Measurement of Sivers asymmetry for di-jets at STAR in polarized p+p collisions at 200GeV

Outline

- Motivation
- Theory predictions

Principle of measurement, L2 trigger

Fast M-C model of Sivers spin asymmetry

- Measured SSA
- Conclusions

Jan Balewski, IUCF DIS 2007

April 16-20, 2007 Munich, Germany

Where does the proton's spin come from?

p is made of 2 u and 1d quark

$$S = \frac{1}{2} = \sum S_{q}$$

Explains magnetic moment of baryon octet

BUT partons have an x distribution and there are sea quarks and gluons

Check via electron scattering and find quarks carry only ~1/3 of the proton's spin!

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$$

Jets, pions, ALL

Di-jets, Sivers A_N

Motivation for pp → Di-Jet Measurement

- ➤ HERMES transverse spin SIDIS asymmetries ⇒ u and d quark Sivers functions of opposite sign, different magnitude.
- > Sivers effect in pp $\Rightarrow \bar{s}$ pin-dependent sideways boost to di-jets, suggested by Boer & Vogelsang (PRD 69, 094025 (2004))
- > Both beams polarized, $x^{+z} \neq x^{-z} \Rightarrow$ can distinguish q vs. g Sivers effects.
- > Do we observe q Sivers consistent with HERMES? Tests universality.
- > First direct measurement of gluon Sivers effects.

History of Predictions of Sivers A_N for Di-jets @ STAR

STAR Di-Jet Software Trigger (developed in 2006)

Rates @ STAR

- 9.4 MHz: RHIC bunches collide
- 300 kHz : min-bias collisions trigger BBCs
- 150 Hz : L0 single jet exceeds 4 GeV E_T
 - in a **hardwired 1x1** ($\Delta \eta \times \Delta \phi$) EMC patch
- 10 Hz: L2 di-jet trigger with E_T > 3.5 GeV for a pair of back-to-back sliding 0.6x0.6 patches
 ~80 muSec decision time

STAR Di-Jets Acquired in 2006 run

Full, symmetric $\phi_{1,2}$ coverage at STAR

- 2006 p+p run, 1.1 pb⁻¹
- 2.6M di-jet triggered events
- 2 localized clusters, with $E_{\tau}^{EMC} > 3.5 \text{ GeV}, |\Delta \phi| > 60^{\circ}$

Reco $cos(\phi_{bisector})$ measures sign of net k_T^{X} for event

Signed azimuthal opening angle ζ

Fast M-C Tuned to Real Di-jets

Fast M-C: shift in ζ equivalent to Sivers A_N

Assume non-zero Sivers <k_TX>=100 MeV/c

'Calibration' of A_N vs. amplitude Sivers <k_T^X>

STAR Di-Jet Results Integrated Over Pseudorapidity

- \triangleright Sivers asymmetries consistent with zero with stat. unc. = ± 0.002
- ► Fast M-C model \Rightarrow sensitivity to Sivers $\langle k_T^x \rangle$ offset \approx few MeV/c \approx 0.004 $\sigma(k_T^x)$
- > Systematic uncertainties smaller than statistics
- \triangleright All null tests, including forbidden 2-spin asym. \sim cos($\phi_{bisector}$), consistent with zero
- \gt Validity of spin-sorting confirmed by reproducing known non-zero A_N for inclusive forward charged-particle production (STAR BBC's)

STAR Results vs. Di-Jet Pseudorapidity Sum

V&Y calcs. include:

- no hadronization
- 5 < p_T^{parton} < 10 GeV/c
- STAR η acceptance
- HERMES-fitted q Sivers
- no gluon Sivers fcns.

They predict:

- A_N ~ A_N^{HERMES} where q dominates, if only ISI included (à la Drell-Yan)
- A_N sign reversal, factor ~2 reduction when gauge links include FSI as well

Reverse V&Y signs here to obey Madison convention!

STAR A_N all consistent with zero \Rightarrow both quark and gluon Sivers effects ~order of magnitude smaller in $\overrightarrow{pp} \rightarrow$ di-jets than SIDIS quark Sivers asym.!

Theory Few Months Later

A_N , yields weighted w/ $|\sin(\zeta)|$

STAR Results : weighted AN

Summary & Outlook

- STAR acquired 2.6M di-jet events w/ transversely polarized proton beams at sqrt(s)=200 GeV
- Experimental values of Sivers SSA for quarks & gluons is consistent w/ zero +/-0.002
- •Early large predictions tuned to non-zero HERMES quark Sivers SSA has been reduced due to accounting for cancellation between ISI & FSI and u- and d-quarks Sivers fcns.
- •More detailed analysis is ongoing

Backup Slides

CNI Measured On-line 60%+ Polarization at RHIC

in 2006

Is the Di-jet Spin Sorting Correct? (Find MinB BBC SSA)

Theory - exp't discrepancy raises questions!

Are observed di-jet Sivers SSA much smaller than predictions because:

> ISI & FSI both important in $\vec{p}p \rightarrow jets$ and tend to cancel?

- \triangleright Need \overline{q} Sivers or different q Sivers x, k_T shapes in HERMES fits?
- > Contributions from Collins fragmentation asymmetries in incompletely reconstructed jets conspire to cancel Sivers asymmetries for quarks, while gluon Sivers functions naturally small?
- >If ISI / FSI cancel at mid-rapidity, does their balance change at high η to yield sizable Sivers contribution to observed $\vec{p}p \rightarrow \pi^0 X$ SSA?