α_{s} Determinations from H1

Thomas Kluge, DESY

 DIS07, 17 April 2007■ Inclusive ep scattering

- Inclusive jets

■ Jet rates

- Event shapes

■ Summary
... all in NLO precision...

Inclusive DIS

Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of α_{s}

$$
3.5<\mathrm{Q}^{2}<3000 \mathrm{GeV}^{2}
$$

Data from 94-97, $\sim 30 \mathrm{pb}^{-1}$

Simultaneous fit of gluon and $\alpha_{s}\left(M_{z}\right)$ to H 1 and BCDMS data

Gluon important at low x

Inclusive DIS

$$
\alpha_{s}\left(M_{Z}^{2}\right)=0.1150 \pm 0.0017(\text { exp })_{-0.0005}^{+0.0009}(\text { model }) \pm 0.005(\text { scale })
$$

analysis uncertainty	$+\delta \alpha_{s}$	$-\delta \alpha_{s}$
$Q_{\text {min }}^{2}=2 \mathrm{GeV}^{2}$		0.00002
$Q_{\text {min }}^{2}=5 \mathrm{GeV}^{2}$	0.00016	
parameterisations	0.00011	
$Q_{0}^{2}=2.5 \mathrm{GeV}^{2}$	0.00023	
$Q_{0}^{2}=6 \mathrm{GeV}^{2}$	0.00013	0.00018
$y_{e}<0.35$	0.00033	
$x<0.6$	0.00025	
$y_{\mu}>0.4$	0.00051	
$x>5 \cdot 10^{-4}$	0.00005	0.00005
uncertainty of $\bar{u}-\bar{d}$	0.00010	
strange quark contribution $\epsilon=0$	0.00047	
$m_{c}+0.1 \mathrm{GeV}$		0.00044
$m_{c}-0.1 \mathrm{GeV}$	0.00007	
$m_{b}+0.2 \mathrm{GeV}$		0.00007
$m_{b}-0.2 \mathrm{GeV}$	0.00088	0.00048
total uncertainty		

	$m_{r}=0.25$	$m_{r}=1$	$m_{r}=4$
$m_{f}=0.25$	-0.0038	-0.0001	+0.0043
$m_{f}=1$	-0.0055	--	+0.0047
$m_{f}=4$	--	+0.0005	+0.0063

Much more data available, NNLO theory

Inclusive Jets

Inclusive Jet Cross Section

- 1999-2000, $\mathrm{e}^{+} \mathrm{p}, \mathscr{L}_{\mathrm{int}}=65 \mathrm{pb}^{-1}$
- NC DIS, $150<Q^{2}<15000 \mathrm{GeV}^{2}$
- k_{T} jets in the Breit frame $7<\mathrm{E}_{\mathrm{T}, \mathrm{jet}}^{\text {BREIT }}<50 \mathrm{GeV}$
- Main exp. uncertainties: had. energy scale and model
- Take PDFs from CTEQ6.5, fit $\alpha_{s}\left(M_{z}\right)$
- In addition: normalised jet cross section σ jet / σ NCDIS average number of jets per event

Inclusive Jets

α_{s} from Inclusive Jet Cross Section

Theory error from scale variation by factor 2

- Inclusive jet cross section

$$
\alpha_{s}\left(M_{Z}\right)=0.1179 \pm 0.0024(\text { exp. }){ }_{-0.0032}^{+0.0052}(\text { th. }) \pm 0.0030(\text { pdf. })
$$

■ Normalised inclusive jet cross section

$$
\alpha_{s}\left(M_{Z}\right)=0.1193 \pm 0.0014(\text { exp. }){ }_{-0.0032}^{+0.0046}(\text { th. }) \pm 0.0016(\text { pdf. })
$$

Jet Rates

modified JADE in lab frame $\mathrm{R}_{2+1}=\mathrm{N}_{2+1} /\left(\mathrm{N}_{1+1}+\mathrm{N}_{2+1}\right)$ at $y_{\text {cut }}=0.02$
$40<\mathrm{Q}^{2}<4000 \mathrm{GeV}^{2}$ data from 94-95, ~10pb-1

MEPJET, had. cor.

$$
\left.\alpha_{s}\left(M_{Z}^{2}\right)=0.117 \pm 0.003(\text { stat })_{-0.013}^{+0.009}(\text { sys })+0.005-0.008 \text { (theo. }\right)
$$

■ Main exp. uncertainties: had. energy scale and model

Event Shapes

H1 Data

..-- $\mathrm{NLO}\left(\alpha_{\mathrm{s}}^{2}\right)+\mathrm{NLL}+\mathrm{PC}$ (extrapolated)
$\mathrm{NLO}\left(\alpha_{\mathrm{s}}^{2}\right)+\mathrm{NLL}+\mathrm{PC}$ fits to DISTRIBUTIONS
$\alpha_{s}\left(m_{z}\right)=0.1178$

■ Main exp. uncertainties: elm. energy scale and model

Summary

- No obvious problem observed (within the current precision)
- Experimental uncertainties will continue to shrink
- NNLO for final states needed to get on...

