Parton showers for non-global QCD observables

Mrinal Dasgupta

University of Manchester
Work in collaboration with A. Banfi and G. Corcella

DIS 2007, Munich, 18 April

- How good is a given parton shower?
- Non-global observables and loss of angular-ordering (AO).
- Mismatch between AO and full leading-logarithmic calculations.
- HERWIG vs PYTHIA vs resummed perturbation theory.
- Concluding remarks.

- How good is a given parton shower?
- Non-global observables and loss of angular-ordering (AO).
- Mismatch between AO and full leading-logarithmic calculations.
- HERWIG vs PYTHIA vs resummed perturbation theory.
- Concluding remarks.

- How good is a given parton shower?
- Non-global observables and loss of angular-ordering (AO).
- Mismatch between AO and full leading-logarithmic calculations.
- HERWIG vs PYTHIA vs resummed perturbation theory.
- Concluding remarks.

- How good is a given parton shower?
- Non-global observables and loss of angular-ordering (AO).
- Mismatch between AO and full leading-logarithmic calculations.
- HERWIG vs PYTHIA vs resummed perturbation theory.
- Concluding remarks.

- How good is a given parton shower?
- Non-global observables and loss of angular-ordering (AO).
- Mismatch between AO and full leading-logarithmic calculations.
- HERWIG vs PYTHIA vs resummed perturbation theory.
- Concluding remarks.

Monte-Carlo simulations of QCD perhaps the most vital physics tool at LHC. Crucial to critically the examine the different components:

- Perturbative aspects parton shower (PS), ME corrections and matching.
- Non-perturbative aspects hadronisation and underlying event models.
- Tuning of event generators.

A lot of attention being paid to all aspects but are some details slipping the net? We shall address the first issue

Monte-Carlo simulations of QCD perhaps the most vital physics tool at LHC. Crucial to critically the examine the different components :

- Perturbative aspects parton shower (PS), ME corrections and matching.
- Non-perturbative aspects hadronisation and underlying event models.
- Tuning of event generators.

A lot of attention being paid to all aspects but are some details slipping the net? We shall address the first issue

Monte-Carlo simulations of QCD perhaps the most vital physics tool at LHC. Crucial to critically the examine the different components:

- Perturbative aspects parton shower (PS), ME corrections and matching.
- Non-perturbative aspects hadronisation and underlying event models.
- Tuning of event generators.

A lot of attention being paid to all aspects but are some details slipping the net? We shall address the first issue

Monte-Carlo simulations of QCD perhaps the most vital physics tool at LHC. Crucial to critically the examine the different components:

- Perturbative aspects parton shower (PS), ME corrections and matching.
- Non-perturbative aspects hadronisation and underlying event models.
- Tuning of event generators.

A lot of attention being paid to all aspects but are some details slipping the net? We shall address the first issue

- Parton showers reflect understanding of pQCD at all-orders. Commonly believed to capture at least the leading logarithmic singularities.
- Developments in all-order resummations have challenged understanding of soft radiation at large angles (angular ordering) even at leading (logarithmic) accuracy.
 MD and Salam 2001,2002. Banfi, Marchesini, Smye 2002
- Observables sensitive to soft emission in limited regions include energy flow distributions, event shapes, jet distributions and many others.
- Must re-examine the accuracy of the shower in these instances. Do we tune leading logs into the MC parameters? Should we worry about this....? In principle? Numerically?

- Parton showers reflect understanding of pQCD at all-orders. Commonly believed to capture at least the leading logarithmic singularities.
- Developments in all-order resummations have challenged understanding of soft radiation at large angles (angular ordering) even at leading (logarithmic) accuracy. MD and Salam 2001,2002. Banfi, Marchesini, Smye 2002
- Observables sensitive to soft emission in limited regions include energy flow distributions, event shapes, jet distributions and many others.
- Must re-examine the accuracy of the shower in these instances. Do we tune leading logs into the MC parameters? Should we worry about this....? In principle? Numerically?

