Dijet azimuthal correlations in QCD hard processes

Yazid Delenda

University of Manchester

DIS 2007
Munich, 17th April 2007

1 In collaboration with Andrea Banfi and Mrinal Dasgupta
Studies of **soft gluon radiation** and **non-perturbative effects** are vital for current and future colliders:

- Predictions for future colliders [LHC] (e.g. Higgs Q_t spectrum).
- All-orders analytical resummations.
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).
Studies of soft gluon radiation and non-perturbative effects are vital for current and future colliders:

- Predictions for future colliders [LHC] (e.g. Higgs Q_t spectrum).
- All-orders analytical resummations.
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).
Studies of soft gluon radiation and non-perturbative effects are vital for current and future colliders:

- Predictions for future colliders [LHC] (e.g. Higgs Q_t spectrum).
- All-orders analytical resummations.
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).
Studies of soft gluon radiation and non-perturbative effects are vital for current and future colliders:

- Predictions for future colliders [LHC] (e.g. Higgs Q_t spectrum).
- All-orders analytical resummations.
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).
Studies of soft gluon radiation and non-perturbative effects are vital for current and future colliders:

- Predictions for future colliders [LHC] (e.g. Higgs Q_t spectrum).
- All-orders analytical resummations.
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).
Studies of soft gluon radiation and non-perturbative effects are vital for current and future colliders:

- Predictions for future colliders [LHC] (e.g. Higgs Q_t spectrum).
- All-orders analytical resummations.
- Separating non-perturbative effects and underlying event from perturbative physics.
- Extracting non-perturbative parameters (coupling, pdfs).
- (Correct) tuning of Monte Carlos (HERWIG, PYTHIA, etc).
Introduction
Examples of where we could go wrong

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:
 - $\mathcal{O}(1/N_c^2)$ neglected. Could be vital in some cases.
 - Three and four-jet observables unaccounted for.

2. Use of a jet algorithm affects resummation of non-global observables:
 - Reduces non-global logs.
 - Gives rise to additional logs.
 A. Banfi and M. Dasgupta, 2005
 Y. Delenda et al, 2006
Introduction
Examples of where we could go wrong

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:

 $\mathcal{O}(1/N_c^2)$ neglected. Could be vital in some cases.

 Three and four-jet observables unaccounted for.

2. Use of a jet algorithm affects resummation of non-global observables:

 Reduces non-global logs.

 A.Banfi and M. Dasgupta, 2005

 Y. Delenda et al, 2006

 Gives rise to additional logs.
Introduction

Examples of where we could go wrong

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:

 - $\mathcal{O}(1/N_c^2)$ neglected. Could be vital in some cases.
 - Three and four-jet observables unaccounted for.

2. Use of a jet algorithm affects resummation of non-global observables:

 - Reduces non-global logs.

 - Gives rise to additional logs.

 A.Banfi and M. Dasgupta, 2005

 Y. Delenda et al, 2006
Introduction
Examples of where we could go wrong

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:

 $O(1/N_c^2)$ neglected. Could be vital in some cases.

 Three and four-jet observables unaccounted for.

2. Use of a jet algorithm affects resummation of non-global observables:

 Reduces non-global logs.

 Gives rise to additional logs.

 A.Banfi and M. Dasgupta, 2005

 Y. Delenda et al, 2006
Introduction
Examples of where we could go wrong

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:
 - $O(1/N_c^2)$ neglected. Could be vital in some cases.
 - Three and four-jet observables unaccounted for.

2. Use of a jet algorithm affects resummation of non-global observables:
 - Reduces non-global logs.

 - Gives rise to additional logs.
 A. Banfi and M. Dasgupta, 2005
 Y. Delenda et al, 2006
Introduction
Examples of where we could go wrong

1. Non-global logs: numerically resummed for two-jet observables in the large N_c limit to single-log accuracy:
 - $O(1/N_c^2)$ neglected. Could be vital in some cases.
 - Three and four-jet observables unaccounted for.

