Three-jet event-shapes: first NLL+NLO+1/Q results

Andrea Banfi1

¹ Università degli Studi di Milano-Bicocca Dipartimento di Fisica "G. Occhialini"

18 April 2007 / DIS 2007 Workshop

In collaboration with Giulia Zanderighi (CERN)

- Event-shape variables $V(p_1, \ldots, p_n)$ are continuous measures of the geometrical properties of hadron energy-momentum flow.
- Thrust: longitudinal particle alignment

$$T \equiv \frac{1}{Q} \max_{\vec{n}_T} \sum_{i} |\vec{p}_i \cdot \vec{n}_T|$$

Pencil-like event: $T \lesssim 1$

- Event-shape variables $V(p_1, \ldots, p_n)$ are continuous measures of the geometrical properties of hadron energy-momentum flow.
- Thrust: longitudinal particle alignment

$$m{T} \equiv rac{1}{Q} \max_{ec{n}_T} \sum_i |ec{p}_i \cdot ec{n}_T|$$

Pencil-like event: $T \lesssim 1$

- Event-shape variables $V(p_1, \ldots, p_n)$ are continuous measures of the geometrical properties of hadron energy-momentum flow.
- Thrust: longitudinal particle alignment

$$m{T} \equiv rac{1}{Q} \max_{ec{n}_T} \sum_i |ec{p}_i \cdot ec{n}_T|$$

Pencil-like event: $T \lesssim 1$

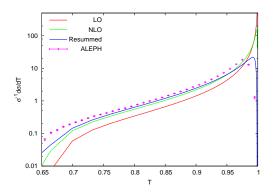
- Event-shape variables $V(p_1, \ldots, p_n)$ are continuous measures of the geometrical properties of hadron energy-momentum flow.
- Thrust: longitudinal particle alignment

$$m{T} \equiv rac{1}{Q} \max_{ec{n}_T} \sum_i |ec{p}_i \cdot ec{n}_T|$$

Pencil-like event: $T \lesssim 1$

Two-jet event shapes

Sensitive to QCD radiation \Rightarrow measure α_s Large non-perturbative contributions

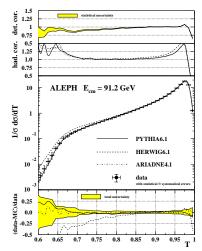


Two-jet event shapes

Sensitive to QCD radiation \Rightarrow measure α_s Large non-perturbative contributions

 MC work very well ⇒ use MC hadronisation

$$\alpha_{\rm s}(M_Z) = 0.1202 \pm 0.0050$$

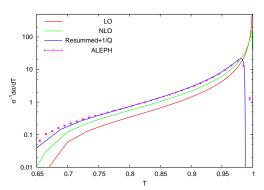


Two-jet event shapes

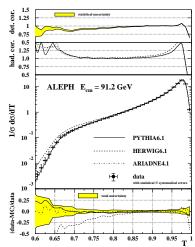
Sensitive to QCD radiation \Rightarrow measure α_s

Large non-perturbative contributions

- MC work very well ⇒ use MC hadronisation
- 1/Q power corrections



$$\alpha_{\rm s}(M_Z) = 0.1202 \pm 0.0050$$



1/Q corrections to two-jet event shapes

Consider $\Sigma(V) = \operatorname{Prob}(V(\{k\}) < V)$. In the region $\langle V \rangle_{\operatorname{NP}} \, Q \ll VQ \ll Q$

$$\Sigma(V) = \underbrace{\left(1 + \frac{P(V)}{VQ} + \dots\right)}_{\text{nonperturbative}} \times \underbrace{\sum_{\mathsf{PT}}(V)}_{\text{resummation}} \times C(\alpha_{\mathsf{s}}) \simeq \sum_{\mathsf{PT}}(V - \langle V \rangle_{\mathsf{NP}}) \times C(\alpha_{\mathsf{s}})$$

