Dijet azimuthal correlations in QCD hard processes

Yazid Delenda¹

University of Manchester

DIS 2007 Munich, 17th April 2007

¹In collaboration with Andrea Banfi and Mrinal Dasgupta

- Predictions for future colliders [LHC] (e.g. Higgs Q spectrum).
- All-orders analytical resummations.
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).

- Predictions for future colliders [LHC] (e.g. Higgs Q_t spectrum).
- All-orders analytical resummations
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).

- Predictions for future colliders [LHC] (e.g. Higgs Q_t spectrum).
- ▶ All-orders analytical resummations.
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).

- Predictions for future colliders [LHC] (e.g. Higgs Q_t spectrum).
- ▶ All-orders analytical resummations.
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).

- Predictions for future colliders [LHC] (e.g. Higgs Q_t spectrum).
- ▶ All-orders analytical resummations.
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).

- Predictions for future colliders [LHC] (e.g. Higgs Q_t spectrum).
- All-orders analytical resummations.
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- ► (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).

Introduction

Examples of where we could go wrong

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:

M. Dasgupta and G.P. Salam, 2001, 2002

- $ightharpoonup \mathcal{O}(1/N_c^2)$ neglected. Could be vital in some cases.
- Three and four-jet observables unaccounted for
- 2. Use of a jet algorithm affects resummation of non-global observables:
 - Reduces non-global logs.

R. Appleby and M. Seymour, 2002, 2003

► Gives rise to additional logs. A.Banfi and M. Dasgupta, 2005

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:

M. Dasgupta and G.P. Salam, 2001, 2002

- ▶ $\mathcal{O}(1/N_c^2)$ neglected. Could be vital in some cases.
- Three and four-jet observables unaccounted for.
- 2. Use of a jet algorithm affects resummation of non-global observables:
 - Reduces non-global logs.

R. Appleby and M. Seymour, 2002, 2003

► Gives rise to additional logs. A.Banfi and M. Dasgupta, 2005

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:

M. Dasgupta and G.P. Salam, 2001, 2002

- \triangleright $\mathcal{O}(1/N_c^2)$ neglected. Could be vital in some cases.
- ▶ Three and four-jet observables unaccounted for.
- 2. Use of a jet algorithm affects resummation of non-global observables:
 - Reduces non-global logs.

R. Appleby and M. Seymour, 2002, 2003

► Gives rise to additional logs. A.Banfi and M. Dasgupta, 2005

Y. Delenda et al. 2006

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:

M. Dasgupta and G.P. Salam, 2001, 2002

- ▶ $\mathcal{O}(1/N_c^2)$ neglected. Could be vital in some cases.
- Three and four-jet observables unaccounted for.
- 2. Use of a jet algorithm affects resummation of non-global observables:
 - Reduces non-global logs

R. Appleby and M. Seymour, 2002, 2003

► Gives rise to additional logs. A.Banfi and M. Dasgupta, 2005

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:

M. Dasgupta and G.P. Salam, 2001, 2002

- ▶ $\mathcal{O}(1/N_c^2)$ neglected. Could be vital in some cases.
- Three and four-jet observables unaccounted for.
- 2. Use of a jet algorithm affects resummation of non-global observables:
 - Reduces non-global logs.
- R. Appleby and M. Seymour, 2002, 2003
- ► Gives rise to additional logs. A.Banfi and M. Dasgupta, 2005 Y. Delenda et al, 2006

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:

M. Dasgupta and G.P. Salam, 2001, 2002

- \triangleright $\mathcal{O}(1/N_c^2)$ neglected. Could be vital in some cases.
- ▶ Three and four-jet observables unaccounted for.
- 2. Use of a jet algorithm affects resummation of non-global observables:
 - Reduces non-global logs.

