Universal features of QCD dynamics in hadrons & nuclei at high energies

Outline of talk

- Whither the "perfect" theory ?
 - Bjorken-Feynman asymptotics
 - Regge-Gribov asymptotics
- QCD coherence at small x => Universality
 - Saturation in hadrons & nuclei; the Color Glass Condensate picture
- Multi-particle production in QCD at high energies
 - Initial fluctuations & rapid thermalization in AA collisions
- Some open questions in QCD at high energies

QCD - the perfect theory (F.Wilczek, hep-ph/9907340) "Explains" ~ 99% of the mass of the visible universe

MILC:hep-lat/0304004

Hadron mass spectrum vs quenched lattice results

Quenched QCD

full QCD

The dynamics of glue is central to our understanding of the structure of matter

Much of the discussion in pQCD has focused on the Bjorken limit:

$$Q^2 \to \infty$$
; $s \to \infty$; $x_{\rm Bj} \approx \frac{Q^2}{s} = \text{fixed}$

Asymptotic freedom,
the Operator Product Expansion (OPE)
& Factorization Theorems:
machinery of precision physics in QCD...

STRUCTURE OF HIGHER ORDER CONTRIBUTIONS IN DIS

Coefficient functions - C - computed to NNLO for many processes, e.g., gg -> H

Harlander, Kilgore; Ravindran, Van Neerven, Smith; ...

5

Splitting functions -P - computed to 3-loops
Moch, Vermaseren, Vogt (Vogt's talk)

Resolving the hadron -DGLAP evolution

increasing Q²

But... the phase space density decreases-the proton becomes more dilute

The fundamental theory: "merely" background for new physics?

The other interesting limit-is the Regge-Gribov limit of QCD:

$$x_{\rm Bj} \to 0$$
; $s \to \infty$; $Q^2(>> \Lambda_{\rm QCD}^2) = {\rm fixed}$

Physics of strong fields in QCD, multi-particle productionnovel universal properties of theory in this limit? Resolving the hadron -BFKL evolution

Gluon density saturates at

occupation #
$$f = \frac{1}{\alpha_S}$$

Mechanism of gluon saturation in QCD

Gribov, Levin, Ryskin Mueller,Qiu Low Energy Large x - bremsstrahlung linear evolution (DGLAP/BFKL) Gluon Density Grows **Small x -gluon recombination** High Energy non-linear evolution (BK/JIMWLK) p, A

Saturation scale $Q_s(x)$ - dynamical scale below which non-linear ("higher twist") QCD dynamics is dominant

The Color Glass Condensate

McLerran, RV lancu, Leonidov, McLerran

In the saturation regime:

Strongest fields in nature!

$$E^2 \sim B^2 \sim \frac{1}{\alpha_S}$$

CGC: Classical effective theory of QCD describing dynamical gluon fields + static color sources in non-linear regime

- Novel renormalization group equations (JIMWLK/BK) describe how the QCD dynamics changes with energy
- A universal saturation scale Q_s arises naturally in the theory

Saturation scale grows with energy

Bulk of high energy cross-sections:

- a) obey dynamics of novel non-linear QCD regime
- b) Can be computed systematically in weak coupling

Saturation scale grows with A

High energy compact (1/Q < R_p) probes interact <u>coherently</u> across nuclear size 2 R_A - experience large field strengths

Enhancement of Q_S with A => non-linear QCD regime reached at significantly <u>lower energy</u> in A than in proton

New window on universal properties of the matter in nuclear wavefunctions

Can we quantify the various regimes?

Evidence from HERA for geometrical scaling

Scaling seen for F₂^D and VM,DVCS for same Q_S as F₂

Gelis et al., hep-ph/0610435

- Scaling confirmed by "Quality factor" analysis
- Recent NLO BK analysis: Albacete, Kovchegov, hep-ph-0704.0612
 Recent caveats: Avsar, Gustafson, hep-ph/0702087

Saturation Models-excellent fits to HERA data

Caveat: Saturation scale extracted from HERA data inconsistent with model assumptions?

Model assumes $\alpha_S(Q_S) << 1$

Evidence of geometrical scaling in nuclear DIS

Freund et al., hep-ph/0210139

❖ Data scale as a function of $\tau = Q^2 / Q_S^2$

Evidence of non-linear saturation regime @ RHIC?

