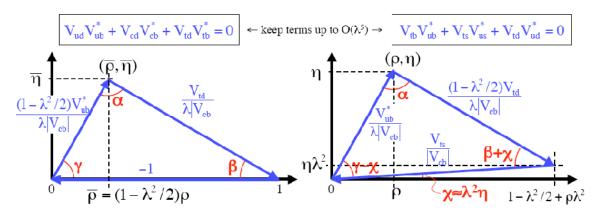


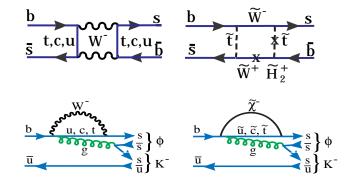
B Physics prospects at LHCb

Emanuele Santovetti on behalf of the LHCb Collaboration Università di Roma Tor Vergata e INFN

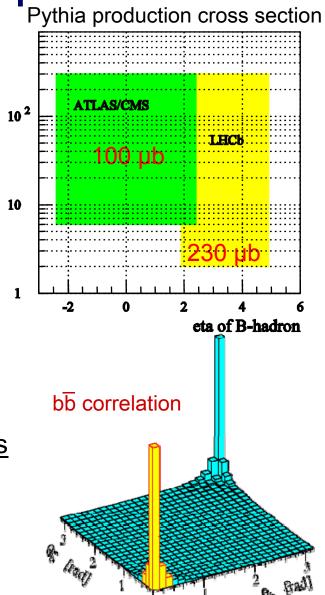


- Physics motivations
- Detector requirements
- Physics program

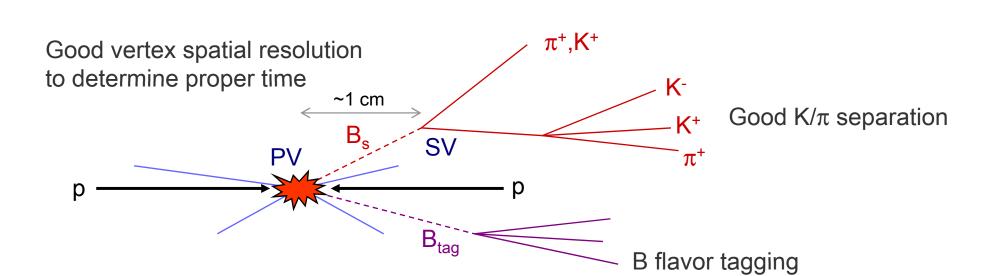
Physics motivation


- LHCb is a dedicated B physics precision experiment at LHC to study CP violation and rare decays
- Standard Model describes CP violation by a single complex phase in the unitary CKM matrix
- We will over constrain the unitarity triangles and search for new physics

 New Physics can manifest through the exchange of a new intermediate particle in box and penguin diagram


> compare measurements where NP effects are expected with tree level ones (no loop or penguins)

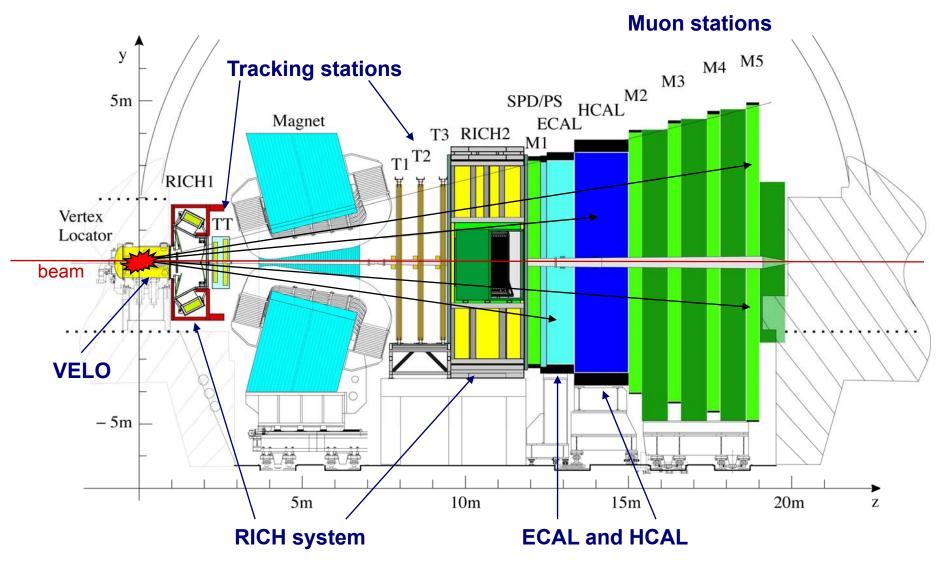
LHCb precision enough to distinguish unitarity triangles (equal up to the λ^3 order)