For two-jet event shapes

$$V(k) \simeq \frac{k_t}{Q} f_V(\eta) \quad \Rightarrow \quad \langle V \rangle_{\mathsf{NP}} = \langle k_t \rangle_{\mathsf{NP}} c_V \qquad c_V = \int_0^\infty d\eta \, f_V(\eta) d\eta$$

- ullet $\langle V
 angle_{
 m NP}$ gives the power correction both to mean values and distributions
- ullet $\left\langle k_{t}
 ight
 angle$ NP is observable independent and parameterised in terms of $lpha_{0}$

$$\langle k_t \rangle_{\mathsf{NP}} = rac{4C_F}{\pi^2} \mu_I \mathcal{M} \; \alpha_0(\mu_I) \qquad \alpha_0(\mu_I) = \int_0^{\mu_I} rac{dk}{\mu_I} lpha_{\mathrm{s}}^{\mathrm{CMW}}(k)$$

 $\mathcal{M} \simeq 1.49$ is the Milan factor due to non-inclusiveness of event shapes

[Y. Dokshitzer, A. Lucenti, G. Marchesini, G. Salam hep-ph/9802381]

1/Q corrections to two-jet event shapes

Consider $\Sigma(V) = \operatorname{Prob}(V(\{k\}) < V)$. In the region $\langle V \rangle_{\operatorname{NP}} \, Q \ll VQ \ll Q$

$$\Sigma(V) = \underbrace{\left(1 + \frac{P(V)}{VQ} + \dots\right)}_{\text{nonperturbative}} \times \underbrace{\sum_{\mathsf{PT}}(V)}_{\text{resummation}} \times C(\alpha_{\mathsf{s}}) \simeq \sum_{\mathsf{PT}}(V - \langle V \rangle_{\mathsf{NP}}) \times C(\alpha_{\mathsf{s}})$$

For two-jet event shapes

$$V(k) \simeq \frac{k_t}{Q} f_V(\eta) \quad \Rightarrow \quad \langle V \rangle_{\mathsf{NP}} = \langle k_t \rangle_{\mathsf{NP}} c_V \qquad c_V = \int_0^\infty d\eta \, f_V(\eta)$$

- ullet $\langle V
 angle_{
 m NP}$ gives the power correction both to mean values and distributions
- ullet $\left\langle k_{t}
 ight
 angle$ NP is observable independent and parameterised in terms of $lpha_{0}$

$$\langle k_t \rangle_{\mathsf{NP}} = \frac{4C_F}{\pi^2} \mu_I \mathcal{M} \, \alpha_0(\mu_I) \qquad \alpha_0(\mu_I) = \int_0^{\mu_I} \frac{dk}{\mu_I} \alpha_{\mathsf{s}}^{\mathsf{CMW}}(k)$$

 $\mathcal{M} \simeq 1.49$ is the Milan factor due to non-inclusiveness of event shapes

[Y. Dokshitzer, A. Lucenti, G. Marchesini, G. Salam hep-ph/9802381]

1/Q corrections to two-jet event shapes

Consider $\Sigma(V) = \operatorname{Prob}(V(\{k\}) < V)$. In the region $\langle V \rangle_{\operatorname{NP}} \, Q \ll VQ \ll Q$

$$\Sigma(V) = \underbrace{\left(1 + \frac{P(V)}{VQ} + \dots\right)}_{\text{nonperturbative}} \times \underbrace{\sum_{\mathsf{PT}}(V)}_{\text{resummation}} \times C(\alpha_{\mathsf{s}}) \simeq \sum_{\mathsf{PT}}(V - \langle V \rangle_{\mathsf{NP}}) \times C(\alpha_{\mathsf{s}})$$

For two-jet event shapes

$$V(k) \simeq \frac{k_t}{Q} f_V(\eta) \quad \Rightarrow \quad \langle V \rangle_{\mathsf{NP}} = \langle k_t \rangle_{\mathsf{NP}} c_V \qquad c_V = \int_0^\infty d\eta \, f_V(\eta)$$