- Parton showers reflect understanding of pQCD at all-orders. Commonly believed to capture at least the leading logarithmic singularities.
- Developments in all-order resummations have challenged understanding of soft radiation at large angles (angular ordering) even at leading (logarithmic) accuracy. MD and Salam 2001,2002. Banfi, Marchesini, Smye 2002
- Observables sensitive to soft emission in limited regions include energy flow distributions, event shapes, jet distributions and many others.
- Must re-examine the accuracy of the shower in these instances. Do we tune leading logs into the MC parameters? Should we worry about this....? In principle? Numerically?

- Parton showers reflect understanding of pQCD at all-orders. Commonly believed to capture at least the leading logarithmic singularities.
- Developments in all-order resummations have challenged understanding of soft radiation at large angles (angular ordering) even at leading (logarithmic) accuracy. MD and Salam 2001,2002. Banfi, Marchesini, Smye 2002
- Observables sensitive to soft emission in limited regions include energy flow distributions, event shapes, jet distributions and many others.
- Must re-examine the accuracy of the shower in these instances. Do we tune leading logs into the MC parameters? Should we worry about this....? In principle? Numerically?

- Parton showers reflect understanding of pQCD at all-orders. Commonly believed to capture at least the leading logarithmic singularities.
- Developments in all-order resummations have challenged understanding of soft radiation at large angles (angular ordering) even at leading (logarithmic) accuracy. MD and Salam 2001,2002. Banfi, Marchesini, Smye 2002
- Observables sensitive to soft emission in limited regions include energy flow distributions, event shapes, jet distributions and many others.
- Must re-examine the accuracy of the shower in these instances. Do we tune leading logs into the MC parameters? Should we worry about this....? In principle? Numerically?

Non global observables and loss of AO

Examine differential E_t flow

$$\frac{1}{\sigma} \frac{d\sigma}{dE_t}$$

Here $E_t = \sum_{i \in \Omega} E_{t,i}$ and Ω is interjet region e.g rapidity slice.

Leading logs are $\alpha_s^n L^n$ where $L = \ln Q/E_t$. Originate from $\omega_1 \gg \omega_2 \gg \omega_3 \cdots$ without angular-ordering. But AO a feature of MC's e.g HERWIG and old PYTHIA (before v 6.3).

Non global observables and loss of AO

Examine differential E_t flow

$$\frac{1}{\sigma} \frac{d\sigma}{dE_t}$$

Here $E_t = \sum_{i \in \Omega} E_{t,i}$ and Ω is interjet region e.g rapidity slice. Leading logs are $\alpha_s^n L^n$ where $L = \ln Q/E_t$. Originate from $\omega_1 \gg \omega_2 \gg \omega_3 \cdots$ without angular-ordering. But AO a feature of MC's e.g HERWIG and old PYTHIA (before v 6.3).

Resummation and angular ordering

We take two approaches to the problem.

- Take resummation program and force angular ordering toy model of AO.
- Take real parton showers from HERWIG and PYTHIA and compare to non-global resummation.

Resummation and angular ordering

We take two approaches to the problem.

- Take resummation program and force angular ordering toy model of AO.
- Take real parton showers from HERWIG and PYTHIA and compare to non-global resummation.

Resummation and angular ordering

We take two approaches to the problem.

- Take resummation program and force angular ordering toy model of AO.
- Take real parton showers from HERWIG and PYTHIA and compare to non-global resummation.

The leading logarithms resummed in large N_c limit by a dipole evolution Monte-Carlo.

