

Fluid

- From the Oxford English Dictionary:
 - 1) Primary definition: (adj.) fluid:
 "Having the property of flowing; consisting of particles that move freely among themselves, so as to give way before the slightest pressure. (A general term including both gaseous and liquid substances.)"
 - 2) Secondary definition: (adj.)
 "Flowing or moving readily; not solid or rigid; not fixed, firm, or stable."
- SUMMARY: Following
 - a) a discovery period, during which time our understanding of "quark-gluon plasma" was fluid(2), and
 - b) a paradigm shift, we now have a solid understanding of the extraordinary fluid(1) produced at RHIC.

Language

 In relativistic heavy ion physics as well as DIS, common usage of

```
\square x, \mathbb{Q}^2, p_T, (the other) y, \mathbb{E}_T,...
```

- But also
 - \square $R_{\Delta\Delta}$ 1 if yield = perturbative value from initial parton-parton flux
 - Fourier coefficient of azimuthal anisotropies ⇒ "flow"
 - □ Temperature (MeV)
 - \square μ_B Baryon chemical potential (MeV) ~ net baryon density
 - \Box η Viscosity (MeV 3)
 - □ S Entropy density (MeV³) ~ "particle" density

The Plan c. 2000

- Use RHIC's unprecedented capabilities
 - □ Large √s ⇒
 - ◆ Access to reliable pQCD probes
 - ◆ Clear separation of valence baryon number and glue
 - ◆ To provide definitive experimental evidence for/against Quark Gluon Plasma (QGP)
 - □ Polarized p+p collisions
- Two small detectors, two large detectors
 - Complementary capabilities
 - □ Small detectors envisioned to have 3-5 year lifetime
 - □ Large detectors ~ facilities
 - ◆ Major capital investments
 - **♦ Longer lifetimes**
 - ♦ Potential for upgrades in response to discoveries

The Expected Landscape

RHIC and Its Experiments

RHIC and Its Experiments

Since Then...

- Accelerator complex
 - □ Routine operation at 2-4 x design luminosity (Au+Au)
 - □ Extraordinary variety of operational modes
 - ◆ Species: Au+Au, d+Au, Cu+Cu, p↑+p↑
 - Energies: 22 GeV (Au+Au, Cu+Cu, p↑), 56 GeV (Au+Au),
 62 GeV (Au+Au,Cu+Cu, p↑+p↑), 130 GeV (Au+Au),
 200 GeV (Au+Au, Cu+Cu, d+Au, p↑+p↑), 410 GeV (p↑), 500 GeV (p↑)
- Experiments:
 - □ Worked!
- Science
 - □ >160 refereed publications, among them > 90 PRL's
 - □ Major discoveries
- Future
 - Demonstrated ability to upgrade
 - Key science questions identified
 - Accelerator and experimental upgrade program underway to perform that science

Since Then...

- Accelerator complex
 - □ Routine operation at 2-4 x design luminosity (Au+Au)
 - □ Extraordinary variety of operational modes
 - ◆ Species: Au+Au, d+Au, Cu+Cu, p↑+p↑
 - Energies: 22 GeV (Au+Au, Cu+Cu, p↑), 56 GeV (Au+Au),
 62 GeV (Au+Au, Cu+Cu, p↑+p↑), 130 GeV (Au+Au),
 200 GeV (Au+Au, Cu+Cu, d+Au, p↑+p↑), 410 GeV (p↑), 500 GeV (p↑)
- Experiments:
 - □ Worked!

See previous talk by Jörg Pretz

- Science
 - □ >160 refereed publications, among them > 90 PRL's
 - Major discoveries
- Future
 - Demonstrated ability to upgrade
 - Key science questions identified
 - Accelerator and experimental upgrade program underway to perform that science

Approach

Will present *sample* of results from various points of the collision process:

Assertion

• In these complicated events, we have (a posteriori) control over the event geometry:

Degree of overlap

Orientation with respect to overlap

Final State

Does the huge abundance of final state particles reflect a *thermal* distribution?:

Multiplicities Are "Low"?

Data Taken June 25, 2000.