- ullet $\langle V
 angle_{
 m NP}$ gives the power correction both to mean values and distributions
- ullet $\langle k_t
 angle_{
 m NP}$ is observable independent and parameterised in terms of $lpha_0$

$$\langle k_t \rangle_{\mathsf{NP}} = rac{4C_F}{\pi^2} \mu_I \mathcal{M} \, \alpha_0(\mu_I) \qquad \alpha_0(\mu_I) = \int_0^{\mu_I} rac{dk}{\mu_I} lpha_{\mathsf{s}}^{\mathsf{CMW}}(k)$$

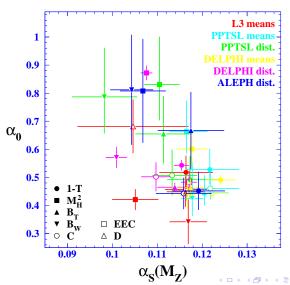
 $\mathcal{M} \simeq 1.49$ is the Milan factor due to non-inclusiveness of event shapes

[Y. Dokshitzer, A. Lucenti, G. Marchesini, G. Salam hep-ph/9802381]

Universality of power corrections to two-jet event shapes

Unversality of NP parameter α_0 tested through $\alpha_{\rm s}$ - α_0 fi ts

[S. Kluth hep-ex/0606046]



From soft radiation to power corrections

In multi-jet events no natural definition of $k \Rightarrow PQCD$ inspiration

• Soft dressed gluon emission from a $q\bar{q}$ dipole

$$dw = \frac{2C_F}{k_t} \frac{dk_t}{k_t} d\eta \frac{\alpha_s^{\text{CMW}}(k_t)}{\pi}$$
$$k_t^2 = \frac{(2pk)(2k\bar{p})}{2p\bar{p}} \qquad \eta = \frac{1}{2} \ln \frac{\bar{p}k}{pk}$$

Soft dressed gluon emission from more dipoles

$$dw = \sum_{i < j} (-2\vec{T}_i \cdot \vec{T}_j) \frac{d\kappa_{ij}}{\kappa_{ij}} d\eta_{ij} \frac{\alpha_s^{\text{CMW}}(\kappa_{ij})}{\pi}$$
$$\kappa_{ij}^2 = \frac{(2p_i k)(2kp_j)}{2p_i p_j} \qquad \eta_{ij} = \frac{1}{2} \ln \frac{p_j k}{p_i k}$$

NP corrections are due to extra-soft inter-jet emissions ⇒ PC depend on event geometry and colour correlations

From soft radiation to power corrections

In multi-jet events no natural definition of $k \Rightarrow PQCD$ inspiration

• Soft dressed gluon emission from a $q\bar{q}$ dipole

$$dw = \frac{2C_F}{k_t} \frac{dk_t}{k_t} d\eta \frac{\alpha_s^{\text{CMW}}(k_t)}{\pi}$$
$$k_t^2 = \frac{(2pk)(2k\bar{p})}{2p\bar{p}} \qquad \eta = \frac{1}{2} \ln \frac{\bar{p}k}{pk}$$

Soft dressed gluon emission from more dipoles

$$dw = \sum_{i < j} (-2\vec{T_i} \cdot \vec{T_j}) \frac{d\kappa_{ij}}{\kappa_{ij}} d\eta_{ij} \frac{\alpha_s^{\text{CMW}}(\kappa_{ij})}{\pi}$$
$$\kappa_{ij}^2 = \frac{(2p_i k)(2kp_j)}{2n \cdot n} \qquad \eta_{ij} = \frac{1}{2} \ln \frac{p_j k}{n \cdot k}$$

NP corrections are due to extra-soft inter-jet emissions ⇒ PC depend on event geometry and colour correlations

Power corrections to multi-jet shapes

Two-jet event shapes \Rightarrow hadron distribution is uniform in η

Multi-jet event shapes ⇒ test PQCD-inspired power corrections

$$\langle V \rangle_{\rm NP} = \frac{4}{\pi^2} \frac{\mu_I}{Q} \, \mathcal{M} \, \alpha_0(\mu_I) \sum_{i < j} (-2\vec{T}_i \cdot \vec{T}_j) \, c_V^{(ij)}$$

