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Introduction
Motivation

Studies of soft gluon radiation and non-perturbative effects are
vital for current and future colliders:

I Predictions for future colliders [LHC] (e.g. Higgs Qt

spectrum).

I All-orders analytical resummations.

I Separating non-perturbative effects and underlying event from
perturbative physics.

I Extracting non-perturbative parameters (coupling, pdfs).

I (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).
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Introduction
Examples of where we could go wrong

1. Non-global logs: numerically resummed for two-jet observables
in the large Nc limit to single-log accuracy:

M. Dasgupta and G.P. Salam, 2001, 2002

I O(1/N2
c ) neglected. Could be vital in some cases.

I Three and four-jet observables unaccounted for.

2. Use of a jet algorithm affects resummation of non-global
observables:

I Reduces non-global logs.
R. Appleby and M. Seymour, 2002, 2003

I Gives rise to additional logs. A.Banfi and M. Dasgupta, 2005

Y. Delenda et al, 2006
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Introduction
Dijet azimuthal correlation

Dijet azimuthal correlation is a valuable observable for these
studies:

I Sensitive to jet algorithm and recombination scheme.

I Sensitive to soft and/or collinear gluon radiation and
non-perturbative effects.

I Involves three or more jets (challenges our understanding of
power corrections, resummation, clustering algorithm effects
and non-global logs).

I Similar to dijet ∆pt distribution.

I Commonly used for MC tuning.
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Introduction
Dijet azimuthal correlation at DØ

Dijet azimuthal correlation recently measured by DØ
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Introduction
Comparison to NLOJET++

I NLO description is good when π − δφjets is large.

I Close to Born configuration (π − δφjets → 0) NLO results
diverge.

I Soft and/or collinear logs + non-perturbative effects become
enhanced.

I =⇒ Needs resummation, power corrections and NLO
matching.

I Same story in DIS. M. Hansson and L. Joensson , DIS 2006
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Introduction
Resummation

I Resummation has been successful for many observables (e.g.
event-shape variables) M. Dasgupta and G.P. Salam, 2002

I Dijet azimuthal correlation not yet resummed [difficult since
jet-type observable].

I Now we have the technology to resum it.
Y. Delenda et al, 2006
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Dijet azimuthal correlation in DIS
The resummed result

I Use average Et-weighted azimuth method.

I Measure ∆ between outgoing legs in hadronic CoM.

σ(∆) =

∫
σBdB 2

π

∫ ∞

0

db

b
sin(b ∆)e−R(b),

σB: Born weight.
R(b): Radiator, R(b) = lg1(αs l) + g2(αs l).
l = ln(beγE ).

I lg1(αs l) resums leading logs. Originate from soft-collinear
emissions to all legs.

I g2(αs l) resums next-to-leading logs. Originate from soft
wide-angle or hard-collinear emissions to all the legs.
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Dijet azimuthal correlation in DIS
The resummed result (preliminary)
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Comparison to NLOJET++
MC vs resummation at O(αs)

Expansion of resummed result to O(αs):

dσ(1)(∆)

dL
= h11 + 2h12L,

L = ln(1/∆), hij : constants.
All logs controllable. Must fully agree with NLOJET++ in the
logarithmically enhanced region.
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Comparison to NLOJET++
MC vs resummation at O(α2

s )

Expansion of resummed result to O(α2
s ):

dσ(2)(∆)

dL
= 2h′22L + 3h23L

2 + 4h24L
3,

NLOJET++ result at O(α2
s ):

dσ
(2)
MC(∆)

dL
= h21 + 2h22L + 3h23L

2 + 4h24L
3 +O(∆).

h′22 and h22 not the same (contain uncontrollable sub-leading logs).

(dσ(2)/dL)/L should give agreement for large values of L.
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Matching

Back to the resummed result:
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x = 0.01
Q= 20 GeV 

Need to combine NLO result with resummed result and remove
double counted terms so as to achieve NLL+NLO accuracy.
IN PROGRESS!



Matching

Back to the resummed result:

0 0.5 1 1.5 2

0

2

4

6

8

10

12

14

16

x 10
−5

∆

σ(
∆)

Resummed
NLOJET++ NLO

x = 0.01
Q= 20 GeV 

0 0.5 1 1.5 2

0

2

4

6

8

10

12

14

16

∆
1/

σ 
dσ

/d
∆

Resummed
NLOJET++ NLO
 

x = 0.01
Q= 20 GeV 

Need to combine NLO result with resummed result and remove
double counted terms so as to achieve NLL+NLO accuracy.
IN PROGRESS!



Matching

Back to the resummed result:

0 0.5 1 1.5 2

0

2

4

6

8

10

12

14

16

x 10
−5

∆

σ(
∆)

Resummed
NLOJET++ NLO

x = 0.01
Q= 20 GeV 

0 0.5 1 1.5 2

0

2

4

6

8

10

12

14

16

∆
1/

σ 
dσ

/d
∆

Resummed
NLOJET++ NLO
 

x = 0.01
Q= 20 GeV 

Need to combine NLO result with resummed result and remove
double counted terms so as to achieve NLL+NLO accuracy.
IN PROGRESS!



Power corrections

Non-perturbative effects (hadronisation) enter the distribution
through running of αs below some scale µI (∼ 2GeV):

I Replace αs with αeff below µ.

I Use
1

µ

∫ µ

0
αeff(kt)dkt = α0(µ),

α0: non-perturbative parameter. α0(2GeV) ≈ 0.52± 0.04

IN PROGRESS!
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Future directions and conclusions

I Perform a NLO matching to NLOJET++ and calculate power
corrections.

I Study the hadron-hadron case (DØ ) [Result analytically
available for Et-weighted recombination scheme].

I 4-momentum addition recombination scheme.

I Estimate the effects of non-global logs [may be insignificant]
and clustering algorithm in the hadron-hadron case.

I This is the first resummation for dijet azimuthal correlations.
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