

Measurements of φ meson from hadronic and leptonic decays at RHIC by PHENIX

Shengli Huang

Vanderbilt University

for the PHENIX Collaboration

Outline

- Motivation
- PHENIX capability to measure the phi
 - PID ability
 - Background
- Results
 - Mass centroid and width
 - Spectra
 - Integrated yields and temperature slope
 - Nuclear modification factor
 - Elliptic flow
- Conclusions

Centrality and Nuclear modification factor

peripheral

Most central

Centrality definition in PHENIX

- ❖ N_{part} (number of participants): Number of incoming nucleons which in the overlap regions
- ❖ N_{coll} (number of binary collisions): Number of inelastic nucleon + nucleon collisions
- ❖ Nuclear modification factor:

$$R_{AA} = \frac{d^2 N^{AA} / dp_T dy}{\langle n_{coll} \rangle \cdot d^2 N^{pp} / dp_T dy}$$

Elliptic flow: V_2

Spatial space asymmetry

momentum space asymmetry
nt

$$E \frac{d^3 N}{d^3 p} = \frac{1}{\pi} d^2 \frac{N}{dp_T^2 dy} \left[1 + 2v_1 \cos(\varphi - \Psi_R) + 2v_2 (2[\varphi - \Psi_R]) + \dots \right]$$

$$v_2 = \langle \cos(2[\varphi - \Psi_R]) \rangle$$

Elliptic flow(v_2) :a measure of anisotropic magnitude in the momentum space

A golden probe

- **❖** The lightest (s̄s̄) vector meson mass~1.019GeV
- \Leftrightarrow Life time $\tau \sim 41$ fm/c
- ❖ Similar mass with the baryon proton

At lower p_T region (decay inside medium):

Hot (Au+Au) or cold (d+Au) medium effect

- ✓ Mass centroid & width
- √ Branch ratio

At intermediate p_{τ} (decay outside medium):

Medium dynamics and particle productions

- ✓ Nuclear modification factor
- ✓Elliptic flow v₂

PHENIX Experiment

BBC (vertex)
$$dz = 0.5cm...2cm$$

BBC (trigger)
$$\varepsilon = 50\%...92\%$$

DC/PC1 (tracking)
$$dp_T/p_T \sim 1.0\% \cdot p_T + 0.7\%$$

EMC (calorimetric) dE/E ~
$$8.1\%$$
/ $\sqrt{E} + 3.0\%$

EMC (t.o.f.)
$$d \tau \sim 500 \text{ ns}$$

EMC (e/
$$\pi$$
 rejection) ~10

TOF
$$d \tau < 100 \text{ ns}$$

RICH (e/
$$\pi$$
 rejection) >1000

PHENIX acceptance:

$$-0.35 < \eta < 0.35$$

$$\phi \rightarrow K^+K^-$$

$$\phi \rightarrow e^+e^-$$

$$BR = 49.2 \pm 0.7\%$$

$$BR = 2.97 \pm 0.04 \, 10^{-4}$$

PHENIX Experiment

BBC (vertex)
$$dz = 0.5cm...2cm$$

BBC (trigger)
$$\varepsilon = 50\%...92\%$$

DC/PC1 (tracking)
$$dp_T/p_T \sim 1.0\% \cdot p_T + 0.7\%$$

EMC (calorimetric)
$$dE/E \sim 8.1\%/\sqrt{E} + 3.0\%$$

EMC (t.o.f.)
$$d \tau \sim 500 \text{ ns}$$

EMC (e/
$$\pi$$
 rejection) ~10

TOF
$$d \tau < 100 \text{ ns}$$

RICH (e/
$$\pi$$
 rejection) >1000

PHENIX acceptance:

$$-0.35 < \eta < 0.35$$

$$\phi \rightarrow K^+K^-$$

$$\phi \rightarrow e^+e^-$$

$$BR = 49.2 \pm 0.7\%$$

BR =
$$2.97 \pm 0.04 \cdot 10^{-4}$$

- meson measurements PHIENIX

PHENIX measures clear signal of $\phi \rightarrow K^+K^-$ in all collision systems Measurement of $\phi \rightarrow e^+e^-$ is complicated by combinatorial background

VANDERBILT Mass Centroid and Width PHIENIX

 \sqrt{s} = 62.4GeV Au + Au

Au+Au √sNN=200 GeV

- The mass centroid and width of φ meson obtained by KK channel do not depend on centrality
- ❖All mass centroid and width in all systems show agreement with PDG

Number of Participant(Npart)

$\varphi \rightarrow K^+K^-$ Spectra

PHENIX has a complete set of measurement of φ→K+K- with EMCal and TOF detectors

PHENIX also has a complete set of measurement of $\phi \rightarrow e^+e^-$ with EMCal detectors

Yield and Temperature (I)

10

$$\frac{dN/dy}{2\pi(m_{\phi}+T)T}\exp(-m/T)$$

$$m = m_T - m_{\phi}$$

- >Temperature slope and integral yield are obtained from m_T exponential function
- > T obtained by hadronic channel is approximately constant with N_{part} at $\sqrt{s_{NN}}$ =62, 200 GeV
- Yield grows both with √s_{NN} and N_{part}

part

 $\phi \to K^{\dagger}K^{\dagger}$

PHENIX Preliminary

Yield and Temperature (II)

√The temperature measured from leptonic channel is almost consistent with the hadronic channel

√The leptonic channel's yield is a little higher than hadronic channel.