R. Appleby and M. Seymour, 2002, 2003

► Gives rise to additional logs. A.Banfi and M. Dasgupta, 2005 Y. Delenda et al. 2006

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- ▶ Similar to dijet Δp_t distribution
- ► Commonly used for MC tuning

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- ▶ Similar to dijet Δp_t distribution
- ► Commonly used for MC tuning

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- ▶ Similar to dijet Δp_t distribution
- ► Commonly used for MC tuning

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- ▶ Similar to dijet Δp_t distribution
- ► Commonly used for MC tuning

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- ▶ Similar to dijet Δp_t distribution.
- Commonly used for MC tuning.

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- ▶ Similar to dijet Δp_t distribution.
- Commonly used for MC tuning.

Introduction

Dijet azimuthal correlation

Introduction

Dijet azimuthal correlation at DØ

Dijet azimuthal correlation recently measured by DØ

V.M. Abazov, et al [DØ collaboration], 2004

- ▶ NLO description is good when $\pi \delta \phi_{\rm jets}$ is large.
- ▶ Close to Born configuration $(\pi \delta\phi_{\rm jets} \rightarrow 0)$ NLO results diverge.
- Soft and/or collinear logs + non-perturbative effects become enhanced.
- Needs resummation, power corrections and NLO matching.
- ▶ Same story in DIS. M. Hansson and L. Joensson , DIS 2006cs , DIS 20

- ▶ NLO description is good when $\pi \delta \phi_{\rm jets}$ is large.
- ► Close to Born configuration $(\pi \delta\phi_{\rm jets} \rightarrow 0)$ NLO results diverge.
- Soft and/or collinear logs + non-perturbative effects become enhanced.
- Needs resummation, power corrections and NLO matching.
- ► Same story in DIS. M. Hansson and L. Joensson , DIS 2006

- ▶ NLO description is good when $\pi \delta \phi_{\rm jets}$ is large.
- ► Close to Born configuration $(\pi \delta\phi_{\rm jets} \rightarrow 0)$ NLO results diverge.
- ► Soft and/or collinear logs + non-perturbative effects become enhanced.
- Needs resummation, power corrections and NLO matching.
- ▶ Same story in DIS. M. Hansson and L. Joensson , DIS 2006

- ▶ NLO description is good when $\pi \delta \phi_{\rm jets}$ is large.
- ► Close to Born configuration $(\pi \delta\phi_{\rm jets} \rightarrow 0)$ NLO results diverge.
- ► Soft and/or collinear logs + non-perturbative effects become enhanced.
- Needs resummation, power corrections and NLO matching.
- ► Same story in DIS. M. Hansson and L. Joensson , DIS 2006

- ▶ NLO description is good when $\pi \delta \phi_{\rm jets}$ is large.
- ▶ Close to Born configuration $(\pi \delta\phi_{\rm jets} \rightarrow 0)$ NLO results diverge.
- ► Soft and/or collinear logs + non-perturbative effects become enhanced.
- Needs resummation, power corrections and NLO matching.
- ► Same story in DIS. M. Hansson and L. Joensson , DIS 2006

Introduction Resummation

- Resummation has been successful for many observables (e.g. event-shape variables)
 M. Dasgupta and G.P. Salam, 2002
- Dijet azimuthal correlation not yet resummed [difficult since jet-type observable].
- Now we have the technology to resum it.

Y. Delenda et al, 2006

Introduction Resummation

- Resummation has been successful for many observables (e.g. event-shape variables)
 M. Dasgupta and G.P. Salam, 2002
- Dijet azimuthal correlation not yet resummed [difficult since jet-type observable].
- Now we have the technology to resum it.

Y. Delenda et al. 2006

Introduction Resummation

- Resummation has been successful for many observables (e.g. event-shape variables)
 M. Dasgupta and G.P. Salam, 2002
- ▶ Dijet azimuthal correlation not yet resummed [difficult since jet-type observable].
- ▶ Now we have the technology to resum it.

Y. Delenda et al. 2006

In the soft and/or collinear regime

$$\Delta = \pi - \delta \phi_{\rm jets},$$

 $\delta\phi_{\rm jets} :$ difference in azimuth of outgoing jets.

Depends on jet recombination method:

In the soft and/or collinear regime

$$\Delta = \pi - \delta \phi_{\rm jets},$$

 $\delta\phi_{\rm jets}:$ difference in azimuth of outgoing jets.