2. Use of a jet algorithm affects resummation of non-global observables:
 - Reduces non-global logs.
 - Gives rise to additional logs. A.Banfi and M. Dasgupta, 2005
 Y. Delenda et al, 2006
Dijet azimuthal correlation is a valuable observable for these studies:

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- Similar to dijet Δp_t distribution.
- Commonly used for MC tuning.
Dijet azimuthal correlation is a valuable observable for these studies:

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- Similar to dijet Δp_t distribution.
- Commonly used for MC tuning.
Dijet azimuthal correlation is a valuable observable for these studies:

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- Similar to dijet Δp_t distribution.
- Commonly used for MC tuning.
Dijet azimuthal correlation is a valuable observable for these studies:

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- Similar to dijet Δp_t distribution.
- Commonly used for MC tuning.
Dijet azimuthal correlation is a valuable observable for these studies:

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- Similar to dijet Δp_t distribution.
- Commonly used for MC tuning.
Dijet azimuthal correlation is a valuable observable for these studies:

- Sensitive to jet algorithm and recombination scheme.
- Sensitive to soft and/or collinear gluon radiation and non-perturbative effects.
- Involves three or more jets (challenges our understanding of power corrections, resummation, clustering algorithm effects and non-global logs).
- Similar to dijet Δp_t distribution.
- Commonly used for MC tuning.
Introduction
Dijet azimuthal correlation

Jet 1

Jet 3

Jet 1

Jet 2

Jet 2

Jet 2

Jet 2

Three-jet event

Logarithmically enhanced

Soft and/or collinear emissions

Born event

\(\delta \phi_{\text{jets}} \)
Introduction
Dijet azimuthal correlation at DØ

Dijet azimuthal correlation recently measured by DØ

\[\frac{1}{\sigma_{\text{dijet}}} \frac{d\sigma_{\text{dijet}}}{d\Delta\phi_{\text{dijet}}} \]

\[p_T^{\text{max}} > 180 \text{ GeV} \quad (\times 8000) \]

\[130 < p_T^{\text{max}} < 180 \text{ GeV} \quad (\times 400) \]

\[100 < p_T^{\text{max}} < 130 \text{ GeV} \quad (\times 20) \]

\[75 < p_T^{\text{max}} < 100 \text{ GeV} \]

\[\mu_r = \mu_f = 0.5 p_T^{\text{max}} \]

Figures showing data compared to NLO theory predictions.

V.M. Abazov, et al [DØ collaboration], 2004
Introduction
Comparison to NLOJET++

- NLO description is good when $\pi - \delta \phi_{jets}$ is large.
- Close to Born configuration ($\pi - \delta \phi_{jets} \to 0$) NLO results diverge.
- Soft and/or collinear logs + non-perturbative effects become enhanced.
- Needs resummation, power corrections and NLO matching.
- Same story in DIS. M. Hansson and L. Joensson, DIS 2006
Introduction
Comparison to NLOJET++

- NLO description is good when $\pi - \delta \phi_{jets}$ is large.
- **Close to Born** configuration ($\pi - \delta \phi_{jets} \to 0$) NLO results diverge.
- Soft and/or collinear logs + non-perturbative effects become enhanced.
- \implies Needs resummation, power corrections and NLO matching.
- Same story in DIS. M. Hansson and L. Joensson, DIS 2006
NLO description is good when $\pi - \delta \phi_{\text{jets}}$ is large.

Close to Born configuration ($\pi - \delta \phi_{\text{jets}} \to 0$) NLO results diverge.

Soft and/or collinear logs + non-perturbative effects become enhanced.

Needs resummation, power corrections and NLO matching.

Same story in DIS. M. Hansson and L. Joensson, DIS 2006
NLO description is good when $\pi - \delta \phi_{\text{jets}}$ is large.

Close to Born configuration ($\pi - \delta \phi_{\text{jets}} \to 0$) NLO results diverge.

Soft and/or collinear logs + non-perturbative effects become enhanced.

\implies Needs resummation, power corrections and NLO matching.

Same story in DIS. M. Hansson and L. Joensson, DIS 2006
Introduction

Comparison to NLOJET++

- NLO description is good when $\pi - \delta \phi_{\text{jets}}$ is large.
- Close to Born configuration ($\pi - \delta \phi_{\text{jets}} \to 0$) NLO results diverge.
- Soft and/or collinear logs + non-perturbative effects become enhanced.
- \implies Needs resummation, power corrections and NLO matching.
- Same story in DIS. M. Hansson and L. Joensson, DIS 2006
Resummation has been successful for many observables (e.g. event-shape variables) M. Dasgupta and G.P. Salam, 2002

Dijet azimuthal correlation not yet resummed [difficult since jet-type observable].