Dasgupta and Salam 2001

Add soft gluon at scale $L' = \ln Q/\omega$ to dipole configuration C at scale L to get C'

$$P_{C'}(L') = \bar{\alpha_s}(L')\Delta_C(L, L')F_C(\theta', \phi')P_C(L)$$

$$F_c(\theta_k, \phi_k) = \sum_{\text{dipoles-ij}} \frac{2C_A (1 - \cos \theta_{ij})}{(1 - \cos \theta_{ik}) (1 - \cos \theta_{jk})}$$

$$\Sigma(\alpha_s L) = \sum_{C \mid \Omega_{minute}} P_C(L), L = \ln Q/E_t.$$

The leading logarithms resummed in large N_c limit by a dipole evolution Monte-Carlo.

Dasgupta and Salam 2001

Add soft gluon at scale $L' = \ln Q/\omega$ to dipole configuration C at scale L to get C'

$$P_{C'}(L') = \bar{\alpha}_s(L')\Delta_C(L, L')F_C(\theta', \phi')P_C(L)$$

$$F_c(\theta_k, \phi_k) = \sum_{\text{dipoles-ij}} \frac{2C_A (1 - \cos \theta_{ij})}{(1 - \cos \theta_{ik}) (1 - \cos \theta_{jk})}$$

$$\Sigma(\alpha_s L) = \sum_{C \mid \Omega_{\text{empty}}} P_C(L), L = \ln Q/E_t.$$

The leading logarithms resummed in large N_c limit by a dipole evolution Monte-Carlo.

Dasgupta and Salam 2001

Add soft gluon at scale $L' = \ln Q/\omega$ to dipole configuration C at scale L to get C'

$$P_{C'}(L') = \bar{\alpha}_s(L')\Delta_C(L, L')F_C(\theta', \phi')P_C(L)$$

$$F_c(\theta_k, \phi_k) = \sum_{\text{dipoles-ij}} \frac{2C_A \left(1 - \cos \theta_{ij}\right)}{\left(1 - \cos \theta_{ik}\right) \left(1 - \cos \theta_{jk}\right)}$$

$$\Sigma(\alpha_s L) = \sum_{C \mid \Omega_{empty}} P_C(L), L = \ln Q/E_t.$$

The leading logarithms resummed in large N_c limit by a dipole evolution Monte-Carlo.

Dasgupta and Salam 2001

Add soft gluon at scale $L' = \ln Q/\omega$ to dipole configuration C at scale L to get C'

$$P_{C'}(L') = \bar{\alpha}_s(L')\Delta_C(L, L')F_C(\theta', \phi')P_C(L)$$

$$F_{c}(\theta_{k}, \phi_{k}) = \sum_{\text{dipoles-ij}} \frac{2C_{A} (1 - \cos \theta_{ij})}{(1 - \cos \theta_{ik}) (1 - \cos \theta_{jk})}$$

$$\Sigma(\alpha_{s}L) = \sum_{C \mid \Omega_{empty}} P_{C}(L), L = \ln Q/E_{t}.$$

AO modification

To force only configurations with AO:

$$F(\theta_{k},\phi_{k}) \rightarrow \frac{\theta\left(\cos\theta_{ik} - \cos\theta_{ij}\right)}{\left(1 - \cos\theta_{ik}\right)} + \frac{\theta\left(\cos\theta_{jk} - \cos\theta_{ij}\right)}{\left(1 - \cos\theta_{ik}\right)}$$

Then one gets $\Sigma_{AO}(\alpha_S L)$ as before.

Results

For unit rapidity slice in e^+e^- annihilation with

$$t \sim rac{lpha_{ extsf{S}}}{2\pi} \ln rac{ extsf{Q}}{ extsf{\textit{E}}_t}$$

10 % effect at t=0.15. Corresponds to 1 GeV in the gap and 100 GeV jets. Similar results for other geometries Ω . Bulk of leading-log effects come from inside azimuthally averaged cones – not accidental.

Results

For unit rapidity slice in e^+e^- annihilation with

$$t\simrac{lpha_{s}}{2\pi}\lnrac{\mathsf{Q}}{\mathsf{E}_{t}}$$

10 % effect at t = 0.15. Corresponds to 1 GeV in the gap and 100 GeV jets. Similar results for other geometries Ω . Bulk of leading-log effects come from inside azimuthally averaged cones – not accidental.