Depends on jet recombination method:

In the soft and/or collinear regime

$$\Delta = \pi - \delta \phi_{\rm jets}$$

 $\delta\phi_{\rm jets} :$ difference in azimuth of outgoing jets.

Depends on jet recombination method:

▶ 4-momentum addition - used at DØ: $p_{\text{iet}}^{\mu} = \sum_{i \in \text{iet}} p_i^{\mu}$

In the soft and/or collinear regime

$$\Delta = \pi - \delta \phi_{\rm jets},$$

 $\delta\phi_{\rm jets}$: difference in azimuth of outgoing jets.

Depends on jet recombination method:

▶ 4-momentum addition - used at DØ :

$$egin{aligned} p_{ ext{jet}}^{\mu} &= \sum_{i \in ext{jet}} p_i^{\mu} \ \Delta &\simeq rac{1}{p_t} igg| \sum_{i
otin ext{outgoing iets}} k_{t,i} \sin \phi_i igg|, \end{aligned}$$

 p_t : transverse momentum of outgoing jets. $k_{t,i}$: transverse momentum of i^{th} gluon.

In the soft and/or collinear regime

$$\Delta = \pi - \delta \phi_{\rm jets},$$

 $\delta\phi_{\rm jets}$: difference in azimuth of outgoing jets.

Depends on jet recombination method:

▶ 4-momentum addition - used at DØ :

$$egin{aligned}
ho_{
m jet}^{\mu} &= \sum_{i \in
m jet}
ho_i^{\mu} \ \Delta &\simeq rac{1}{
ho_t} igg| \sum_{i
otin {
m outgoing jets}} k_{t,i} \sin \phi_i igg|, \end{aligned}$$

p_t: transverse momentum of outgoing jets.

 $k_{t,i}$: transverse momentum of i^{th} gluon.

 \implies non-global observable.

In the soft and/or collinear regime

$$\Delta = \pi - \delta \phi_{\rm jets}$$

 $\delta\phi_{\rm jets} :$ difference in azimuth of outgoing jets.

Depends on jet recombination method:

ightharpoonup Average E_t -weighted azimuth - used at HERA:

$$\phi_{jet} = \sum_{i \in \text{jet}} E_{t,i} \phi_i / \sum_{i \in \text{jet}} E_{t,i}$$

In the soft and/or collinear regime

$$\Delta = \pi - \delta \phi_{\rm jets}$$

 $\delta\phi_{\rm jets} :$ difference in azimuth of outgoing jets.

Depends on jet recombination method:

 \blacktriangleright Average E_t -weighted azimuth - used at HERA:

$$\phi_{jet} = \sum_{i \in \text{jet}} E_{t,i} \phi_i / \sum_{i \in \text{jet}} E_{t,i}$$

$$\Delta \simeq \frac{1}{\rho_t} \left| \sum_i k_{t,i} \left(\sin \phi_i - \theta_{i1} \phi_i - \theta_{i2} (\pi - \phi_i) \right) \right|,$$

 $\theta_{ij}=1$ if particle i belongs to jet j.

 $\theta_{ij} = 0$ otherwise.

The observable

In the soft and/or collinear regime

$$\Delta = \pi - \delta \phi_{\rm jets},$$

 $\delta\phi_{\rm jets}$: difference in azimuth of outgoing jets.

Depends on jet recombination method:

 \blacktriangleright Average E_t -weighted azimuth - used at HERA:

$$\phi_{jet} = \sum_{i \in \text{jet}} E_{t,i} \phi_i / \sum_{i \in \text{jet}} E_{t,i}$$

$$\Delta \simeq \frac{1}{p_t} \left| \sum_i k_{t,i} \left(\sin \phi_i - \theta_{i1} \phi_i - \theta_{i2} (\pi - \phi_i) \right) \right|,$$

 $\theta_{ij} = 1$ if particle i belongs to jet j.

 $\theta_{ij} = 0$ otherwise.

⇒ Continuously global observable.