Now we have the technology to resum it. Y. Delenda et al, 2006
Resummation has been successful for many observables (e.g. event-shape variables) \[\text{M. Dasgupta and G.P. Salam, 2002}\]

Dijet azimuthal correlation not yet resummed [difficult since jet-type observable].

Now we have the technology to resum it. \[\text{Y. Delenda et al, 2006}\]
Resummation has been successful for many observables (e.g. event-shape variables) \textit{M. Dasgupta and G.P. Salam, 2002}.

Dijet azimuthal correlation not yet resummed [difficult since jet-type observable].

Now we have the technology to resum it. \textit{Y. Delenda et al, 2006}
The observable
In the soft and/or collinear regime

\[\Delta = \pi - \delta \phi_{\text{jets}}, \]

\(\delta \phi_{\text{jets}} \): difference in azimuth of outgoing jets.

Depends on jet recombination method:
The observable
In the soft and/or collinear regime

\[\Delta = \pi - \delta \phi_{\text{jets}}, \]

\(\delta \phi_{\text{jets}} \): difference in azimuth of outgoing jets.
Depends on jet recombination method:
The observable
In the soft and/or collinear regime

\[\Delta = \pi - \delta \phi_{\text{jets}}, \]

\(\delta \phi_{\text{jets}} \): difference in azimuth of outgoing jets.

Depends on jet recombination method:

- **4-momentum addition** - used at DØ:
 \[p^\mu_{\text{jet}} = \sum_{i \in \text{jet}} p^\mu_i \]
The observable
In the soft and/or collinear regime

\[\Delta = \pi - \delta \phi_{\text{jets}}, \]

\(\delta \phi_{\text{jets}} \): difference in azimuth of outgoing jets.

Depends on jet recombination method:

- 4-momentum addition - used at DØ:

\[p_{\text{jet}}^{\mu} = \sum_{i \in \text{jet}} p_{i}^{\mu} \]

\[\Delta \simeq \frac{1}{p_{t}} \sum_{i \notin \text{outgoing jets}} k_{t,i} \sin \phi_{i}, \]

\(p_{t} \): transverse momentum of outgoing jets.

\(k_{t,i} \): transverse momentum of \(i^{\text{th}} \) gluon.
The observable
In the soft and/or collinear regime

\[\Delta = \pi - \delta \phi_{\text{jets}}, \]

\(\delta \phi_{\text{jets}} \): difference in azimuth of outgoing jets.

Depends on jet recombination method:

- **4-momentum addition** - used at DØ:

\[
p_{\mu}^{\text{jet}} = \sum_{i \in \text{jet}} p_{i}^{\mu}
\]

\[\Delta \simeq \frac{1}{p_{t}} \left| \sum_{i \notin \text{outgoing jets}} k_{t,i} \sin \phi_{i} \right|. \]

\(p_{t} \): transverse momentum of outgoing jets.
\(k_{t,i} \): transverse momentum of \(i^{\text{th}} \) gluon.

\(\implies \) non-global observable.
The observable
In the soft and/or collinear regime

\[\Delta = \pi - \delta \phi_{\text{jets}}, \]

\(\delta \phi_{\text{jets}} \): difference in azimuth of outgoing jets.

Depends on jet recombination method:

- **Average \(E_t \)-weighted azimuth** - used at HERA:
 \[\phi_{\text{jet}} = \frac{\sum_{i \in \text{jet}} E_{t,i} \phi_i}{\sum_{i \in \text{jet}} E_{t,i}} \]
The observable
In the soft and/or collinear regime

\[\Delta = \pi - \delta \phi_{jets}, \]

\(\delta \phi_{jets} \): difference in azimuth of outgoing jets.

 Depends on jet recombination method:

- Average \(E_t \)-weighted azimuth - used at HERA:
 \[\phi_{jet} = \frac{\sum_{i \in \text{jet}} E_t,i \phi_i}{\sum_{i \in \text{jet}} E_t,i} \]
 \[\Delta \simeq \frac{1}{p_t} \left| \sum_i k_{t,i} (\sin \phi_i - \theta_{i1} \phi_i - \theta_{i2} (\pi - \phi_i)) \right|, \]

\(\theta_{ij} = 1 \) if particle \(i \) belongs to jet \(j \).

\(\theta_{ij} = 0 \) otherwise.
The observable
In the soft and/or collinear regime

\[\Delta = \pi - \delta \phi_{\text{jets}}, \]

\(\delta \phi_{\text{jets}} \): difference in azimuth of outgoing jets.

