Forward physics at the LHC

David d'Enterria CERN, PH/EP

Forward physics programme at the LHC

1. Diffractive physics (soft & hard):

- Total cross-section, elastic scatt., single/double diffraction
- Gap survival dynamics, p-p underlying event, ...
- Hard diffraction: dijets, vector-bosons, heavy-Q, QQbar, direct-γ
- 2. Higgs and new physics:
 - Central exclusive (SM, MSSM) Higgs production
- 3. Low-x QCD:
 - Parton saturation, non-linear QCD evolution, multi-parton scatt. ... via:
 (i) forward DY, jets (p-p, p-A), (ii) photoproduction (γ-p, γ-A interactions)
- 4. Cosmic-rays physics:
 - Forward energy & particle flows / min. bias events (p-p,p-A,A-A)
 - Exotica: "Centauro" events (DCCs, strangelets)
- 5. EWK (two-photon, γ –W) interacions:
 - Absolute luminosity (~3% QED precision) via: $pp \rightarrow \gamma\gamma \rightarrow ppee, pp\mu\mu$
 - Triple (quartic) gauge boson couplings via: $pp \rightarrow \gamma p \rightarrow pnW (\gamma \gamma \rightarrow ZZ,WW)$

Forward physics plans at the LHC

- 1. CMS (fwd. EOI submitted Jan.'04, CMS+TOTEM LOI LHCC-2006-039):
 - CASTOR, ZDCs, TAS (under consideration), +TOTEM
 - Soft&hard diffraction (w/ TOTEM or rapgaps), low-x QCD, cosmic-rays, γ -p, γ -A, γ - γ
- 2. ATLAS (fwd. LOI submitted Mar.'04):
 - ALPHA RPs (LOI R&D), LUCID, ZDC (approved 2007), TAS (under consideration)
 - Total p-p cross-section, photo-production (UPC Pb-Pb)

3. ALICE:

- ZDCs, fwd. muon spectrometer
- Diffraction, low-x QCD
- 5. **TOTEM** (approved LHCC July'04):
 - Roman pots (220 m), trackers (T1, T2)
 - Elastic scattering, total p-p cross section, soft diffraction
- 6. LHCf (approved LHCC 2006):
 - EM Calo (ATLAS-TAN, 140 m)
 - Cosmic-rays (forward γ, π^0)

4. LHCb:

- Forward muon spectrometer
- Low-x PDFs

- 7. FP420 (R&D collab. LHCC-2005-025):
 - Feasibility studies for near-beam dets. at 420m
 - QCD, exclusive Higgs, new physics

LHC forward detectors (p_{τ} , η) acceptance

p-p@14 TeV

- All phase-space virtually covered at the LHC (first time in a collider)
- Ongoing plans to instrument the only current "hole": TAS (6.6<|η|<8.3) [20 cm slot with quartz-fibers]

ATLAS forward detectors

[cf. S.Ask talk]

- LUCID (Cerenkov Tubes): 17 m, 5.4 < |η| < 6.1 Relative luminosity
- ZDC (W/Q-fiber calo): 140m, |η| > 8.3 (neutral)
 n,γ detection: relative lumi, CRs, heavy-ions
 (L1 trigger, centrality, photoprod, ...)
- ALPHA (Sci-Fi in RPs): 240 m.

Abs. lumi (elastic scatt. in Coulomb interf. region)

CMS+TOTEM forward detectors

- TOTEM-T1 (CSC telescope): 3.1 < |η| < 4.7
- TOTEM-T2 (GEM telescope): 5.3 < |η| < 6.7 Soft diffraction (SD,DPE), MB/UE/MPI
- CASTOR (W/-Q-fiber calo): 5.3 < |η| < 6.5 Miss.-E_τ, diffract., low-x QCD, MB/UE/MPI, heavy-ions (L1 trigger, centrality, ...), CRs
- ZDC (W/Q-fiber calo): |η| > 8.3 (neutral)
 CRs, heavy-ions (L1 trigger, centrality, γ-A, ...
- TOTEM Roman pots: 147, 220 m Leading p: σ_{tot} , elastic scatt., diffraction