Pictures from STAR Level 3 online display.

See next talk:

Developments in low-x
physics,
R. Venugopalan

RHIC's Two Major Discoveries

- Discovery of strong "elliptic" flow:
 - □ Elliptic flow in Au + Au collisions at √s_{NN}= 130 GeV, STAR Collaboration, (K.H. Ackermann et al.).
 Phys.Rev.Lett.86:402-407,2001
 - □ 315 citations
- Discovery of "jet quenching"
 - □ Suppression of hadrons with large transverse momentum in central Au+Au collisions at √s_{NN} = 130 GeV, PHENIX Collaboration (K. Adcox et al.), Phys.Rev.Lett.88:022301,2002
 - □ 375 citations

Initial State

How are the initial state densities and asymmetries imprinted on the detected distributions?

Motion Is Hydrodynamic

When does thermalization occur?

 Strong evidence that final state bulk behavior reflects the initial state geometry

Because the initial azimuthal asymmetric persists in the final state dn/dφ ~ 1 + 2 v₂(p_T) cos (2 φ) + ...

The "Flow" Is ~ Perfect

• The "fine structure" $v_2(p_T)$ for different mass particles shows good agreement with ideal ("perfect fluid")

hydrodynamics

The "Flow" Is ~ Perfect

 The "fine structure" v₂(p_T) for different mass particles shows good agreement with ideal ("perfect fluid")

hydrodynamics

$$KE_T \equiv \sqrt{m^2 + p_T^2}$$

• Roughly: $\partial_{\nu} T^{\mu\nu} = 0 \rightarrow Work-energy theorem$ $<math>\rightarrow \int \nabla P d(vol) = \Delta E_{K} \cong m_{T} - m_{0} \equiv \Delta K E_{T}$

The "Flow" Knows Quarks

 The "fine structure" v₂(p_T) for different mass particles shows good agreement with ideal ("perfect fluid")

hydrodynamics

 Scaling flow parameters by quark content n_q resolves meson-baryon separation of final state hadrons

The "Flow" Knows Quarks

 The "fine structure" v₂(p_T) for different mass particles shows good agreement with ideal ("perfect fluid")

hydrodynamics

 Scaling flow parameters by quark content n_q resolves meson-baryon separation of final state hadrons

RHIC and the Phase "Transition"

 The lattice tells us that collisions at RHIC map out the interesting region from

High T_{init}~ 300 MeV

to

Low T_{final}
 ~ 100 MeV

Probes of Dense Matter

- Q. How dense is the matter?
- A. Do pQCD Rutherford scattering on deep interior using "auto-generated" probes:

Access to Perturbative Phenomena?

- Consider measurement of π^0 's in p+p collisions at RHIC.
- Compare to pQCD calculation

$$d\sigma = f_a \wedge A(x_a, \mu^2) \otimes f_b \wedge B(x_b, \mu^2)$$

parton distribution functions,for partons a and bmeasured in DIS, universality

$\otimes d \overset{\wedge}{\sigma} (a+b \to c+d)$

- perturbative cross-section (NLO)
- requires hard scale
- •factorization between pdf and cross section

$$\otimes D_{\it{h+c}}(z_{\it{h}},\mu^2)$$

- •fragmentation function
- •measured in e+e-

Phys. Rev. Lett. 91, 241803 (2003)

Systematic Suppression Pattern

The Matter is Opaque

STAR azimuthal correlation function shows
 complete absence of "away-side" jet

Partner in hard scatter is completely absorbed in the dense medium

Schematically (Partons)

Photons shine, Pions don't

- Direct photons are not inhibited by hot/dense medium
- Rather: shine through consistent with pQCD

Schematically (Photons)

Precision Probes

• This one figure encodes rigorous control of systematics

Connecting Soft and Hard Regimes

16-Apr-06

Fluid Effects on Jets?

- Mach cone?
 - ☑ Jets travel faster than the speed of sound in the medium.
 - ☑ While depositing energy via gluon radiation.
 - **→ QCD "sonic boom" (?)**
 - To be expected in a dense fluid which is strongly-coupled

High p_T Parton \rightarrow Low p_T "Mach Cone"?