The resummed result

- Use average E_t -weighted azimuth method.
- ▶ Measure △ between outgoing legs in hadronic CoM.

$$\sigma(\Delta) = \int \sigma_{\mathcal{B}} d\mathcal{B} \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b \, \Delta) e^{-R(b)},$$

$$R(b)$$
: Radiator, $R(b) = lg_1(\alpha_s l) + g_2(\alpha_s l)$.

- ▶ $lg_1(\alpha_s l)$ resums leading logs. Originate from soft-collinear emissions to all legs.
- ▶ $g_2(\alpha_s l)$ resums next-to-leading logs. Originate from soft wide-angle or hard-collinear emissions to all the legs.

The resummed result

- ▶ Use average E_t -weighted azimuth method.
- ightharpoonup Measure Δ between outgoing legs in hadronic CoM.

$$\sigma(\Delta) = \int \sigma_{\mathcal{B}} d\mathcal{B} \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b \, \Delta) e^{-R(b)},$$

$$R(b)$$
: Radiator, $R(b) = lg_1(\alpha_s l) + g_2(\alpha_s l)$. $l = \ln(be^{\gamma_E})$.

- ▶ $lg_1(\alpha_s l)$ resums leading logs. Originate from soft-collinear emissions to all legs.
- ▶ $g_2(\alpha_s I)$ resums next-to-leading logs. Originate from soft wide-angle or hard-collinear emissions to all the legs.

The resummed result

- ▶ Use average E_t -weighted azimuth method.
- ightharpoonup Measure Δ between outgoing legs in hadronic CoM.

$$\sigma(\Delta) = \int \sigma_{\mathcal{B}} d\mathcal{B} \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b \, \Delta) e^{-R(b)},$$

$$R(b)$$
: Radiator, $R(b) = lg_1(\alpha_s l) + g_2(\alpha_s l)$. $l = \ln(be^{\gamma_E})$.

- ▶ $lg_1(\alpha_s l)$ resums leading logs. Originate from soft-collinear emissions to all legs.
- ▶ $g_2(\alpha_s l)$ resums next-to-leading logs. Originate from soft wide-angle or hard-collinear emissions to all the legs.

The resummed result

- ▶ Use average E_t -weighted azimuth method.
- ightharpoonup Measure Δ between outgoing legs in hadronic CoM.

$$\sigma(\Delta) = \int \sigma_{\mathcal{B}} d\mathcal{B} \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b \, \Delta) e^{-R(b)},$$

$$R(b)$$
: Radiator, $R(b) = Ig_1(\alpha_s I) + g_2(\alpha_s I)$. $I = \ln(be^{\gamma_E})$.

- ▶ $lg_1(\alpha_s l)$ resums leading logs. Originate from soft-collinear emissions to all legs.
- ▶ $g_2(\alpha_s l)$ resums next-to-leading logs. Originate from soft wide-angle or hard-collinear emissions to all the legs.

The resummed result

- ▶ Use average E_t -weighted azimuth method.
- ightharpoonup Measure Δ between outgoing legs in hadronic CoM.

$$\sigma(\Delta) = \int \sigma_{\mathcal{B}} d\mathcal{B} \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b \, \Delta) e^{-R(b)},$$

$$R(b)$$
: Radiator, $R(b) = lg_1(\alpha_s l) + g_2(\alpha_s l)$. $l = \ln(be^{\gamma E})$.

- ▶ $lg_1(\alpha_s l)$ resums leading logs. Originate from soft-collinear emissions to all legs.
- ▶ $g_2(\alpha_s I)$ resums next-to-leading logs. Originate from soft wide-angle or hard-collinear emissions to all the legs.

The resummed result (preliminary)

Comparison to NLOJET++ MC vs resummation at $\mathcal{O}(\alpha_s)$

Expansion of resummed result to $\mathcal{O}(\alpha_s)$:

$$\frac{d\sigma^{(1)}(\Delta)}{dL} = h_{11} + 2h_{12}L,$$

 $L = \ln(1/\Delta)$, h_{ij} : constants.

