α_s Determinations from H1

Thomas Kluge, DESY DIS07, 17 April 2007

- Inclusive ep scattering
- Inclusive jets
- Jet rates
- Event shapes
- Summary

... all in NLO precision...

Inclusive DIS

DESY-00-181 December 2000

Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of α_s

3.5<Q²<3000 GeV²

Data from 94-97, ~30pb⁻¹

Simultaneous fit of gluon and $\alpha_s(M_z)$ to H1 and BCDMS data

Gluon important at low x

Inclusive DIS

$$\alpha_s(M_Z^2) = 0.1150\,\pm\,0.0017(exp)^{+~0.0009}_{-~0.0005}(model)\,\pm 0.005({\rm scale})$$

analysis uncertainty	$+\delta \alpha_s$	$-\delta \alpha_s$
$Q_{min}^2 = 2 \text{ GeV}^2$		0.00002
$Q_{min}^2 = 5 \text{ GeV}^2$	0.00016	
parameterisations	0.00011	
$Q_0^2=2.5~\mathrm{GeV^2}$	0.00023	
$Q_0^2 = 6 \text{ GeV}^2$		0.00018
$y_e < 0.35$	0.00013	
x < 0.6	0.00033	
$y_{\mu} > 0.4$	0.00025	
$x > 5 \cdot 10^{-4}$	0.00051	
uncertainty of $\overline{u} - \overline{d}$	0.00005	0.00005
strange quark contribution $\epsilon = 0$	0.00010	
$m_c + 0.1 \mathrm{GeV}$	0.00047	
$m_c - 0.1\mathrm{GeV}$		0.00044
$m_b + 0.2 \mathrm{GeV}$	0.00007	
$m_b - 0.2\mathrm{GeV}$		0.00007
total uncertainty	0.00088	0.00048

	$m_r = 0.25$	$m_r = 1$	$m_r = 4$
$m_f = 0.25$	-0.0038	-0.0001	+0.0043
$m_f = 1$	-0.0055		+0.0047
$m_f = 4$	——	+0.0005	+0.0063

Much more data available, NNLO theory

Inclusive Jets

Inclusive Jet Cross Section

- 1999-2000, e^+p , $\mathcal{L}_{int} = 65pb^{-1}$
- NC DIS, 150<Q²<15000 GeV²
- k_T jets in the Breit frame $7 < E_{T,jet}^{BREIT} < 50GeV$
- Main exp. uncertainties: had. energy scale and model
- Take PDFs from CTEQ6.5, fit $\alpha_s(M_z)$
- In addition: normalised jet cross section $\sigma^{jet}/\sigma^{NCDIS}$

average number of jets per event

Inclusive Jets

α_s from Inclusive Jet Cross Section

Inclusive jet cross section

$$\alpha_s(M_Z) = 0.1179 \pm 0.0024 \,(\text{exp.}) \, {}^{+0.0052}_{-0.0032} \,(\text{th.}) \, \pm 0.0030 \,(\text{pdf.})$$

Normalised inclusive jet cross section

$$\alpha_s(M_Z) = 0.1193 \pm 0.0014 \,(\text{exp.}) \,_{-0.0032}^{+0.0046} \,(\text{th.}) \pm 0.0016 \,(\text{pdf.})$$

Jet Rates

modified JADE in lab frame
$$R_{2+1} = N_{2+1}/(N_{1+1} + N_{2+1})$$
at $y_{cut} = 0.02$

40<O²<4000 GeV² data from 94-95, ~10pb⁻¹

MEPJET, had. cor.

$$\alpha_s(M_Z^2) = 0.117 \pm 0.003 \, (stat) \, {}^{+\, 0.009}_{-\, 0.013} \, (sys) \, + 0.005 \, - 0.008 \, (theo.)$$

Main exp. uncertainties: had. energy scale and model

Event Shapes

■ Main exp. uncertainties: elm. energy scale and model

Summary

- No obvious problem observed (within the current precision)
- Experimental uncertainties will continue to shrink
- NNLO for final states needed to get on...