- α_0 same as in two-jet event shapes \Rightarrow Universality
- ullet Dependence on the event geometry through $c_V^{(ij)}$
- ullet Dependence on colour correlations $ec{T_i} \cdot ec{T_j}$

Full phenomenological study feasible only for three-jet shapes

No matrix structure of colour correlations

$$\vec{T}_1 + \vec{T}_2 + \vec{T}_3 = 0$$
 \Rightarrow $-2\vec{T}_i \cdot \vec{T}_j = T_i^2 + T_j^2 - T_k^2$

• No need to hack NLO programs to obtain flavour information If V(k) has the same behaviour for all legs in the SC region

$$V(k) \sim \left(\frac{k_t}{Q}\right)^a e^{-b|\eta|} \quad \Rightarrow \quad \Sigma(V) \sim e^{-(2C_F + C_A)\frac{\alpha_s}{(a+b)\pi}\ln^2 V}$$

Averaging over multiple hard confi gurations

$$\left\langle \left(1 + C_1 \frac{\alpha_s}{2\pi}\right) \Sigma(V) \right\rangle = \left(1 + \left\langle C_1 \right\rangle \frac{\alpha_s}{2\pi}\right) \left\langle \Sigma(V) \right\rangle + \text{NNLL}$$

Power corrections to three-jet shapes

Full phenomenological study feasible only for three-jet shapes

No matrix structure of colour correlations

$$\vec{T}_1 + \vec{T}_2 + \vec{T}_3 = 0 \qquad \Rightarrow \qquad -2\vec{T}_i \cdot \vec{T}_j = T_i^2 + T_j^2 - T_k^2$$

• No need to hack NLO programs to obtain flavour information If V(k) has the same behaviour for all legs in the SC region

$$V(k) \sim \left(\frac{k_t}{Q}\right)^a e^{-b|\eta|} \quad \Rightarrow \quad \Sigma(V) \sim e^{-(2C_F + C_A)\frac{\alpha_s}{(a+b)\pi}\ln^2 V}$$

Averaging over multiple hard confi gurations

$$\left\langle \left(1 + C_1 \frac{\alpha_s}{2\pi}\right) \Sigma(V) \right\rangle = \left(1 + \left\langle C_1 \right\rangle \frac{\alpha_s}{2\pi}\right) \left\langle \Sigma(V) \right\rangle + \text{NNLL}$$

Power corrections to three-jet shapes

Full phenomenological study feasible only for three-jet shapes

No matrix structure of colour correlations

$$\vec{T}_1 + \vec{T}_2 + \vec{T}_3 = 0 \qquad \Rightarrow \qquad -2\vec{T}_i \cdot \vec{T}_j = T_i^2 + T_j^2 - T_k^2$$

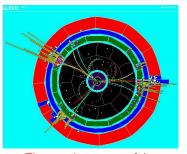
• No need to hack NLO programs to obtain flavour information If V(k) has the same behaviour for all legs in the SC region

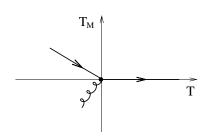
$$V(k) \sim \left(\frac{k_t}{Q}\right)^a e^{-b|\eta|} \quad \Rightarrow \quad \Sigma(V) \sim e^{-(2C_F + C_A)\frac{\alpha_s}{(a+b)\pi}\ln^2 V}$$

Averaging over multiple hard confi gurations

$$\left\langle \left(1 + C_1 \frac{\alpha_s}{2\pi}\right) \Sigma(V) \right\rangle = \left(1 + \left\langle C_1 \right\rangle \frac{\alpha_s}{2\pi}\right) \left\langle \Sigma(V) \right\rangle + \text{NNLL}$$

D-parameter and T_m in e^+e^- annihilation





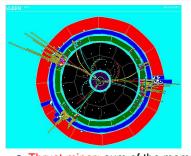
• Thrust-minor: sum of the momenta out of the event plane (T, T_M) [AB, Y. Dokshitzer, G. Marchesini, G. Zanderighi hep-ph/0101205]