The Matter is Opaque

 STAR azimuthal correlation function shows
 ~ complete absence of "away-side" jet

q q

ΛФ =

Partner in hard scatter is completely absorbed in the dense medium

High p_T Parton \rightarrow Low p_T "Mach Cone"?

- The "disappearance" is that of the high p_T partner
- But at low p_T,
 see re-appearance
- and
- "Side-lobes" (Mach cones?)

Matter is Opaque

Partner in hard scatter is completely absorbed in the dense medium

Suggestion of Mach Cone?

 Modifications to di-jet hadron pair correlations in Au+Au collisions at √s_{NN} = 200 GeV, PHENIX Collaboration (S.S. Adler et al.), Phys.Rev.Lett.97:052301,2006

How Perfect is "Perfect"

- All "realistic" hydrodynamic calculations for RHIC fluids to date have assumed zero viscosity
 - $\square \eta = 0 \Rightarrow$ "perfect fluid"
 - □ But there is a (conjectured) quantum limit:

"A Viscosity Bound Conjecture", P. Kovtun, D.T. Son, A.O. Starinets, hep-th/0405231

$$\eta \ge \frac{\hbar}{4\pi} (Entropy \ Density) \equiv \frac{\hbar}{4\pi} s$$

- Where do "ordinary" fluids sit wrt this limit?
- □ RHIC "fluid" might
 be at ~1 on this
 scale (!)

Viscosity Primer

- Remove your organic prejudices
 - □ *Don't* equate viscous with "sticky"!

Viscosity Primer

- Remove your organic prejudices
 - □ Don't equate viscous with "sticky"!
- Think instead of a not-quite-ideal fluid:
 - □ "not-quite-ideal" = "supports a shear stress"
 - Viscosity ηthen defined as

$$\frac{F_x}{A} = -\eta \frac{\partial v_x}{\partial y}$$

Viscosity Primer

- Remove your organic prejudices
 - □ Don't equate viscous with "sticky"!
- Think instead of a not-quite-ideal fluid:
 - □ "not-quite-ideal" = "supports a shear stress"
 - Viscosity ηthen defined as

$$\frac{F_x}{A} = -\eta \frac{\partial v_x}{\partial y}$$

□ Dimensional estimate:

$$\eta \approx (momentum \ density) \times (mean \ free \ path)$$

$$\approx n \ \overline{p} \ mfp = n \ \overline{p} \frac{1}{n\sigma} = \frac{\overline{p}}{\sigma}$$

- *small* viscosity **→** *Large* cross sections
- Large cross sections
 strong couplings
- Strong couplings → forget about perturbation theory

The Primacy of QCD

- While the (conjectured) bound $\frac{\eta}{s} \ge \frac{\hbar}{4\pi}$
 - is a purely quantum mechanical result . . .
- It was derived in and motivated by the Anti-de Sitter space / Conformal Field Theory correspondence
- Weak form:
 - "Four-dimensional N=4 supersymmetric SU(N_c) gauge theory is equivalent to IIB string theory with AdS₅ x S⁵ boundary conditions."
 (The Large N limit of superconformal field theories and supergravity,
 J. Maldacena, Adv. Theor. Math. Phys. 2, 231, 1998 hep-th/9711200)
- Strong form:
 - "Hidden within every non-Abelian gauge theory, even within the weak and strong nuclear interactions, is a theory of quantum gravity." (Gauge/gravity duality, G.T. Horowitz and J. Polchinski, gr-qc/0602037)
- Strongest form: Only with QCD can we explore experimentally these fascinating connections over the full range of the coupling constant to study QGP ≡ Quantum Gauge Phluid

The (Assumed) Connection

- Exploit Maldacena's "D-dimensional strongly coupled gauge theory ⇔ (D+1)-dimensional stringy gravity"
- Thermalize with massive black brane
- Calculate viscosity η = "Area"/16πG
- Normalize by entropy (density) s = "Area" / 4G
- Dividing out the infinite "areas":
- See next next talk:

