Summary of HFS WG

Part II: Experiment

A.Savin

on behalf of D.Brown, D.Traynor, A.S, G. Zanderighi

XV International Workshop on Deep Inelastic Scattering, April 2007, Munich

28 experimental talks

Outline

- Particle production
- spectroscopy;
- general properties.
- Jet production
- prompt photons with/without jets;
- some recent jets measurements;
- jets and underlying events;
- jets cross sections.
- Precise measurements and future plans

Pentaquark searches

$\Theta^+(1522-1555)$

The CLAS program

<u>Exp</u>	<u>Tar</u> get	<u>Reaction</u>	<u>Comment</u>		<u>E</u> ,	<u>Status</u>
G10	d	$egin{array}{l} \gamma d ightarrow p K^{ ext{-}} \Theta^{ ext{+}} & \ ee K^{ ext{+}} n \ } \ \gamma d ightarrow p K^{ ext{-}} \Theta^{ ext{+}} & \ ee K 0 p \ } \ \gamma d ightarrow \Lambda(1116) \Theta^{ ext{+}} \end{array}$	Test of CLAS(d) data	Θ+	0.8-3.6	Published in progress Published
G11	p	γp → K ⁰ Θ⁺ γp → K⁻ Θ⁺⁺	test of SAPHIR data (cfr STAR in d+Au)	Θ* Θ*+	1.6-3.8	Published Published
EG3	d	γd → K⁻K⁺ Ξ	test of NA49 data	Ξ	4-5.4	Analysis in progress
SUPER-G	p	γp → K⁻π⁺ Θ⁺	test of CLAS(p) test of NA49 data	Θ ⁺ Ξ₅	3.8-5.7	Data to be taken

Pentaquark searches 2

2006 PDG *

ORIGI	NAL EXPERIM	ENT	REPEATED MEASUREMENT				
Ехр	Reaction	σ	Бхр	Reaction	Stat X	Results	
CLAS	γd → pnK⁻K⁺	~5	dlas	γd → pnK [_] K ⁺	>6	σ _{TOT} < 3 nb	
SAPHIR	γp → K⁰K⁺n	~5	ALAS	γp → K⁰K*n	>10	σ _{TOT} < 1 nb	
HERMES	e+d → pK ⁰ X	~4	BaBan	e+Be → pK ⁰ X	>100	No 8*	
DIANA	$K^*Xe o pK^0X$	~4	Belle	K⁺Si → pK⁰ X	~10	No Θ*;Γ _{9*} < 1 MeV	
DIANA	$K^*Xe \rightarrow pK^0X$	~4	DIANA	K⁺Xe → pK ⁰ X	~2	σ 4.3–7.3	
LEPS	$\gamma C \rightarrow K^+ K^- X$	~4	LEPS	γd → K⁺ K⁻ X	~5	~3-5 o	
SVD-2	pA → K ⁰ pX	~5-6	SVD-2	pA → K ⁰ pX	~3-4	~8 σ	

WORK IN PROGRESS

Ехр	Reaction	σ	Comment
ZEUS	e+p \rightarrow pK ⁰ X	~4-5	Analysis of new data with improved vertex det
COSY	pp → K⁰pΣ⁻	~5	Analysis of new data with 5X statistics
CLAS	γp → π⁺K⁻K⁺n	~7-8	Run in 2008
CLAS	γd → K⁻K⁺Ξ⁻	~4 (by NA49)	Analysis in progress

6/30

Deuterons and antideuterons in DIS

ZEUS

Particle production in ee

First observation of:

$$e^{+}e^{-} \rightarrow p \not \rightarrow \phi^{0} \not \rightarrow \phi^{0} \not \rightarrow \rho^{0} \not \rightarrow \rho^{0} (\phi)$$

Two virtual-photons annihilation

 $e^+e^- \rightarrow \phi \eta$

Barion-to-meson ratio in pp and ep

PYTHIA does not describe the ratio

The same we see at ZEUS. Splitting the sample to "collimated" and "isotopic" events shows that the latter are not described.

Particle production in pp and NLO

AKK NLO uses the **light flavor FF** obtained from the light flavor separated measurements in e+e- collisions by OPAL

And even strange particle production

Scaled momentum spectra in ep

 $x_P = \frac{2P^{Breit}}{Q}$

This measurement uses almost all HERAI+HERAII data

 $0.5 \, pb^{-1}$

Fragmentation in jets from CDF

Particles in pp and heavy-ion collisions

Color transparency at CLAS Reduction of the strong interaction due to "minihadrons" effect

$$T(A,Q^2) = \frac{\sigma_A}{A\sigma_N}$$

Nuclear transp. should increase with hardening of the scale

Nuclear Attenuation dependence on the formation length

15/30

Prompt photons with jet in PHP

Prompt photons with/without jet in DIS

The LO calculations and MC do not describe the data

Photon plus jet at D0 (data/NLO)

High Et forward dijets in PHP

Data have the potential to further constrain the parton densities of the proton and photon

Jets in CC from ZEUS

First analysis of trijet events

Multijet production in PHP

bb measurements at CDF

Azimuthal correlation is sensitive to production mechanism, but it also demonstrates importance of MPI

Jets in pp

Inclusive jets from D0 data / theory NLO $\mu_{R,F} = p_T$ CTEQ6.1M $R_{cone} = 0.7$ Hadronization corrections applied with threshold corrections (2-loop) PDF uncertainty without threshold corrections (2-loop) 1.5 DØ Run II preliminary 0.5 $L = 0.9 \text{ fb}^{-1}$ |y_{jet}| < 0.4 $\theta_{\rm L}$ 100 200 300 400 500 600 700 p_T (GeV/c)

W+jets, Z+jets from CDF

Well described by NLO

Inclusive jet cross section is reasonably described by NLO.

Why different from L3?

Jets in ep

Inclusive from H1 at high and low Q²;
Inclusive from ZEUS using HERAI+II;
Jet radius;
etc

Very good description by NLO

Precise QCD measurements

Precise QCD measurements

Precise QCD measurements

Future

- More precise measurements. Increased statistics, improved systematics and theoretical uncertainties.
- There was already one QCD LHC talk -"Prospects for inclusive jet measurements at ATLAS".