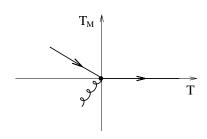
$$T_{m}Q \equiv \sum_{h} |\vec{p}_{th} \times \vec{n}_{M}| = \sum_{h} |p_{h}^{\text{out}}| \qquad T_{M}Q \equiv \max_{\vec{n}_{M} \cdot \vec{n}_{T} = 0} \sum_{i} |\vec{p}_{i} \cdot \vec{n}_{M}|$$

ullet D-parameter: determinant of the momentum tensor $heta_{lphaeta}$ [AB, Y. Dokshitzer, G. Marchesini, G. Zanderighi hep-ph/0104162]

$$D \equiv 27 \det \theta \sim \sum_{h} \frac{(p_h^{\text{out}})^2}{E_h Q} \qquad \theta_{\alpha\beta} Q \equiv \sum_{h} \frac{p_h^{\alpha} p_h^{\beta}}{|\vec{p}_h|}$$

D-parameter and T_m in e^+e^- annihilation





• Thrust-minor: sum of the momenta out of the event plane (T, T_M) [AB, Y. Dokshitzer, G. Marchesini, G. Zanderighi hep-ph/0101205]

$$\frac{T_m Q}{T_m Q} \equiv \sum_h |\vec{p}_{th} \times \vec{n}_M| = \sum_h |p_h^{\text{out}}| \qquad T_M \, Q \equiv \max_{\vec{n}_M \cdot \vec{n}_T = 0} \sum_i |\vec{p}_i \cdot \vec{n}_M|$$

• *D*-parameter: determinant of the momentum tensor $\theta_{\alpha\beta}$

[AB, Y. Dokshitzer, G. Marchesini, G. Zanderighi hep-ph/0104162]

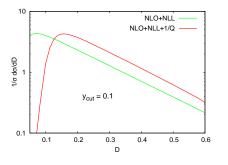
$$D \equiv 27 \det \theta \sim \sum_{h} \frac{(p_h^{\text{out}})^2}{E_h Q} \qquad \theta_{\alpha\beta} Q \equiv \sum_{h} \frac{p_h^{\alpha} p_h^{\beta}}{|\vec{p}_h|}$$

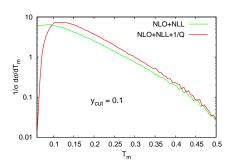
- Select 3-jet events with $y_3 > y_{\text{cut}}$
- ullet Differential distributions obtained with CAESAR at $Q=91.2\,\mathrm{GeV}$

[AB, G. Salam, G. Zanderighi hep-ph/0407286]

- Select 3-jet events with $y_3 > y_{\text{cut}}$
- Differential distributions obtained with CAESAR at $Q=91.2\,\mathrm{GeV}$

[AB, G. Salam, G. Zanderighi hep-ph/0407286]

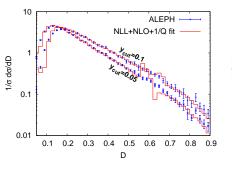


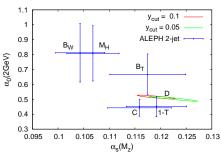


- *D*-parameter: large constant shift (see *T* and *C*)
- T_m : both shift and squeeze (see B_T and B_W)

- Select 3-jet events with $y_3 > y_{\text{cut}}$
- Differential distributions obtained with CAESAR at $Q=91.2\,\mathrm{GeV}$

[AB, G. Salam, G. Zanderighi hep-ph/0407286]

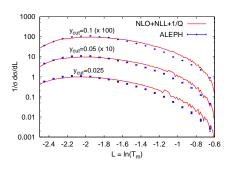




- *D*-parameter: first ever α_s - α_0 fits in a three-jet event shapes!
- Good fits only for D > 0.2: $\chi^2/\text{d.o.f.}(y_{\text{cut}} = 0.1) = 12/20$ \Rightarrow Small-D region: shape function or large subleading logs?