CMS+TOTEM forward detectors

[cf. K.Borras talk]

CMS (central,CASTOR,ZDC)+TOTEM: largest acceptance ever at a collider

DIS'07 Munich, 19/04/2007

ALICE & LHCb forward detectors

Forward muon spectrometers:

Good capabilities for fwd. heavy-Q, QQ, gauge bosons measurements: (low-x PDFs)

DIS'07 Munich, 19/04/2007

Diffractive physics

Pomeron-induced processes

> Diffractive scattering (~25% p-p σ_{tot}): p intact (Roman Pots), rapidity gap(s). Colourless exchange with vacuum quantum-numbers:

Soft diffraction:

X = anything : dominated by soft QCD \rightarrow SD, DPE vs. s, t, M_x provide valuable info of non-perturbative QCD. Min. bias p-p. Contributions to pile-up p-p events

Hard diffraction:

X = jets, W's, Z's ... calculable in pQCD \rightarrow Info on proton structure (dPDFs and GPDs), multi-parton interactions, discovery physics (DPE Higgs, beyond SM)

Total p-p cross section, elastic scattering

[cf. K.Eggert talk]

E710/811–CDF 2.6o disagreement COMPETE extrapolation for LHC:

$$\sigma_{tot} = 111.5 \pm 1.2 \frac{+4.1}{-2.1}$$
 mb

TOTEM goal: ~1% precision (for $\beta^* = 1500m$) Luminosity measurement via optical theorem:

DIS'07 Munich, 19/04/2007

Higgs (and new) physics

Exclusive DPE Higgs: FP-420 project

[cf. C.Royon & A.Pilkington talks]

- Exclusive central Higgs production: $pp \rightarrow p H p$
 - $\sigma_{_{\rm H}}$ = 3-10 fb (SM), x10(0) in MSSM
 - High precision m_H (p time diff.)
 - Quantum numbers (J^{PC} = 0⁺⁺ rule)

- For m_{H} <200 GeV, need acceptance for proton tagging at 420 m
- FP420 R&D collaboration (report 1st-half '07, ATLAS/CMS to decide):

M_µ [GeV]

Novel technologies: (i) moving beampipe, (2) Fast (τ ~10 ps) Cerenkov dets.: GASTOF (gas), Quartic (Quartz)

 $M^{2} = \xi_{1}\xi_{2}S$ Where $\xi_{1,2}$ are the fractional momentum losses of the outgoing protons Leading proton detector 420 m 308 m 215 m DIS'07 Munich, 19/04/2007 13/30 David d'Enterria (CERN)

Low-x QCD physics

Parton saturation & evolution at low-x

Strong rise at low-x of gluons (HERA):

- Radiation controlled by QCD evolution eqs.:
 Q² DGLAP: F₂(Q²) ~ α₁ln(Q²/Q₀²)ⁿ, Q₀² ~ 1 GeV²
 - **x BFKL:** $F_2(x) \sim \alpha_s \ln(1/x)^n$

Linear equations (single parton radiation/splitting) ^{7.5} cannot work at low-x: Unitarity violated (even for Q²>> Λ^2), ⁵_{2.5} collinear & k_T factorization invalid

- Gluon-gluon fusion balances parton branchings below "saturation scale": Q²~[1GeV]²·e^y (LHC)
- Enhanced in nuclei (A^{1/3}~6) : Q_s² ~ [5 GeV²]e^(0.3y)
- CGC = effective-field theory describes hadrons as classical fields below Q_s
- Non-linear JIMWLK/BK evolution eqs.