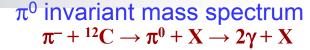

- Designed to maximize B acceptance (within cost and space constraints)
- Forward spectrometer, 1.9 < η < 4.9</p>
 - ☐ more b hadrons produced at low angles.
 - □ single arm OK since b-b pairs produced correlated in space
- Luminosity tuned (2×10³² cm⁻²s⁻¹) to maximize 1 the probability of single interaction per x-ing
- p_T trigger can be lowered up to 2 GeV/c, efficient also for purely hadronic B
- 1 year of running = \sim 2 fb⁻¹ and 10^{12} b- \overline{b} events @nominal luminosity

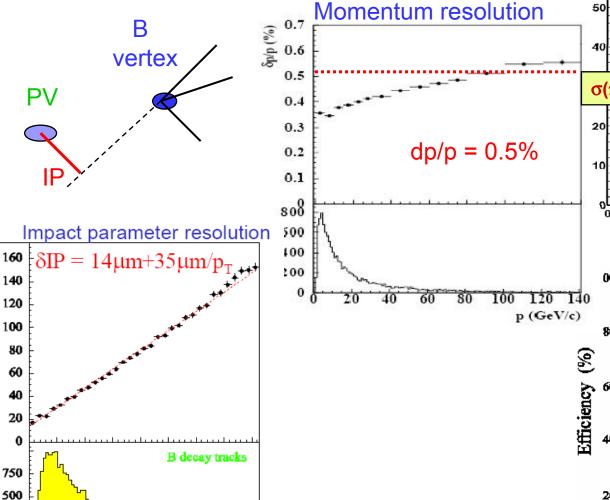
pT of B-hadror

Detector requirements

- Time dependent measurements
- Reconstruction in the harsh LHC environment
- B events ~ few % of the total cross section
 - ☐ Need of a selective trigger
 - ☐ Mass and pointing constraint to reduce background




LHCb Geant4 simulation

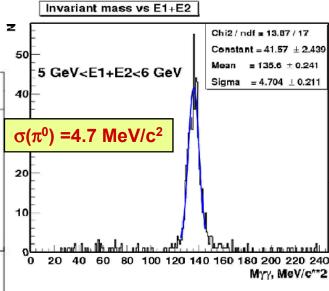

Ŋ.

LHCb detector

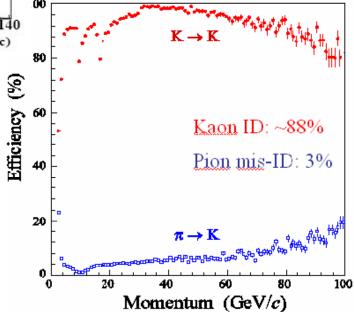
Detector performances

DIS2007 Munich 16-20 April

P resolution [µm]


250

0.5

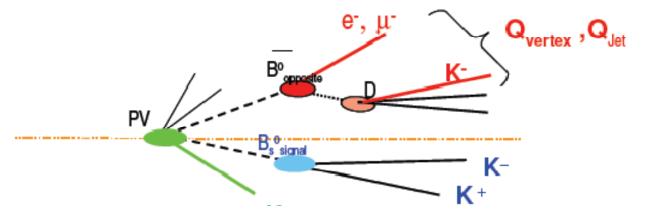

1.5 2

2.5

 $1/p_{\rm T} [{\rm GeV}/c]^{-1}$

Flavor tagging

Opposite side


- \Box Charge of the kaon in the b \rightarrow c \rightarrow s chain
- Charge of the lepton in semi-leptonic decays
- □ Charge of accompanying b jet

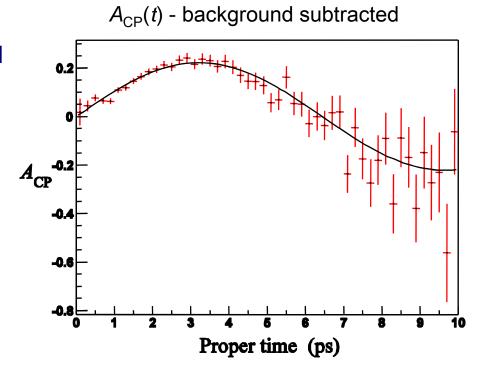
Same side

- □ Charge of the K accompanying B_s
- □ Charge of the π from B** \rightarrow B* π [±]