All logs controllable. Must fully agree with NLOJET++ in the logarithmically enhanced region.

Comparison to NLOJET++ MC vs resummation at $\mathcal{O}(\alpha_s)$

Expansion of resummed result to $\mathcal{O}(\alpha_s)$:

$$\frac{d\sigma^{(1)}(\Delta)}{dL} = h_{11} + 2h_{12}L,$$

 $L = \ln(1/\Delta)$, h_{ij} : constants.

All logs controllable. Must fully agree with NLOJET++ in the logarithmically enhanced region.

Comparison to NLOJET++ MC vs resummation at $\mathcal{O}(\alpha_s)$

Expansion of resummed result to $\mathcal{O}(\alpha_s)$:

$$\frac{d\sigma^{(1)}(\Delta)}{dL} = h_{11} + 2h_{12}L,$$

 $L = \ln(1/\Delta)$, h_{ij} : constants.

All logs controllable. Must fully agree with NLOJET++ in the logarithmically enhanced region.

Comparison to NLOJET++ MC vs resummation at $\mathcal{O}(\alpha_s^2)$

Expansion of resummed result to $\mathcal{O}(\alpha_s^2)$:

$$\frac{d\sigma^{(2)}(\Delta)}{dL} = 2h'_{22}L + 3h_{23}L^2 + 4h_{24}L^3,$$

NLOJET++ result at $\mathcal{O}(\alpha_s^2)$:

$$\frac{d\sigma_{\mathrm{MC}}^{(2)}(\Delta)}{dL} = h_{21} + 2h_{22}L + 3h_{23}L^2 + 4h_{24}L^3 + \mathcal{O}(\Delta).$$

 h_{22}^\prime and h_{22} not the same (contain uncontrollable sub-leading logs)

 $(d\sigma^{(2)}/dL)/L$ should give agreement for large values of L.

Comparison to NLOJET++ MC vs resummation at $\mathcal{O}(\alpha_s^2)$

Expansion of resummed result to $\mathcal{O}(\alpha_s^2)$:

$$\frac{d\sigma^{(2)}(\Delta)}{dL} = 2h'_{22}L + 3h_{23}L^2 + 4h_{24}L^3,$$

NLOJET++ result at $\mathcal{O}(\alpha_s^2)$:

$$\frac{d\sigma_{\mathrm{MC}}^{(2)}(\Delta)}{dL} = h_{21} + 2h_{22}L + 3h_{23}L^2 + 4h_{24}L^3 + \mathcal{O}(\Delta).$$

 h'_{22} and h_{22} not the same (contain uncontrollable sub-leading logs).

 $(d\sigma^{(2)}/dL)/L$ should give agreement for large values of L.

Comparison to NLOJET++ MC vs resummation at $\mathcal{O}(\alpha_s^2)$

Expansion of resummed result to $\mathcal{O}(\alpha_s^2)$:

$$\frac{d\sigma^{(2)}(\Delta)}{dL} = 2h'_{22}L + 3h_{23}L^2 + 4h_{24}L^3,$$

NLOJET++ result at $\mathcal{O}(\alpha_s^2)$:

$$\frac{d\sigma_{\mathrm{MC}}^{(2)}(\Delta)}{dL} = h_{21} + 2h_{22}L + 3h_{23}L^2 + 4h_{24}L^3 + \mathcal{O}(\Delta).$$

 h_{22}' and h_{22} not the same (contain uncontrollable sub-leading logs).

 $(d\sigma^{(2)}/dL)/L$ should give agreement for large values of L.

Comparison to NLOJET++ MC vs resummation at $\mathcal{O}(\alpha_s^2)$

Matching

Back to the resummed result:

Need to combine NLO result with resummed result and remove double counted terms so as to achieve NLL+NLO accuracy. IN PROGRESS!

Matching

Back to the resummed result:

Need to combine NLO result with resummed result and remove double counted terms so as to achieve NLL+NLO accuracy.

IN PROGRESS

Matching

Back to the resummed result:

Need to combine NLO result with resummed result and remove double counted terms so as to achieve NLL+NLO accuracy. IN PROGRESS!

