Top Mass and Decay Properties

DIS 2007

Jeannine Wagner University of Karlsruhe

for the DØ and CDF Collaborations

Top mass:

 Most precise results of DØ and CDF for each decay channel

Decay properties:

- ♦ *W*-helicity in top decays

Top Quark Production and Decay

Dominant process: Top pair production

J. Wagner, University of Karlsruhe

Precision Top Quark Mass Measurements

♦ Allows together with the W mass for predictions on Higgs mass

 $\Delta M_W \propto M_t^2 \ \Delta M_W \propto \ln M_H$

- Consistency check of the standard model
- Constraint on Higgs can point to physics beyond the standard model

Summer'06 top mass + Jan'07 W mass

DIS 2007, 04/18/2007

Top Mass Measurements Techniques

Template methods:

- ♦ Calculate a per-event observable strongly correlated with M_t
- \diamond Extract M_t by comparing simulated distributions (sig+bg) with varying M_t with data

Matrix Element (ME) analyses:

♦ Calculate a per event probability density for sig+bg as function of M_t :

$$P_{sig}(x; M_t) = \frac{1}{\sigma} \int d^n \sigma(y; M_t) \, dq_1 dq_2 \, f(q_1) f(q_2) \, W(x|y)$$

$$\underset{\text{section}}{\text{LO diff. cross}} PDF's \qquad \underset{\text{parton }(y) \to \text{ rec. object }(x)}{\text{Tranfer function:}}$$

$$P_{evt} = f_{top} \cdot P_{sig} + (1 - f_{top}) \cdot P_{bg}$$

♦ Obtain most likely M_t by multiplying event likelihoods

Mass in the ℓ + Jets Channel

$$t \rightarrow W^{+}b , \quad \bar{t} \rightarrow W^{-}\bar{b} \quad (+ \text{ cc.})$$

$$\downarrow \ell^{+}\nu \qquad \downarrow q\bar{q}' \quad (+ \text{ cc.})$$

$$\downarrow \ell^{+}\nu \qquad \downarrow q\bar{q}' \quad (+ \text{ cc.})$$

$$\downarrow \ell^{+}\nu \qquad \downarrow \ell^{+}\psi \qquad \downarrow \ell^{+}\nu \qquad \downarrow \ell^{+}\mu \qquad \downarrow \ell^{+}\mu \qquad \downarrow^{+}\mu \qquad \downarrow \ell^{+}\mu \qquad \downarrow \ell^{+}\mu \qquad \downarrow \ell^{+}\mu \qquad \downarrow \ell^{+}\mu \qquad \downarrow$$

DIS 2007, 04/18/2007

Event signature:

- \diamond 1 high p_T lepton (e or μ)
- ◊ 4 jets (≥ 1 b-jet)

Backgrounds:

- ♦ Medium amount
- Mostly W +jets, and QCD multijets

Bonus:

- ♦ In-situ calibration of light quark jets using $M_{W \rightarrow q\bar{q}'}$
- Crucial for current level of top mass precision

5

Most Precise ℓ + Jets Results

Use of in-situ technique \rightarrow strong reduction of the dominant syst. uncertainty of top mass measurements, the uncertainty on jet energy scale

JES: Parameter used to adjust for a possible overall miscalibration of the jet energy scale (jet \rightarrow parton)

Matrix element method

JES

 $m_t = 170.9 \pm 2.2 \pm 1.4 \; {
m GeV/c}^2$

Matrix element method

DIS 2007, 04/18/2007

Example of Systematic Uncertainties

Source	$\Delta M_t [{\rm GeV/c}^2]$
JES residual	0.42
Initial state radiation	0.72
Final state radiation	0.76
Generator	0.19
BG composition and modeling	0.21
Parton distribution functions	0.12
<i>b</i> -JES	0.60
b-tagging	0.31
Monte Carlo statistics	0.04
Lepton p_t	0.22
Multiple interactions	0.05
Total	1.36

ℓ + jets measurement

Mass in the Dilepton Channel

Event signature:

- \diamond 2 high p_T leptons (e or μ)
- ♦ Large missing transverse energy 𝑘_T
- ♦ 2 jets

Backgrounds:

- ♦ Low amount
- ♦ Diboson and W/Z + jets events

Challenge:

♦ Two neutrinos → dilepton channel is underconstrained

Most Precise Dilepton Results

Matrix element method

Event probabilities are integrated over neutrino energies

Template method

Assign a weight to each $(m_t, \eta_{\nu_1}, \eta_{\nu_2})$ hypothesis based on agreement of calc. and obs. $\not\!\!E_T$