[cf. R. Venugopalan talk]

15/30

Low-x proton PDF studies

▶ pp @ 14 TeV :

(i) At y=0, x=2p_T/ \sqrt{s} ~10⁻³ (domain probed at HERA,Tevatron). Go fwd. for x<10⁻⁴

(ii) Saturation momentum: $Q_s^2 \sim 1 \text{ GeV}^2(y=0)$, $3 \text{ GeV}^2(y=5)$

(iii) Very large perturbative cross-sections:

Low-x nuclear PDF studies

PbPb @ 5.5 TeV, pPb @ 8.8 TeV:

- (i) Very high $\sqrt{s} \Rightarrow$ Bjorken x=2p₁/ \sqrt{s} ~30-45 times lower than AuAu,dAu @ RHIC !
- (ii) Saturation momentum $(A^{1/3} \sim 6)$: $Q_s^2 \sim [5 \text{ GeV}^2]e^{(0.3y)}$

(iii) Very large perturbative cross-sections.

Ratio of Pb/p gluon densities:

Case-study I: Y photoproduction in CMS (Pb-Pb)

- High energy heavy-ions produce strong electromagnetic fields due to the coherent action of Z_{Pb} = 82 protons:
 Equivalent flux of photons in EM (aka. Ultra-Peripheral, b_{min} ~ 2R_A ~20 fm) AA colls.: Max. γ energy: E_{ymax} ~ 80 GeV (PbPb-LHC) γ Pb: max. $\sqrt{s_{\gamma Pb}} \approx 1$. TeV $\approx 3. - 4. \times \sqrt{s_{\gamma p}}$ (HERA)
 OO diffusctive relations in the product of the constraints of the by OI2
 - QQ diffractive photoprod. (ZDC n-tagging) sensitive to |xG|²

Case-study I: Y photoproduction in CMS (Pb-Pb)

- High energy heavy-ions produce strong electromagnetic fields due to the coherent action of $Z_{Ph} = 82$ protons:
- Equivalent flux of photons in EM (aka. Ultra-Peripheral, b_{min}~ 2R_A~20 fm) AA colls.: Max. γ energy: E_{ymax} ~ 80 GeV (PbPb-LHC) γ Pb: max. $\sqrt{s_{\gamma Pb}} \approx 1.$ TeV $\approx 3. - 4. \times \sqrt{s_{\gamma P}}$ (HERA)

[Dd'E, hep-ex/0703024]

QQ diffractive photoprod. (ZDC n-tagging) sensitive to |xG|²

~500 Y/0.5 nb⁻¹ expected in CMS

Case-study II: Forward QQ in ALICE (p-p)

> J/ ψ measurement in μ -spectrometer (2.5 <| η |< 4): xg(x) at x₂~10⁻⁵

20/30

dσ/dy J/ψ: NLO CEM w/ varying PDFs

QQbar: Sensitive to diff. PDFs and DGLAP vs non-linear evolutions

Case-study III: Forward (di)jets in CMS (p-p)

~10⁴ dijets (HF[±], E₁>30 GeV): enough stats. for detailed studies of Δy -evolution

DIS'07 Munich, 19/04/2007

Case-study IV: Forward DY in CMS (p-p)

[cf. K.Borras talk]

- Drell-Yan feasibility studies with CMS (CASTOR) + TOTEM (T2):
- Sensitive to low-x <u>quark</u> densities

PDF parametrizations

TOTEM T2 tracker+ CASTOR needed to deal w/ large QCD (& QED) bckgd

DIS'07 Munich, 19/04/2007

Cosmic-rays physics

UHE cosmic-rays via extended air-showers

- Only "indirect" measurements (EAS) above E_{lab} ~100 TeV
- CR energy & mass determined via hadronic MC simulations: Shower development dominated by fwd, soft QCD interactions.
- Uncertain x10⁶ extrapolations from SppS,Tevatron to GZK limit.

LHC: $\sqrt{s} = 14 \text{ TeV} \Leftrightarrow \text{E}_{\text{lab}} = 10^{17} \text{ eV}$

LHCf experiment:
 n,γ detection
 140 m from IP2
 Sci-fiber/W calo
 +Silicon strip det.