✓ More accurate measurement is required to confirm whether there is branch ratio modification

Nuclear modification factor PHIENIX

- ■In AuAu collisions, the proton R_{AA} is large difference with pion in the intermediate p_T
- The R_{AA} for ϕ mesons close to the π meson while not the proton. It indicates that the baryon abnormal in intermediate p_T is related to the number of constituent quark while not particle mass

Elliptic flow v₂

 $kE_T = m_T - m$ N_q : number of constituent quark

❖The elliptic flow of φ meson has been obtained by hadronic channel. The results follow the number of constituent quarks scaling in 200GeV Au+Au collisions.

The interesting leptonic channel results will be obtained in the future.

Conclusion

PHENIX has measured the φ production by hadronic and leptonic channels from pp, dAu to AuAu.

- Hadronic channel:
- 1)The mass centroid and width of ϕ are consistent with PDG value from pp, dAu to AuAu.
- 2)The dN/dy/N_{part} grows with collision energy and centrality while temperature slope are kept constant
- 3)The nuclear modification and elliptic flow of phi meson indicate the particle production are mainly from constituent quark recombination at intermediate p_T in 200 GeV Au+Au collisions
- Leptonic channel:

Preliminary dN/dy in e⁺e⁻ decay channel at low p_T is higher than the dN/dy from K⁺K⁻ channel. Current measurements need improvement on the background conditions and more data.

Upgrade of PHENIX

HBD: Suppress background level by a factor of ~ 100 in φ->ee measurements

TOFw: More statistics of ϕ meson at intermediate and high pT

RxNP: The reaction plane resolution will be enhanced to 70%

- University of São Paulo, São Paulo, Brazil
- · Academia Sinica, Taipei 11529, China
- . China Institute of Atomic Energy (CIAE), Beijing, P. R. China
- · Peking University, Beijing, P. R. China
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 12116
 Prague, Czech Republic
- Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 11519 Prague, Czech Republic
- Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague, Czech Republic
- Laboratoire de Physique Corpusculaire (LPC), Université de Clermont-Ferrand, 63 170 Aubiere, Clermont-Ferrand, France
- Dapnia, CEA Saclay, Bat. 703, F-91191 Gif-sur-Yvette, France
- IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406 Orsay, Frag
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Rout Saclay, F-91128 Palaiseau, France
- SUBATECH, Ecòle des Mines at Nantes, F-44307 Nantes France
- · University of Muenster, Muenster, Germany
- KFKI Research Institute for Particle and Nuclear Physics at the Hungari Academy of Sciences (MTA KFKI RMKI), Budapest, Hungary
- Debrecen University, Debrecen, Hungary
- · Eövös Loránd University (ELTE), Budapest, Hungary
- · Banaras Hindu University, Banaras, India
- Bhabha Atomic Research Centre (BARC), Bombay, India
- Weizmann Institute, Rehovot, 76100, Israel
- Center for Nuclear Study (CNS-Tokyo), University of Tokyo, Tanashi, Tokyo 188, Japan
- Hiroshima University, Higashi-Hiroshima 739, Japan
- KEK High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Kyoto University, Kyoto, Japan
- Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki, Japan
- RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
- RIKEN BNL Research Center, Japan, located at BNL
- Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
- Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan
- University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi ibaraki-ken 305-8577,
- Waseda University, Tokyo, Japan
- Cyclotron Application Laboratory, KAERI, Seoul, South Korea
- Kangnung National University, Kangnung 210-702, South Korea
- Korea University, Seoul, 136-701, Korea
- Myong Ji University, Yongin City 449-728, Korea
- System Electronics Laboratory, Seoul National University, Seoul, South Korea
- Yonsei University, Seoul 120-749, Korea
- IHEP (Protvino), State Research Center of Russian Federation "Institute for High Energy Physics", Protvino 142281, Russia
- Joint Institute for Nuclear Research (JINR-Dubna), Dubna, Russia
- · Kurchatov Institute, Moscow, Russia
- PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Vorob'evy Gory, Moscow 119992, Russia
- Saint-Petersburg State Polytechnical Univiversity, Politechnicheskayastr, 29, St. Petersburg, 195251, Russia

- · Lund University, Lund, Sweden
- Abilene Christian University, Abilene, Texas, USA
- Brookhaven National Laboratory (BNL), Upton, NY 11973, USA
- University of California Riverside (UCR), Riverside, CA 92521, USA
- University of Colorado, Boulder, CO, USA
- Columbia University, Nevis Laboratories, Irvington, NY 10533, USA
- Florida Institute of Technology, Melbourne, FL 32901, USA
- Florida State University (FSU), Taliahassee, FL 32306, USA
- Georgia State University (GSU), Atlanta, GA, 30303, USA
- University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
- Iowa State University (ISU) and Ames Laboratory, Ames, IA 50011, USA
- Los Alamos National Laboratory (LANL), Los Alamos, NM 87545, USA
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
- University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico State University, Las Cruces, New Mexico, USA
- Department of Chemistry, State University of New York at Stony Brook (USB), Stony Brook, NY 11794, USA
- Department of Physics and Astronomy, State University of New York at Stony Brook (USB), Stony Brook, NY 11794, USA
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
- University of Tennessee (UT), Knoxville, TN 37996, USA
- Vanderbilt University, Nashville, TN 37235, USA