

Status of Forward Physics Projects at CMS

Kerstin Borras (DESY) on behalf of the CMS Collaboration

- Forward Detector Components in CMS Interaction Region
- Outline for Forward Physics
- Experimental Issues: Trigger & Pile Up
- Selected Physics Topics
- Summary

Coverage in $p_T - \eta$ and ξ

CMS fwd calorimetry up to $|\eta|\approx$ 5 + Castor + ZDC + FP420

Unprecedented coverage at hadron colliders !

Experimental observables:

- large rapidity gaps
- tag in TOTEM RP and/or FP420: $\xi_1 \xi_2 s = M^2$
- reconstruction with central & forward detectors: $\xi_{1,2} = \frac{1}{\sqrt{8}}$

Topics of soft and hard diffraction:

- Dependencies on $\boldsymbol{\xi},$ t and Mx as fundamental quantities of non-pert. QCD
- Gap survival dynamics, multi-gap events
- Hard diffraction: production of jets, W; J/ ψ ; b; t hard photons, diffr.PDF's
- Double Pomeron exchange events as a gluon factory
- Central exclusive Higgs production
- SUSY & other (low mass) exotics & exclusive processes
- Proton light cone studies (e.g. pp \rightarrow 3jets + p)

particles

Prospects with CMS & TOTEM

CERN/LHCC 2006-039/G-124 CMS Note-2007/002 TOTEM Note 06-5 21 December 2006

Prospects for Diffractive and Forward Physics at the LHC

> The CMS and TOTEM diffractive and forward physics working group

In a strong joint effort both

CMS and TOTEM

studied the prospects for forward physics with pp collisions @ LHC for various analysis topics

 \rightarrow common CMS & TOTEM note

published in December 2006.

Different processes assessed for:

- standard luminosity optics,
- high luminosity optics and
- special low luminosity optics.

Tools for triggering and pile-up rejection studied and discussed.

Together CMS and TOTEM have an unprecedented coverage in rapidity.

Here emphasis is put on the CMS part (see talk from Karsten Eggert for TOTEM, also FP420 was studied \rightarrow see separate talk).

D I S 2007 Munich

Map to diffraction and fwd physics in CMS Low lumi **High lumi** No Rapidity gap selection possible Rapidity gap selection possible Proton tag selection indispensable HF, Castor, BSCs, T1, T2 ow lumi RPs at 220m and 420 m Proton tag selection optional um RPs at 220m and 420 m Central exclusive production Чb Diffraction is about 1/4 of σ_{tot} **Discovery physics:** Light SM Higgs High cross section processes T "Soft" diffraction MSSM Higgs Extra dimensions Interesting for start-up running Important for understanding pile-up

Gamma-gamma and gamma-proton interactions
Forward energy and particle flow:

underlying event structure & multiple parton interactions
input to cosmic shower simulation

QCD: Diffraction in presence of hard scale

Low-x structure of the proton
High-density regime (color glass condensate)
Diffractive PDFs and generalized PDFs
Drell-Yan

CMS alone

CMS with Totem and/or FP420

(M.Grothe HERA-LHC Workshop 2007)

Experimental Issue: Trigger for Diffraction

Achievable total reduction: 10 (single-sided 220m) x 2 (jet iso) x 2 (2 jets same hemisphere as p) = 40

Experimental Issue: Trigger for CEP

Central exclusive production of pp \rightarrow pHp with H(120GeV) \rightarrow b bbar

- large QCD dijet background \rightarrow observation in non-diffractive production challenging
- selection with quantum numbers $J^{PC}=0++$ for CEP \rightarrow improves signal to background ratio dramatically
- in certain MSSM scenarios: signal cross section three orders of magnitude larger than in SM

→ Trigger is a major limiting factor

Level-1:

~12% efficiency with 2-jets (E_T>40GeV) & single-sided 220 m condition

HLT:

~7% jet trigger efficiency for max. 1 Hz output rate \rightarrow prescale b-tag or add 420 m condition

In addition:

- ~10% efficiency by requesting
- 1 jet & 1 μ (40GeV, 3GeV) condition

Experimental Issue: Pile-Up

DPE signature:

lumi	$\langle N^{PU} \rangle$	420+420	220+220	220+420	Total
$1 \cdot 10^{33}$	3.5	0.003	0.019	0.014	0.032
$2 \cdot 10^{33}$	7.0	0.008	0.052	0.037	0.084

at 2 x 10^{33} cm⁻²s⁻¹: independent of process type (with dijet or b bar production) \rightarrow 10% get DPE signature through pile up

Reduction with:

- correlation between ξ and M as measured in the central and in the near beam detectors
- add fast timing detectors \rightarrow proton has same vertex as hard interaction

 \rightarrow retain for example O(10%) of the signal for CEP H(120 GeV) \rightarrow b bbar @ 2 x 10³³ cm⁻²s⁻¹

 \rightarrow sufficient signal / background ratio achievable for SM Higgs, even much better for MSSM Higgs

- Low-x dynamics
 - Parton saturation, BFKL/CCFM dynamics, proton structure, multi-parton scattering.
- Measurements for cosmic ray data analysis
 - Forward energy and particle flows, minimum bias event structure
- Two-photon interactions and peripheral collisions
- QED processes to determine the luminosity to O(1%),e.g. pp \rightarrow pp ee $\,$ and $\,$ pp \rightarrow pp $\mu\mu$
- Forward physics in pA and AA collisions
- New forward physics phenomena
 - New phenomena such as Disoriented Chiral Condensates, incoherent pion emission,
 - Centauro's, Strangelets.