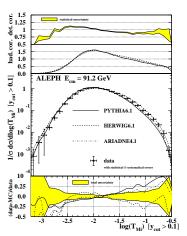
- Select 3-jet events with $y_3 > y_{\text{cut}}$
- Differential distributions obtained with CAESAR at $Q=91.2\,\mathrm{GeV}$

[AB, G. Salam, G. Zanderighi hep-ph/0407286]



Thrust minor PC should be positive

MC say PC are negative at large T_m \Rightarrow PC from 4-jet configurations?



K_{out} and E_T - E_T correlation in DIS

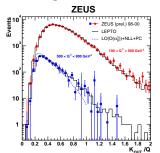
Measurements in the Breit frame q=(0,0,0,Q)

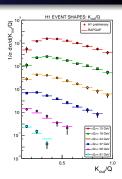
[T. Kluge hep-ex/0606053]

ullet Out of plane momentum $K_{
m out}$ (with $\eta_h < \eta_0$) [AB,G. Marchesini,G. Smye,G. Zanderighi hep-ph/0111157]

$$m{K_{
m out}} \equiv \sum_h |ec{p}_{th} imes ec{n}_M|$$

$$T_M Q \equiv \max_{\vec{n}_M \cdot \vec{q} = 0} \sum_{i} |\vec{p}_h \cdot \vec{n}_M|$$





K_{out} and E_T - E_T correlation in DIS

Measurements in the Breit frame q = (0, 0, 0, Q)

[T. Kluge hep-ex/0606053]

ullet Out of plane momentum $K_{
m out}$ (with $\eta_h < \eta_0$) [AB,G. Marchesini,G. Smye,G. Zanderighi hep-ph/0111157]

$$m{K_{
m out}} \equiv \sum_h |ec{p}_{th} imes ec{n}_M|$$

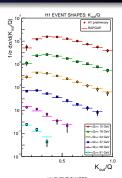
$$T_M Q \equiv \max_{\vec{n}_M \cdot \vec{q} = 0} \sum_h |\vec{p}_h \cdot \vec{n}_M|$$

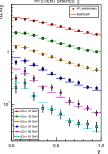
Transverse energy-energy correlation
 [AB.G. Marchesini,G. Smye hep-ph/0203150]

$$E_T E_T C(\chi) = \sum p_{ti} p_{tj} \delta(\chi - |\pi - \phi_{ij}|)$$

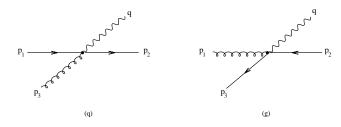
Probability of $\chi = 0$ is finite due to vectorial cancellations

$$\Sigma(\chi) = P_t \int_0^\infty db \cos(bP_t\chi) f_{\rm NP}(b) e^{-R(b)} \sim {
m const}$$





K_{out} in hadronic Z_0 +jet production



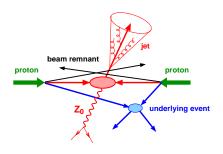
Out-of-event-plane momentum K_{out}

[A. Banfi , G. Marchesini, G. Smye hep-ph/0106278]

$$K_{
m out} \equiv \sum_h rac{|ec{p}_{th} imes ec{q}_t|}{p_t^{
m jet}} imes \Theta(|\eta_h| - \eta_0)$$
 rapidity cut around beam pipe

Normalisation is defi ned so as cancel systematic uncertainties in determination of jet transverse energy scale

$K_{\rm out}$ and beam remnant interactions



Extra contribution from underlying event $\Rightarrow K_{\mathrm{out}} = K_{\mathrm{out}}^{\mathrm{primary}} + K_{\mathrm{out}}^{\mathrm{UE}}$

$$\Sigma(K_{\mathrm{out}}) = \int_{0}^{K_{\mathrm{out}}} dK_{\mathrm{out}}^{\mathrm{UE}} \mathcal{D}^{\mathrm{UE}} (K_{\mathrm{out}}^{\mathrm{UE}}) \Sigma_{\mathsf{PT}} \left(K_{\mathrm{out}} - \langle K_{\mathrm{out}} \rangle_{\mathsf{NP}} - K_{\mathrm{out}}^{\mathrm{UE}} \right)$$