Depends on jet recombination method:

- **Average \(E_t \)-weighted azimuth** - used at HERA:

 \[\phi_{\text{jet}} = \frac{\sum_{i \in \text{jet}} E_{t,i} \phi_i}{\sum_{i \in \text{jet}} E_{t,i}} \]

 \[\Delta \approx \frac{1}{p_t} \left| \sum_i k_{t,i} (\sin \phi_i - \theta_{i1} \phi_i - \theta_{i2} (\pi - \phi_i)) \right|, \]

 \(\theta_{ij} = 1 \) if particle \(i \) belongs to jet \(j \).
 \(\theta_{ij} = 0 \) otherwise.

\[\implies \text{Continuously global observable}. \]
Dijet azimuthal correlation in DIS

The resummed result

- Use average E_t-weighted azimuth method.
- Measure Δ between outgoing legs in hadronic CoM.

$$\sigma(\Delta) = \int \sigma_B dB \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b \Delta) e^{-R(b)},$$

σ_B: Born weight.
$R(b)$: Radiator, $R(b) = \lg_1(\alpha_s l) + g_2(\alpha_s l)$.

$l = \ln(be^{\gamma_E})$.

- $\lg_1(\alpha_s l)$ resums leading logs. Originate from soft-collinear emissions to all legs.
- $g_2(\alpha_s l)$ resums next-to-leading logs. Originate from soft wide-angle or hard-collinear emissions to all the legs.
Dijet azimuthal correlation in DIS
The resummed result

- Use average E_t-weighted azimuth method.
- Measure Δ between outgoing legs in hadronic CoM.

$$
\sigma(\Delta) = \int \sigma_B d\mathcal{B} \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b \Delta) e^{-R(b)},
$$

σ_B: Born weight.
$R(b)$: Radiator, $R(b) = lg_1(\alpha_s l) + g_2(\alpha_s l)$.
$l = \ln(be^{\gamma_E})$.

- $lg_1(\alpha_s l)$ resums leading logs. Originate from soft-collinear emissions to all legs.
- $g_2(\alpha_s l)$ resums next-to-leading logs. Originate from soft wide-angle or hard-collinear emissions to all the legs.
Dijet azimuthal correlation in DIS
The resummed result

- Use average E_t-weighted azimuth method.
- Measure Δ between outgoing legs in hadronic CoM.

$$
\sigma(\Delta) = \int \sigma_B dB \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b \Delta) e^{-R(b)},
$$

σ_B: Born weight.
$R(b)$: Radiator, $R(b) = lg_1(\alpha_s l) + g_2(\alpha_s l)$.
$l = \ln(be^{\gamma_E})$.

- $lg_1(\alpha_s l)$ resums leading logs. Originate from soft-collinear emissions to all legs.
- $g_2(\alpha_s l)$ resums next-to-leading logs. Originate from soft wide-angle or hard-collinear emissions to all the legs.
Dijet azimuthal correlation in DIS
The resummed result

- Use average E_t-weighted azimuth method.
- Measure Δ between outgoing legs in hadronic CoM.

$$\sigma(\Delta) = \int \sigma_B dB \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b\Delta) e^{-R(b)},$$

σ_B: Born weight.
$R(b)$: Radiator, $R(b) = lg_1(\alpha_s l) + g_2(\alpha_s l)$.

$l = \ln(be^{\gamma_E})$.

- $lg_1(\alpha_s l)$ resums leading logs. Originate from soft-collinear emissions to all legs.
- $g_2(\alpha_s l)$ resums next-to-leading logs. Originate from soft wide-angle or hard-collinear emissions to all the legs.
Dijet azimuthal correlation in DIS
The resummed result

- Use average E_t-weighted azimuth method.
- Measure Δ between outgoing legs in hadronic CoM.

$$\sigma(\Delta) = \int \sigma_B dB \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b \Delta) e^{-R(b)},$$

σ_B: Born weight.
$R(b)$: Radiator, $R(b) = l g_1(\alpha_s l) + g_2(\alpha_s l)$.
$l = \ln(be^{\gamma_E})$.