 $m_t = 164.5 \pm 3.9 \pm 3.9$ GeV/c 2

DIS 2007, 04/18/2007

J. Wagner, University of Karlsruhe

 $(\int L dt = 1.0 \, \text{fb}^{-1})$

Mass in the All Hadronic Channel

$$t \rightarrow W^+ b$$
, $\overline{t} \rightarrow W^- \overline{b}$ (+ cc.)
 $\downarrow q_1 \overline{q_1}'$
 $\downarrow q_2 \overline{q_2}'$
jet
jet
jet
jet
jet
jet
jet
jet
jet

Event signature:

- \diamond Exactly 6 jets ($\geq 1 \ b$ -tagged)
- Additional selection on event topology

Backgrounds:

- ♦ Large amount
- QCD multijets

Challenge:

 Reduction of background (e.g. ANN)

Bonus:

 \diamond In-situ calibration of light quark jets using $M_{W \rightarrow q \bar{q}'}$

DIS 2007, 04/18/2007 J. \

Most Precise All Hadronic Result

Top Mass Combination

Status of winter'07

Relative uncertainty of $\sim 1\%$ achieved

Data prefer a low Higgs mass

DIS 2007, 04/18/2007

Top Decay Properties

Is the Top really the Standard Model Top?

 Production properties:
 production rate, production mechanism, charge, spin
 Previous talk by Cecilia Gerber

Decay properties: branching ratios, lifetime, couplings, W helicity

this talk

DIS 2007, 04/18/2007

W Helicity in Top Decays

Left-handed:

Right-handed:

SM: $F_0 = 0.7$

SM: $F_{-} = 0.3$

SM: $F_+ = 0.0$

Use reconstructed $\cos \theta^*$ as observable

Deviations from SM values would indicate new physics:

- ♦ Search for a possible V + A coupling in weak top decays:
 ⇒ Altered F_+ value
- ♦ Search for an indication of non-SM EW sym. breaking: ⇒ Altered F_0 value
- J. Wagner, University of Karlsruhe

W Helicity: Results

DIS 2007, 04/18/2007

are consistent with the SM

15

Lifetime and Branching Fraction

Impact parameter d_0 of ℓ correlated with au_{top}

 $c au_{top} < 52.5\,\mu{
m m} \, @\, 95\%$ C.L.

Top branching fraction: $\mathsf{R}=\mathsf{Br}(t \to bW)/\mathsf{Br}(t \to qW)$

 ℓ +Jets & Dilepton, 162 pb⁻¹ $R = 1.12^{+0.27}_{-0.23}$ R > 0.61 @ 95% C.L.

(Phys. Rev. Lett. 95, 102002, (2005))

 ℓ +Jets, 230 pb⁻¹ $R = 1.03^{+0.19}_{-0.17}$ R > 0.61 @ 95% C.L. (Phys. Lett.B 639, 616-622, (2006))

Results consistent with SM

DIS 2007, 04/18/2007

Summary

Top mass:

- Measurements are systematically limited
- $m_t = 170.9 \pm 1.8 \text{ GeV/c}^2$ (Tevatron combination)
- \diamond Relative uncertainty $\sim 1\%$
- \diamond Hope to reach $\Delta m_t \sim 1~{
 m GeV/c}^2$

Top decay properties:

- ♦ Measurements are still statistically limited
- ♦ All decay properties are consistent with the Standard Model prediction

DIS 2007, 04/18/2007

Backup Slides

Challenges of Top Quark Physics

- Top quark physics requires the understanding of all detector components
- It is a rare process with significant backgrounds
- ♦ We measure jets, not quarks: Correct jet energies (JES) for detector effects, hadronization, mult. interactions
 JES known to ~ 3% → dominant syst. uncertainty
- *b*-tagging can be used to reduce backgrounds and jet/ quark combinatorics

B-Tagging at CDF

Loose: $L_{xy}/\sigma_{L_{xy}} > 6$, Tight: $L_{xy}/\sigma_{L_{xy}} > 7.5$ Tight: $\epsilon \approx 45\%$ (b) $\epsilon \approx 0.7\%$ (light) $\epsilon \approx 9\%$ (c)

 d_0 resolution for central tracks: $\approx 50 \ \mu m$ Including L00: $o(5) \ \mu m$ improvement