- HERWIG based on angular ordering, shd be close to full (large N_c) result.
- PYTHIA (old) ordering in m² and reject non AO configs, shd do worse.
- ARIADNE dipole phase space, shd have the full LL.
- PYTHIA (new) like ARIADNE?

Trick go to very high (10⁵ GeV) to kill subleading effects. Only interested in $t \sim \frac{\alpha_s}{2\pi} \ln \frac{Q}{F_s}$.

- HERWIG based on angular ordering, shd be close to full (large N_c) result.
- PYTHIA (old) ordering in m² and reject non AO configs, shd do worse.
- ARIADNE dipole phase space, shd have the full LL.
- PYTHIA (new) like ARIADNE ?

Trick go to very high (10⁵ GeV) to kill subleading effects. Only interested in $t \sim \frac{\alpha_s}{2\pi} \ln \frac{Q}{E}$.

- HERWIG based on angular ordering, shd be close to full (large N_c) result.
- PYTHIA (old) ordering in m² and reject non AO configs, shd do worse.
- ARIADNE dipole phase space, shd have the full LL.
- PYTHIA (new) like ARIADNE ?

Trick go to very high (10⁵ GeV) to kill subleading effects. Only interested in $t \sim \frac{\alpha_s}{2\pi} \ln \frac{Q}{F}$.

- HERWIG based on angular ordering, shd be close to full (large N_c) result.
- PYTHIA (old) ordering in m² and reject non AO configs, shd do worse.
- ARIADNE dipole phase space, shd have the full LL.
- PYTHIA (new) like ARIADNE ?

Trick go to very high (10⁵ GeV) to kill subleading effects. Only interested in $t \sim \frac{\alpha_s}{2\pi} \ln \frac{Q}{E_t}$.

Comparison to HERWIG

effect at t = 0.15, $E_t = 10$ GeV.

Numerically 10%

Comparison to PYTHIA

At t = 0.15

PYTHIA old deviates by 50 % from full. PYTHIA new only 7.5% off.

But for large gaps....

Problems seen with new PYTHIA at large rapidity intervals.....

- Angular ordering (implemented as in HERWIG) numerically includes a bulk of leading-log effects.
- The old PYTHIA versions (before 6.3) do not account for a large part of the leading perturbative logarithms for a number of observables.
- The new PYTHIA model works much better but we note problems at large rapidity intervals for energy flow between jets.
- Further studies are needed to understand the behaviour of the various parton showers in a quantitative fashion.
 Wherever possible compare HERWIG and PYTHIA......

- Angular ordering (implemented as in HERWIG) numerically includes a bulk of leading-log effects.
- The old PYTHIA versions (before 6.3) do not account for a large part of the leading perturbative logarithms for a number of observables.
- The new PYTHIA model works much better but we note problems at large rapidity intervals for energy flow between jets.
- Further studies are needed to understand the behaviour of the various parton showers in a quantitative fashion.
 Wherever possible compare HERWIG and PYTHIA......

- Angular ordering (implemented as in HERWIG) numerically includes a bulk of leading-log effects.
- The old PYTHIA versions (before 6.3) do not account for a large part of the leading perturbative logarithms for a number of observables.
- The new PYTHIA model works much better but we note problems at large rapidity intervals for energy flow between jets.
- Further studies are needed to understand the behaviour of the various parton showers in a quantitative fashion.
 Wherever possible compare HERWIG and PYTHIA......

- Angular ordering (implemented as in HERWIG) numerically includes a bulk of leading-log effects.
- The old PYTHIA versions (before 6.3) do not account for a large part of the leading perturbative logarithms for a number of observables.
- The new PYTHIA model works much better but we note problems at large rapidity intervals for energy flow between jets.
- Further studies are needed to understand the behaviour of the various parton showers in a quantitative fashion.
 Wherever possible compare HERWIG and PYTHIA......