Multiple Interactions and Underlying Event

In addition to the single hard interaction with large p_T :

- (soft) interactions with low $p_T \rightarrow$ Underlying Event (remnant-remnant interactions and parton showers ... \rightarrow additional energy offset)
- more hard interactions \rightarrow Multi Parton Interactions (see evidence from CDF 1997: need > 50% double parton interaction for γ + 3 jet)
- → important for jet analyses (addit<u>ional UE energy</u>) or _____ pp→W+H+X with W→I+v and H→bb (MI: pp → W+X_w + bb+X_b without any Higgs!)

- → huge differences for the different generators and tunes !
- → better understand multiple interaction dependencies :

parton densities $\leftarrow \rightarrow$ factorization scheme parton evolution (DGLAP/BFKL) / color correlations ...

Strategy for the first measurements:

- pursue the same analysis strategy as @ CDF (tracking, central $|\eta| < 1$) (\rightarrow MB & UE study group (P. Bartalini, R. Field et al. \rightarrow CMS Note 2006/067)
- prepare for early measurements in forward direction (calorimeter, CASTOR: 5.2< $|\eta|$ <6.6, or even further down: close to the ZDC)

Central region does not distinguish between processes.

→ need to look forward :

- jets in forward region $5 < |\eta| < 7$ (CASTOR)
- correlations over large rapidity ranges (forward \leftarrow > central)
- differences most clearly visible in the p-fragmentation region (energy taken differs)
 - \rightarrow go to largest rapidities $|\eta| \sim 10$ (\rightarrow possibly more fwd detectors near ZDC)

Particle Flow

D I S 2007 Munich

14

Small – x and Saturation

Goal:

study the parton evolution at small-x \rightarrow DGLAP, BFKL, CCFM

 \rightarrow investigate possible saturation effects

Forward Jets in HF (3<η<5):

 \rightarrow dijet events with at least one jet in HF probe x₁≈10⁻⁴-10⁻⁵ and x₂≈10⁻¹ (two units in η \rightarrow one order of magnitude in x)

• single inclusive jet cross section with low $E_T \sim 20 \text{GeV} - 100 \text{ GeV}$ constrain the low-x proton pdf

• Mueller-Navelet dijet cross section with one jet in each of the two HF are sensitive to BFKL dynamics and saturation effects.

Small – x and Saturation

Forward Drell-Yan in CASTOR (5.3<η<6.6):

 \rightarrow probes the pdf down to $x_1 \approx 10^{-7}$ when a large enough mass M is produced

→ Drell-Yan pairs are suppressed by about 30 % when using a a saturated pdf like EHKQS

Angle measurement of the electrons with T2 will give valuable information

D I S 2007 Munich

Hadronic Shower Models for Cosmic Ray Data Analyses

Dynamics of the high energy particle spectrum is crucial for the understanding of cosmic ray data. But models differ significantly !

Statistics for 100 PeV in fixed target frame is too low for reliable analysis (O(10⁻⁴) particles per m² per year).

High momenta are needed \rightarrow only available in the forward region

 \rightarrow measurement of energy (HF, CASTOR, ZDC) and particle flow (T1, T2) in the forward regions will help to tune the models and the generators.

D I S 2007 Munich

Strategy for First Data Taking

Program based on large rapidity gap selection

(TOTEM RP analyses will need time for alignment etc.)

ightarrow concentrate on data with negligible pile up

- Explore hard diffraction in the new kinematic regime of 14 TeV (similar studies as performed at Tevatron)
- Measure rapidity gap survival probability in single diffraction and DPE topology events
- Measurement of jet gap jet events
- Measurement of energy and particle flow (CASTOR, ZDC, possibly T1 & T2)
- Measurement of forward jets and forward Drell—Yan electrons
- Study of gamma—gamma and gamma—proton interactions
- Study possibly interesting observations ... O

Summary

- CMS forward detector components provide the possibility for a rich program for forward physics. Negotiations to include FP420 into the CMS experiment in progress.
- Comprising different physics topics for special low, standard and highest luminosity optics the forward and diffractive physics program spans the full lifetime of the LHC.
- In Diffraction:
 - <u>low luminosity:</u> standard measurements exploring traditional observables and processes in the new kinematic regime.
 - <u>nominal luminosity</u>: unprecedented statistics for processes presently studied at the TeVatron at lower center of mass energies.
 - <u>highest luminosity</u>: enabling the discovery of a Higgs Boson with a mass close to the exclusion limit constituting a special challenge for the central LHC experiments.
- Forward detector components make it possible to study underlying event structure and multi-parton interactions, representing a crucial input for all precision measurements. They open the window to a new region in the area of small-x, giving insight to parton evolution and saturation effects.

Thanks to Monika Grothe & Hannes Jung for fruitful discussions