Global multiplicity observables in AA described in CGC models:

PHOBOS central Au+Au mult. vs models

Kharzeev, Levin, Nardi

18

DA:

Kharzeev, Kovchegov, Tuchin Albacete, Armesto, Salgado, Kovner, Wiedemann Blaizot, Gelis, RV

D-Au pt spectra compared to CGC prediction

Hayashigaki, Dumitru, Jalilian-Marian

Forward pp @ RHIC as well

Boer, Dumitru, PRD 74, 074018 (2006)

Review: Jalilian-Marian, Kovchegov, hep-ph/0505052

Natural explanation for limiting fragmentation + deviations in CGC

Jalilian-Marian

Extrapolation of BK-fit to RHIC LF data to LHC $dn/dy|_{y=0} = 1500-2250$ in A+A at LHC

Gelis, Stasto, RV, hep-ph/0605087

Estimates of the saturation scale from RHIC

$$Y_{\text{RHIC-central}} = 0 \, (x = 10^{-2}, Q_{s, \text{Au}}^2 = 1.3 \,\text{GeV}^2)$$
 $Y_{\text{RHIC}} = 3, Y_{\text{LHC-central}} = 0 \, (x = 5 \cdot 10^{-4}, Q_{s, \text{Au}}^2 = 3.2 \,\text{GeV}^2)$
 $Y_{\text{LHC}} = 3 \, (x = 3 \cdot 10^{-5}, Q_{s, \text{Au}}^2 = 8.2 \,\text{GeV}^2)$

Universal gluodynamics & energy dependence of Q_S

A.H. Mueller, hep-ph/0301109

Small x QCD RG eqns. predict (fixed b) $\,Q_S$ approaches universal behavior with increasing energy (Y) for all hadrons and nuclei

-can the approach to this behavior be tested?

Pomeron loops and Diffusive scaling

Possible P-loop effects in forward gluon production in p+p and p+A at the LHC

Strong color fields may be more accessible in eA collisions relative to ep

Nuclear profile more uniform-can study centrality dependence of distributions

In eA DIS, <u>cleanly</u> access cross-over region from weak field to novel strong field QCD dynamics?

(Talks by Surrow/Newman)

Qualitative change in final states: eg.,
1/Q⁶ → 1/Q² change in elastic vector meson production

Can we compute multiparticle production ab initio in AA collisions?

Framework: CGC- classical fields + strong sources

$$\alpha_S(Q_s) << 1$$

$$\rho \sim \frac{1}{g} \left(\equiv \frac{1}{\sqrt{\alpha_S}} \right) \gg 1$$

Probability to produce n >> 1 particles in HI collisions:

P_n obtained from cut vacuum graphs in field theories with strong sources.

Gelis, RV

General formula:

$$P_{n} = e^{-\frac{1}{g^{2}} \sum_{r} b_{r}} \sum_{p=1}^{n} \frac{1}{p!} \sum_{\alpha_{1} + \dots + \alpha_{p} = n} \frac{b_{\alpha_{1}} \dots b_{\alpha_{p}}}{g^{2p}}$$

b_r - probability of vacuum-vacuum diagrams with r cuts

"cumulants" (Gyulassy-Kauffman)

Observations:

- P_n is non-perturbative even for g << 1</p>
- Even at tree level, P_n is not a Poisson dist.
- AGK rules understood as general properties of cut vacuum graphs in field theories with sources (CGC)

Straightforward power counting in g for inclusive multiplicity/energy dists.

Glasma (\Glahs-maa\): non-equilibrium phase between CGC & QGP T.Lappi & L. McLerran;

T.Lappi & L. McLerran; Kharzeev, Krasnitz, RV

Classical Fields with

occupation # f =
$$\frac{1}{\alpha_S}$$

Given CGC initial conditions, can study space-time evolution of strong gluon fields

Small x quantum fluctuations on light cone induce (Weibel) instabilities in classical fields

- may speed up thermalization

Romatschke, RV Fukushima, Gelis, McLerran

High energy factorization important for NLO estimate

Outstanding questions in high energy QCD

(QCD Theory Workshop, DC, Dec. 15th-16th, 2006)

- What is the nature of glue at high density?
 - How do strong fields appear in hadronic or nuclear wavefunctions at high energies ? (saturation/CGC/Reggeon Field Theory)
 - How do they respond to external probes or scattering ? (rapidity gaps, color transparency/opacity, energy loss)
 - What are the appropriate degrees of freedom? (dipoles, pomerons, classical fields)
 - Is this response universal? (ep,pp,eA, pA, AA) (collinear/ kT factorization)

Bright future for small x physics at the LHC and a future Electron Ion Collider (EIC, LHeC)