Calibration & tuning of hadronic models

Model predictions of particle multiplicity & energy flow at LHC differ by up to a factor ~2:
[R.Engel]

ZDCs,LHCf: Measurement of fwd dN/dη,dE/dη leading baryon (n), neutral meson (π⁰,K⁰_s) in pp, pA, AA at E_{lab}~100 PeV: Strong EAS model constraint [CRs collisions: p-Air, α-Air, Fe-Air]

Cosmic-rays "exotica"

E~10¹⁵-10¹⁷ eV cosmic-rays ("Centauro") events observed:
 (i) anomalous number of (N~0) electromagnetic secondaries (st
 (ii) forward "long-flying" (i.e. non-interacting) component "D

"strangelets"? "DCCs"?

CMS-CASTOR (longitud. segmentation) can access this research programme.

DIS'07 Munich, 19/04/2007

EWK (γ - γ , γ -W,...) physics

Two-photon, γ-W interactions

[K.Piotrzkowski, CMS]

Exclusive I⁺I⁻ (e⁺e⁻, $\mu^+\mu^-$) production

(e⁺e⁻ in T2/CASTOR) (μ⁺μ⁻ in muon-chambers) (fwd. proton in RPs)

QED process: σ known precisely (LPAIR)

Signature: back-to-back leptons RPs: reco of proton ξ w/ resol. of 10-4

~300 evts./100 pb⁻¹ after CMS μ trigger

Absolute p-p luminosity within ~3% (theo)
 Cross-calibration of near-beam dets.

[U.Dreyer, ECT*-UPC-Workshop]

W-photoproduction:

Triple (anomalous?) gauge couplings

Summary: forward instrumentation @ LHC

DIS'07 Munich, 19/04/2007

29/30

Summary: forward physics @ LHC

DIS'07 Munich, 19/04/2007

Backup slides

Experimental probes of gluon PDF ($\gamma^{(*)}$ p,pp, $\gamma^{(*)}$ A,AA)

Perturbative processes:

Every 2-units of y, x^{min} decreases by ~10

DIS'07 Munich, 19/04/2007

Small-*x* → Forward rapidities

≥ 2 → 1 (gluon fusion) CGC kinematics: much lower x allowed $(x_2 \sim x_2^{min})$

Saturation hints at HERA ?

DGLAP fits most of ep data ... Saturation models explain better a few cases:

flat $\sigma_{diffract}/\sigma_{tot}$ vs energy

"Geometric scaling"

Inclusive DIS x-section depends on single scale Q^2/Q_s^2 for x < 0.01

Diffract. & total x-sectionsGluesimilar W dependence \neq becomepQCD: $\sigma_{tot} \sim W^{2\lambda} \neq \sigma_{diff} \sim W^{4\lambda}$ for C

Longitudinal struc. funct.

Gluon (F_L) at NLO becomes negative for Q²~2 GeV² at low-x

DIS'07 Munich, 19/04/2007

Case-study III: Forward jets in CMS (3 < $|\eta|$ < 5)

E_T (GeV) PYTHIA 6.4: $p+p \rightarrow jet_1+jet_2$, $\sqrt{s} = 14 \text{ TeV}$ 0.1 > Forward "soft" jets ($E_{\tau} \sim 20-100 \text{ GeV}$): $jet_{1,2}$ in 3.0 < $|\eta|$ < 5.0 0.08 $p + p \rightarrow jet1 + jet2 + X$ (VBF-Higgs trigger) 10² 0.06 Sensitive to partons with: $x_2 \sim 10^{-4}$ 0.04 Jets in CASTOR (5.3 <|η|< 6.6): x₂ ~ 10⁻⁶ 0.02 -2 log₁₀(x_{1,2}) Inclusive fwd. jet reconstruction (HF): dN_{HF jets}/dE_Tdŋ 00 10 pp \rightarrow jet +X (3<| η |<5), iter. cone, R = 0.5 PYTHIA (parton-level) PYTHIA (particle-level) PYTHIA 6.4. min-bias (hard&soft QCD) -NLO MC-level proof-of-principle only Dd'E, hep-ex/0703024 10⁶ • HF grid: $\Delta \eta \times \Delta \phi = 0.175 \times 0.175$ 10⁵ Iterative cone, R=0.5, E_{thresh}=10 GeV, E_{seed}=3 GeV Missing important corrections: underlying-evt. 10⁴ (PYTHIA CMS-Tune), hadronization (cluster vs. Lund) 10³ **PYTHIA** ~ NLO [Vogelsang] • Large yields. Low- E_{τ} uncertainties to be determined. 50 60 70 80 100 E_T (GeV)