In case $\langle K_{
m out}^{
m UE}
angle \ll K_{
m out}$ we have

$$\Sigma(K_{
m out}) = \Sigma_{
m PT} \left(K_{
m out} - \left\langle K_{
m out}
ight
angle_{
m NP} - \left\langle K_{
m out}^{
m UE}
ight
angle
ight)$$

 $K_{
m out}$ can be used for tuning of MC models of underlying event

Three-jet event shapes benefits

- More stringent tests of universality of NP corrections
- ullet 1/Q corrections depend on hard parton colour and geometry
- e^+e^- annihilation (AB, G. Zanderighi)
 - Only ALEPH data for distributions are available
 - First NLO+NLL+PC fits are available for *D*-parameter
 - NLO+NLL+PC predictions available for T_m

DIS (AB, G. Zanderighi)

- ullet Work in progress to fit $K_{
 m out}$ H1 data (Thomas Kluge's PhD thesis)
- No progress for azimuthal correlation, man power needed (only AB)

 Z_0 +jet (AB, G. Zanderighi, E. Re)

- No data available yet, but interest at Tevatron and at the LHC
- Started NLL+PC for K_{out} (Z_0 +jet to be implemented in CAESAR)
- Global event shape: can be used to tune UE models

Three-jet event shapes benefits

- More stringent tests of universality of NP corrections
- ullet 1/Q corrections depend on hard parton colour and geometry
- e^+e^- annihilation (AB, G. Zanderighi)
 - Only ALEPH data for distributions are available
 - First NLO+NLL+PC fits are available for *D*-parameter
 - NLO+NLL+PC predictions available for T_m

DIS (AB, G. Zanderighi)

- ullet Work in progress to fit $K_{
 m out}$ H1 data (Thomas Kluge's PhD thesis)
- No progress for azimuthal correlation, man power needed (only AB)

Z_0 +jet (AB, G. Zanderighi, E. Re)

- No data available yet, but interest at Tevatron and at the LHC
- Started NLL+PC for K_{out} (Z_0 +jet to be implemented in CAESAR)
- Global event shape: can be used to tune UE models

Three-jet event shapes benefits

- More stringent tests of universality of NP corrections
- ullet 1/Q corrections depend on hard parton colour and geometry
- e^+e^- annihilation (AB, G. Zanderighi)
 - Only ALEPH data for distributions are available
 - First NLO+NLL+PC fits are available for *D*-parameter
 - NLO+NLL+PC predictions available for T_m

DIS (AB, G. Zanderighi)

- Work in progress to fit K_{out} H1 data (Thomas Kluge's PhD thesis)
- No progress for azimuthal correlation, man power needed (only AB)
- Z_0 +jet (AB, G. Zanderighi, E. Re)
 - No data available yet, but interest at Tevatron and at the LHC
 - Started NLL+PC for K_{out} (Z₀+jet to be implemented in CAESAR)
 - Global event shape: can be used to tune UE models

Three-jet event shapes benefits

- More stringent tests of universality of NP corrections
- 1/Q corrections depend on hard parton colour and geometry
- e^+e^- annihilation (AB, G. Zanderighi)
 - Only ALEPH data for distributions are available
 - First NLO+NLL+PC fits are available for *D*-parameter
 - NLO+NLL+PC predictions available for T_m

DIS (AB, G. Zanderighi)

- ullet Work in progress to fit $K_{
 m out}$ H1 data (Thomas Kluge's PhD thesis)
- No progress for azimuthal correlation, man power needed (only AB)

 Z_0 +jet (AB, G. Zanderighi, E. Re)

- No data available yet, but interest at Tevatron and at the LHC
- Started NLL+PC for K_{out} (Z_0 +jet to be implemented in CAESAR)
- Global event shape: can be used to tune UE models