- $l g_1(\alpha_s l)$ resums leading logs. Originate from soft-collinear emissions to all legs.
- $g_2(\alpha_s l)$ resums next-to-leading logs. Originate from soft wide-angle or hard-collinear emissions to all the legs.
Dijet azimuthal correlation in DIS
The resummed result (preliminary)

\[\Delta \sigma(\Delta) \]

Resummed
NLOJET++ NLO
\(x = 0.01 \)
\(Q = 20 \text{ GeV} \)

\[\frac{1}{\sigma} \frac{d\sigma}{d\Delta} \]

Resummed
NLOJET++ NLO
\(x = 0.01 \)
\(Q = 20 \text{ GeV} \)
Comparison to NLOJET++
MC vs resummation at $O(\alpha_s)$

Expansion of resummed result to $O(\alpha_s)$:

$$\frac{d\sigma^{(1)}(\Delta)}{dL} = h_{11} + 2h_{12}L,$$

$L = \ln(1/\Delta)$, h_{ij}: constants.
All logs controllable. Must fully agree with NLOJET++ in the logarithmically enhanced region.
Comparison to NLOJET++
MC vs resummation at $\mathcal{O}(\alpha_s)$

Expansion of resummed result to $\mathcal{O}(\alpha_s)$:

$$\frac{d\sigma^{(1)}(\Delta)}{dL} = h_{11} + 2h_{12}L,$$

$L = \ln(1/\Delta)$, h_{ij}: constants.
All logs controllable. Must fully agree with NLOJET++ in the logarithmically enhanced region.
Comparison to NLOJET++
MC vs resummation at $\mathcal{O}(\alpha_s)$

Expansion of resummed result to $\mathcal{O}(\alpha_s)$:

$$\frac{d\sigma^{(1)}(\Delta)}{dL} = h_{11} + 2h_{12}L,$$

$L = \ln(1/\Delta)$, h_{ij}: constants.

All logs controllable. Must fully agree with NLOJET++ in the logarithmically enhanced region.
Comparison to NLOJET++
MC vs resummation at $\mathcal{O}(\alpha_s^2)$

Expansion of resummed result to $\mathcal{O}(\alpha_s^2)$:

$$\frac{d\sigma^{(2)}(\Delta)}{dL} = 2h'_{22}L + 3h_{23}L^2 + 4h_{24}L^3,$$

NLOJET++ result at $\mathcal{O}(\alpha_s^2)$:

$$\frac{d\sigma_{\text{MC}}^{(2)}(\Delta)}{dL} = h_{21} + 2h_{22}L + 3h_{23}L^2 + 4h_{24}L^3 + \mathcal{O}(\Delta).$$

h'_{22} and h_{22} not the same (contain uncontrollable sub-leading logs).

$(d\sigma^{(2)}/dL)/L$ should give agreement for large values of L.
Comparison to NLOJET++
MC vs resummation at $\mathcal{O}(\alpha_s^2)$

Expansion of resummed result to $\mathcal{O}(\alpha_s^2)$:

$$\frac{d\sigma^{(2)}(\Delta)}{dL} = 2h_2' L + 3h_{23} L^2 + 4h_{24} L^3,$$

NLOJET++ result at $\mathcal{O}(\alpha_s^2)$:

$$\frac{d\sigma_{MC}^{(2)}(\Delta)}{dL} = h_{21} + 2h_2 L + 3h_{23} L^2 + 4h_{24} L^3 + \mathcal{O}(\Delta).$$

h_2' and h_2 not the same (contain uncontrollable sub-leading logs).

$(d\sigma^{(2)}/dL)/L$ should give agreement for large values of L.
Comparison to NLOJET++
MC vs resummation at $O(\alpha_s^2)$

Expansion of resummed result to $O(\alpha_s^2)$:

$$\frac{d\sigma^{(2)}(\Delta)}{dL} = 2h'_{22}L + 3h_{23}L^2 + 4h_{24}L^3,$$

NLOJET++ result at $O(\alpha_s^2)$:

$$\frac{d\sigma_{MC}^{(2)}(\Delta)}{dL} = h_{21} + 2h_{22}L + 3h_{23}L^2 + 4h_{24}L^3 + O(\Delta).$$

h'_{22} and h_{22} not the same (contain uncontrollable sub-leading logs).

$(d\sigma^{(2)}/dL)/L$ should give agreement for large values of L.
Comparison to NLOJET++

MC vs resummation at $\mathcal{O}(\alpha_s^2)$

![Graph showing comparison between NLOJET++ and resummation at $\mathcal{O}(\alpha_s^2)$](image)

- Expanded resummed NLO
- NLOJET++ NLO

$Q=20$ GeV

$x=0.01$
Matching

Back to the resummed result:

Need to combine NLO result with resummed result and remove double counted terms so as to achieve NLL+NLO accuracy. IN PROGRESS!
Matching

Back to the resummed result:

Need to combine NLO result with resummed result and remove double counted terms so as to achieve NLL+NLO accuracy.

