double Pomeron Exchange Monte Carlo): New generator to produce events with double pomeron exchange (contains POMWIG, Bialas Landshoff model for inclusive diffraction and both "Durham" and Bialas Landshoff models for exclusive diffraction) http://boonekam.home.cern.ch/boonekam/dpemc.htm, paper to be submitted to Comp. Phys. Com.
- Interface with Herwig: for hadronisation
- Exclusive and inclusive processes included: Higgs, dijets, diphotons, dileptons, SUSY, QED, Z, W...
- DPEMC generator interfaced with a fast simulation of LHC (as an example CMS, same for ATLAS) and CDF detectors, and a detailled simulation of roman pot acceptance
- Gap survival probability of 0.03 put for the LHC and 0.1 for Tevatron

χ_C exclusive production at the Tevatron?

- hep-ph/0612297, accepted by Nucl. Phys. B
- CDF observation: Upper limit of χ_C exclusive production at the Tevatron in the $J/\Psi\gamma$ channel $\sigma\sim49$ pb ±18 \pm 39 pb for y<0.6 (result not corrected for cosmics, χ_2 contamination)
- Exclusive prediction: 59 pb
- Quasi-exclusive contamination:

mass fraction	$\nu = 0$	$\nu = -1$	$\nu = -0.5$	$\nu = +0.5$	$\nu = +1.0$
≥ 0.8	5.4	119.1	27.2	0.9	0.2
≥ 0.85	2.0	62.0	11.2	0.2	0.0
≥ 0.9	0.3	19.6	2.9	0.0	0.0
≥ 0.95	0.8	1.7	0.8	0.0	0.0

• Contamination of quasi-exclusive events strongly dependent on assumption on high- β gluon density in pomeron (completely unknown...), and also on precision and smearing of dijet mass distribution

Different models to be studied to compare with DMF

- Predictions from inclusive models:
 - "Factorised models" (FM): Use the gluon and quark distributions coming from H1 measurements, apply survival probability of 0,1 for Tevatron, predict cross sections
 - Extension of Bialas Landshoff model: Diffraction is dominated by the exchange of a non-perturbative Pomeron (soft $\alpha_P=1.08$, natural for hadron-hadron interaction), no survival probability since model scaled to CDF run I DPE cross section measurement
 - Soft colour interaction: Diffraction due to string rearrangement in final state in hadronisation phase
- Predictions from exclusive models:
 - Durham model: Direct 2-gluon coupling to the proton, pure exclusive event production, presence of Sudakov form factor which leads to a strong mass dependence of the cross section
 - Bialas-Landshoff model: Similar to inclusive one, exchange of a non-perturbative soft Pomeron
- Fast simulation of CDF detector used

Dijet mass fraction measurement in CDF

- Look for exclusive events (events where there is no pomeron remnants or when the full energy available is used to produce diffractively the high mass object)
- Select events with two jets only, one proton tagged in roman pot detector and a rapidity gap on the other side
- \bullet Predictions from the modified Bialas-Landshoff and "factorised" inclusive diffraction models for Jet $p_T>10$ GeV
- Bialas Landshoff inspired approach lead to similar results as the "factorised" models

Prediction from inclusive diffraction

- ullet Predictions from the Bialas-Landshoff and "factorised" inclusive diffraction models: Jet $p_T > 25~{\rm GeV}$
- In the following, we only consider the "factorisable" inclusive models

Prediction from inclusive and exclusive diffraction

- Add the exclusive contribution from Durham or Bialas-Landshoff model (free relative normalisation between inclusive and exclusive contribution)
- Good agreement between measurement and predictions
- As an example: Durham exclusive and either "Factorisable" models for $p_T>10~{\rm GeV}$ or modified Bialas Landshoff inclusive model for $p_T>25~{\rm GeV}$

Relative normalisation between inclusive and exclusive

- If model right, expect relative contribution to be stable between at jet $p_T>10$ GeV and $p_T>25$ GeV (modulo imperfection of CDF detector fast simulation)
- ullet Bialas Landshoff approach leads to too low dependence on jet p_T whereas Durham model looks better

Contributions	$r^{\text{EXC/INC}}(10GeV)$	$r^{\text{EXC/INC}}(25GeV)$
FM + KMR	2.6	1.0
$FM + BL \ exc$	0.35	0.038

A better way to look for exclusive events?

Exclusive contribution more visible at jet p_T of 30-40 GeV

Soft Colour Interaction models

- A completely different model to explain diffractive events: Soft Colour Interaction (R.Enberg, G.Ingelman, N.Timneanu, hep-ph/0106246)
- Principle: Variation of colour string topologies, giving a unified description of final states for diffractive and non-diffractive events
- No survival probability for SCI models

What about SCI?

- SCI models give correct normalisation for single diffraction at Tevatron and diffraction at HERA without any additional parameter
- Exclusive events and SCI: Contribution of exclusive events needed much lower compared to Pomeron-like models, even vanishes for jet $p_T > 25 \text{ GeV}...$

Comments about SCI

- Contribution of exclusive events much smaller for SCI
- "DPE" exchange in SCI models dominated by the following configuration for CDF events: 1 antiproton tagged in the final state, a bunch of particles going through the beam pipe on the other side (dominated by pions), no proton in the final state, due to the fact that only a rapidity gap is requested
- Jet rapidity boosted towards high rapidity: SCI model worth to be studied in more detail, but needs further improvement

LHC: Exclusive and inclusive events

- Study of exclusive and inclusive production to be made at the LHC: study cross section of both components as a function of jet p_T and perform DGLAP QCD fits
- Important to understand background and signal for exclusive production of rare events: Higgs, SUSY...

LHC: Exclusive and inclusive events

- Number of dijet events as a function of jet p_T : dominated by uncertainty on gluon density
- Dijet mass fraction (average value as an example): sensitive to exclusive production, quite easy to measure

Conclusion

- Inclusive Diffractive model cannot describe properly dijet mass fraction measurement at high values
- Inclusive and Exclusive models together lead to a good description of dijet mass fraction: Durham model together with "factorised" or modified inclusive "Bialas-Landshoff" models are favoured (Bialas-Landshoff exclusive models are disfavoured)
- Ideally look at jets with $p_T > 30-40$ GeV at Tevatron to obtain the best separation between inclusive and exclusive events
- At the LHC: Full cross section analysis of exclusive and inclusive production needed to obtain good prediction for Higgs, SUSY...
- SCI models: worth to study in more detail since they show a completely different model of diffraction and lead to a sensibly different dijet mass fraction