Case-study V: Mueller-Navelet dijets in CMS-HF

• Mueller-Navelet dijets separated by large Δy :

very sensitive to non-DGLAP evolution

A.H.Mueller, H.Navelet, NPB282 (1987)727

suppressed ratio sat./BFKL pp $\sqrt{s} = 14$ TeV y = 1.5 y = 2.5 y = 4.5 y = 5.5 increasing C.Marquet, Royon, NPB739 (2006)131 of the second se

- Proof-of-principle study in CMS: MC-level dijet reconstruction applying MN kinematics cuts to PYTHIA pp-14 TeV:
 - $E_{T,i} > 20 \,\text{GeV}$
 - $|E_{T,1} E_{T,2}| < 2.5 \text{ GeV}$ (similar virtuality, to minimise DGLAP-evolution)
 - $3 < |\eta_{1,2}| < 5$ (both jets in HF)
 - $\eta_1 \cdot \eta_2 < 0$ (each jet in a different HF)
 - $|\eta_1| |\eta_2| < 0.25$ (almost back-to-back in pseudo-rapidity)

 $\frac{d^2\sigma}{d\eta dQ} = \frac{N_{jets}}{\Delta\eta\Delta Q} \frac{1}{\int \mathcal{L}dt}$ $Q \equiv \sqrt{E_{T,1} \cdot E_{T,2}}$

Case-study V: Mueller-Navelet dijets in CMS-HF

DIS'07 Munich, 19/04/2007

37/30

"Saturation scale" (Q_s)

Onset of non-linear QCD when gluons are numerous enough (low-x) & "large" enough (low-Q²) to overlap:

UHE cosmic-rays via extended air-showers

Photoproduction (γ A) in UPC AA collisions

- Heavy-ions (charge Z) produce strong EM fields (coherent action of all protons):
- Equivalent flux of photons in electromagnetic (aka. Ultra-Peripheral, b_{min}~ 2R_A) A+A :

 $\frac{dN_{\gamma}}{d_E}(b > b_{min}) \propto \frac{\alpha_{em}Z^2}{\pi} \frac{1}{E} \quad \text{(soft bremsstrahlung } \gamma \text{ spectrum)}^-$

- Photon beams:
 - ► Flux ~ Z² (~7·10³ for Pb).

Coherence condition": γ wavelength > nucleus size
Maximum γ energy: $ω < ω_{max} \approx \frac{\gamma}{R} \sim 80 - 160 \text{ GeV}$ (Pb,Ca)

- > Center of mass-energies (LHC): $\sqrt{s_{\gamma A}} \approx 0.7 2. \text{ TeV} \approx (3 10) \times \sqrt{s_{\gamma p}}$ (HERA)
- Bjorken x range in nucleus:

(y=0): x(J/Ψ) ~<mark>3·10⁻³</mark> , x(Υ)~10⁻²

(y=3): $x(J/\Psi) \sim 2 \cdot 10^{-5}$, $x(\Upsilon) \sim 10^{-4}$

Forward neutron-tagging (ZDC): ~50% UPC colls. lead to nuclear breakup. DIS'07 Munich, 19/04/2007

CMS: TOTEM-2 and CASTOR (5.2 < $|\eta|$ < 6.6)

TOTEM GEM ("Gas Electron Multiplier")

telescope detector: electron polar angle

CASTOR (W/-Q-fiber calo): electromag. shower identification

- Tungsten plates + quartz fibres
- Cherenkov sampling calorimeter
- Light-guides + APDs readout
- Azimuth segmented (8 octants)
- EM section: 11.2 cm ~ 19 X₀
- HAD+EM sections: 136 cm~ 10λ_ι
- 192 channels

T2 telescope