IN PROGRESS!
Matching

Back to the resummed result:

Need to combine NLO result with resummed result and remove double counted terms so as to achieve NLL+NLO accuracy. IN PROGRESS!
Power corrections

Non-perturbative effects (hadronisation) enter the distribution through running of α_s below some scale μ_I ($\sim 2\text{GeV}$):

- Replace α_s with α_{eff} below μ.
- Use

$$\frac{1}{\mu} \int_0^\mu \alpha_{\text{eff}}(k_t) dk_t = \alpha_0(\mu),$$

α_0: non-perturbative parameter. $\alpha_0(2\text{GeV}) \approx 0.52 \pm 0.04$

IN PROGRESS!
Power corrections

Non-perturbative effects (hadronisation) enter the distribution through running of α_s below some scale $\mu_I \ (\sim 2\text{GeV})$:

- Replace α_s with α_{eff} below μ.
- Use

$$\frac{1}{\mu} \int_0^\mu \alpha_{\text{eff}}(k_t) dk_t = \alpha_0(\mu),$$

α_0: non-perturbative parameter. $\alpha_0(2\text{GeV}) \approx 0.52 \pm 0.04$

IN PROGRESS!
Power corrections

Non-perturbative effects (hadronisation) enter the distribution through running of α_s below some scale μ_I ($\sim 2\text{GeV}$):

- Replace α_s with α_{eff} below μ.
- Use

$$\frac{1}{\mu} \int_{0}^{\mu} \alpha_{\text{eff}}(k_t)dk_t = \alpha_0(\mu),$$

α_0: non-perturbative parameter. $\alpha_0(2\text{GeV}) \approx 0.52 \pm 0.04$

IN PROGRESS!
Non-perturbative effects (hadronisation) enter the distribution through running of α_s below some scale μ_I ($\sim 2\text{GeV}$):

- Replace α_s with α_{eff} below μ.
- Use

$$\frac{1}{\mu} \int_0^\mu \alpha_{\text{eff}}(k_t) dk_t = \alpha_0(\mu),$$

α_0: non-perturbative parameter. $\alpha_0(2\text{GeV}) \approx 0.52 \pm 0.04$

IN PROGRESS!
Future directions and conclusions

- Perform a **NLO matching** to NLOJET++ and calculate **power corrections**.
 - Study the hadron-hadron case (DØ) [Result analytically available for E_t-weighted recombination scheme].
 - 4-momentum addition recombination scheme.
 - Estimate the effects of non-global logs [may be insignificant] and clustering algorithm in the hadron-hadron case.
 - This is the first resummation for dijet azimuthal correlations.
Future directions and conclusions

- Perform a NLO matching to NLOJET++ and calculate power corrections.
- Study the hadron-hadron case (DØ) [Result analytically available for E_t-weighted recombination scheme].
 - 4-momentum addition recombination scheme.
- Estimate the effects of non-global logs [may be insignificant] and clustering algorithm in the hadron-hadron case.
- This is the first resummation for dijet azimuthal correlations.
Future directions and conclusions

- Perform a NLO matching to NLOJET++ and calculate power corrections.
- Study the hadron-hadron case (DØ) [Result analytically available for E_t-weighted recombination scheme].
- 4-momentum addition recombination scheme.
- Estimate the effects of non-global logs [may be insignificant] and clustering algorithm in the hadron-hadron case.
- This is the first resummation for dijet azimuthal correlations.
Future directions and conclusions

- Perform a NLO matching to NLOJET++ and calculate power corrections.
- Study the hadron-hadron case (DØ) [Result analytically available for E_t-weighted recombination scheme].
- 4-momentum addition recombination scheme.
- Estimate the effects of non-global logs [may be insignificant] and clustering algorithm in the hadron-hadron case.
- This is the first resummation for dijet azimuthal correlations.
Future directions and conclusions

- Perform a NLO matching to NLOJET++ and calculate power corrections.
- Study the hadron-hadron case (DØ) [Result analytically available for E_t-weighted recombination scheme].
- 4-momentum addition recombination scheme.
- Estimate the effects of non-global logs [may be insignificant] and clustering algorithm in the hadron-hadron case.
- This is the first resummation for dijet azimuthal correlations.