Non-perturbative effects (hadronisation) enter the distribution through running of α_s below some scale μ_I ($\sim 2 {\rm GeV}$):

- ▶ Replace α_s with α_{eff} below μ .
- ▶ Use

$$\frac{1}{\mu} \int_0^\mu \alpha_{\text{eff}}(k_t) dk_t = \alpha_0(\mu).$$

 $lpha_0$: non-perturbative parameter. $lpha_0(2{
m GeV})pprox 0.52\pm 0.04$ IN PROGRESS!

Non-perturbative effects (hadronisation) enter the distribution through running of α_s below some scale μ_I ($\sim 2 {\rm GeV}$):

- ▶ Replace α_s with α_{eff} below μ .
- Use

$$\frac{1}{\mu} \int_0^\mu \alpha_{\text{eff}}(k_t) dk_t = \alpha_0(\mu)$$

 $lpha_0$: non-perturbative parameter. $lpha_0(2{
m GeV})pprox 0.52\pm 0.04$

Non-perturbative effects (hadronisation) enter the distribution through running of α_s below some scale μ_I ($\sim 2 {\rm GeV}$):

- ▶ Replace α_s with α_{eff} below μ .
- Use

$$\frac{1}{\mu} \int_0^\mu \alpha_{\text{eff}}(k_t) dk_t = \alpha_0(\mu),$$

 $lpha_0$: non-perturbative parameter. $lpha_0(2{
m GeV}) pprox 0.52 \pm 0.04$ IN PROGRESS!

Non-perturbative effects (hadronisation) enter the distribution through running of α_s below some scale μ_I ($\sim 2 {\rm GeV}$):

- ▶ Replace α_s with α_{eff} below μ .
- Use

$$\frac{1}{\mu} \int_0^\mu \alpha_{\text{eff}}(k_t) dk_t = \alpha_0(\mu),$$

 $lpha_0$: non-perturbative parameter. $lpha_0(2{
m GeV})pprox 0.52\pm 0.04$

IN PROGRESS!

- Perform a NLO matching to NLOJET++ and calculate power corrections.
- Study the hadron-hadron case (DØ) [Result analytically available for E_t-weighted recombination scheme].
- 4-momentum addition recombination scheme.
- ▶ Estimate the effects of non-global logs [may be insignificant] and clustering algorithm in the hadron-hadron case.
- ▶ This is the first resummation for dijet azimuthal correlations

- Perform a NLO matching to NLOJET++ and calculate power corrections.
- ▶ Study the hadron-hadron case (DØ) [Result analytically available for E_t -weighted recombination scheme].
- 4-momentum addition recombination scheme
- ► Estimate the effects of non-global logs [may be insignificant] and clustering algorithm in the hadron-hadron case.
- ▶ This is the first resummation for dijet azimuthal correlations

- Perform a NLO matching to NLOJET++ and calculate power corrections.
- ▶ Study the hadron-hadron case (DØ) [Result analytically available for E_t -weighted recombination scheme].
- ▶ 4-momentum addition recombination scheme.
- ► Estimate the effects of non-global logs [may be insignificant] and clustering algorithm in the hadron-hadron case.
- This is the first resummation for dijet azimuthal correlations

- Perform a NLO matching to NLOJET++ and calculate power corrections.
- ▶ Study the hadron-hadron case (DØ) [Result analytically available for E_t -weighted recombination scheme].
- ▶ 4-momentum addition recombination scheme.
- ► Estimate the effects of non-global logs [may be insignificant] and clustering algorithm in the hadron-hadron case.
- This is the first resummation for dijet azimuthal correlations.

- Perform a NLO matching to NLOJET++ and calculate power corrections.
- ▶ Study the hadron-hadron case (DØ) [Result analytically available for E_t -weighted recombination scheme].
- ▶ 4-momentum addition recombination scheme.
- ► Estimate the effects of non-global logs [may be insignificant] and clustering algorithm in the hadron-hadron case.
- ▶ This is the first resummation for dijet azimuthal correlations.