 String Theory and QCD, J. Erdmenger

- Conjectured to be a lower bound "for all relativistic quantum field theories at finite temperature and zero chemical potential".
- See "Viscosity in strongly interacting quantum field theories from black hole physics", P. Kovtun, D.T. Son, A.O. Starinets, Phys.Rev.Lett.94:111601, 2005, hep-th/0405231

New Dimensions in RHIC Physics

"The stress tensor of a quark moving through N=4 thermal plasma", J.J. Friess et al., hep-th/0607022

New Dimensions in RHIC Physics

• "The stress tensor of a quark moving through *₀* "=4 thermal plasma", J.J. Friess *et al.*, hep-th/0607022

Figure 1: The AdS_5 -Schwarzschild background is part of the near-extremal D3-brane, which encodes a thermal state of $\mathcal{N}=4$ supersymmetric gauge theory [24]. The external quark trails a string into the five-dimensional bulk, representing color fields sourced by its fundamental charge and interacting with the thermal medium.

• Damping of (flow, fluctuations, heavy quark motion) $\sim \eta/S$

- Damping of (flow, fluctuations, heavy quark motion) $\sim \eta/s$
 - □ FLOW: Has the QCD Critical Point Been Signaled by Observations at RHIC?,
 R. Lacey et al.,
 Phys.Rev.Lett.98:092301,2007
 (nucl-ex/0609025)

$$\frac{\eta}{s} = (1.1 \pm 0.2 \pm 1.2) \frac{1}{4\pi}$$

- Damping of (flow, fluctuations, heavy quark motion) $\sim \eta/S$
 - □ FLOW: Has the QCD Critical Point Been Signaled by Observations at RHIC?,
 R. Lacey et al.,
 Phys.Rev.Lett.98:092301,2007
 (nucl-ex/0609025)

$$\frac{\eta}{s} = (1.1 \pm 0.2 \pm 1.2) \frac{1}{4\pi}$$

 □ FLUCTUATIONS: Measuring Shear Viscosity Using Transverse Momentum Correlations in Relativistic Nuclear Collisions,
 S. Gavin and M. Abdel-Aziz, Phys.Rev.Lett.97:162302,2006 (nucl-th/0606061)

$$\frac{\eta}{s} = (1.0 - 3.8) \frac{1}{4\pi}$$

- Damping of (flow, fluctuations, heavy quark motion) $\sim \eta/S$
 - □ FLOW: Has the QCD Critical Point Been Signaled by Observations at RHIC?, R. Lacey et al., Phys.Rev.Lett.98:092301,2007 (nucl-ex/0609025)

$$\frac{\eta}{s} = (1.1 \pm 0.2 \pm 1.2) \frac{1}{4\pi}$$

□ FLUCTUATIONS: Measuring Shear Viscosity Using Transverse Momentum Correlations in Relativistic Nuclear Collisions,
S. Gavin and M. Abdel-Aziz,
Phys.Rev.Lett.97:162302,2006
(nucl-th/0606061)

$$\frac{\eta}{s} = (1.0 - 3.8) \frac{1}{4\pi}$$

DRAG, FLOW: Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at √s_{NN} = 200 GeV (PHENIX Collaboration), A. Adare et al., to appear in Phys. Rev. Lett. (nucl-ex/0611018)

$$\frac{\eta}{s} = (1.3 - 2.0) \frac{1}{4\pi}$$

LHC

How could we not choose to investigate "QGP" at every

opportunity?

 LHC offers unparalleled increase in √s

 Will this too create a strongly-coupled fluid?

- Active pursuit via
 - □ Dedicated experiment (ALICE)
 - □ Targeted studies (CMS, ATLAS)

Fundamental Investigations in QCD

- Fundamental Strings(??)
- Fundamental Particles
 - Understand the spin structure of the nucleon
 - RHIC Spin (Polarized e-p collider)
- Fundamental Fields
 - Understand the wave-function of a heavy nucleus
 - RHIC, RHIC II, (Electron-Ion Collider)
- Fundamental Matter
 - □ Understand the matter created in A+A collisions
 - RHIC, RHIC-II, LHC