Tagging power in $\varepsilon(1-2)^2$

Tag (%)	B_d	B_s
Muon	1.1	1.5
Electron	0.4	0.7
Kaon opp. side	2.1	2.3
Vertex charge	1.0	1.0
Same side π/k	0.7 (π)	3.5 (K)
Combined (neu.net)	~ 5.1	~ 9.5

LHCb Physics program


- B_s mixing parameters: $\Delta\Gamma_s$, Δm_s , ϕ_s
- α with $B_d \rightarrow \pi^0 \pi^+ \pi^-$
- β with $B_d \rightarrow J/\Psi K_s$
- γ with different methods
- Rare decays
 - \square B_s $\rightarrow \mu\mu$ to the level of the SM prediction
 - \square Radiative penguin $B_d \to K^* \gamma$, $B_s \to \phi \gamma$, $B_d \to \omega \gamma$
 - □ Electroweak penguin $B_d \rightarrow K^* \mu \mu$
- and much more, e.g. B_c, charm physics, D⁰ mixing and CP violation)

not exhaustive list!

$sin2\beta$ with $B^0 \rightarrow J/\psi K_S$

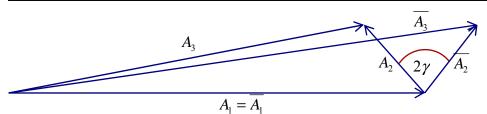
- One of the first CP measurements
 - golden mode, very well measured by b-factories
 - will be an <u>important check of CP</u> <u>analyses and of tagging</u> performance
 - □ can search for direct CP violating term $\propto \cos\Delta m_{\rm d}t$
- Expect 240k reconstructed* $B^0 \rightarrow J/\psi K_S$ events/2fb⁻¹
- Precision $\sigma_{\text{stat}}(\sin 2\beta) \sim 0.02$ in 2fb⁻¹ of collected data [currently $\sigma(\sin 2\beta) \sim 0.03$]

^{*}after trigger and reconstruction

E. Santovetti

Measure γ

- γ is the least well measured CKM angle and LHCb has several ways to measure it (independent)
- Most promising method is the <u>ADS+GLW</u> applied to B → DK
 - \square B⁺ \rightarrow D(K π)K⁺, D(K3 π)K⁺, D($\pi\pi$,KK)K⁺
 - \square B⁺ \rightarrow D*(K π)K⁺
 - \square B⁰ \rightarrow D(K π)K*0, D(KK)K*0, D($\pi\pi$)K*0
- \blacksquare $B_S \rightarrow D_S K$
- Dalitz analysis for the neutral and charged B → DK decays
- $B^0 \to \pi^+\pi^-$ and $B_s \to K^+K^-$, sensitive to new physics


The B[±] → DK[±] decays (GLW and ADS method)

Consider the following decays (tree level)

$$A_{1} \equiv A\left(B^{+} \to \overline{D^{0}}K^{+}\right) = A\left(B^{-} \to D^{0}K^{-}\right)$$

$$A_{2} \equiv A\left(B^{+} \to D^{0}K^{+}\right) = A\left(B^{-} \to \overline{D^{0}}K^{-}\right) \times e^{2i\gamma}$$

$$A_{3} \equiv \sqrt{2}A\left(B^{+} \to D_{+}^{0}K^{+}\right) = A_{1} + A_{2}$$

Measuring the three different decay rates (relative) and the c.c. will allow to extract the gamma angle in a clean way, but...

- because the color suppression, the two amplitudes, A_1 and A_2 , very different \rightarrow large error
- need the D⁰ tag

Decays of D⁰, D⁰ to <u>same final state</u> allows the two tree diagrams (theoretically clean!) to interfere. Consider the decay D⁰ \rightarrow K⁻ π ⁺

$$D^0 {
ightarrow} K^- \pi^+ \ \overline{D^0} {
ightarrow} K^- \pi^+ \ {
m Cabibbo \ suppressed}$$

For these decays the reversed suppression of the D decays relative to the B decays results in much more equal amplitudes \rightarrow big interference effects \sim O(1)

Counting experiment: no need for flavor tagging or proper time determination \rightarrow measure of BR \sim O(10⁻⁷) or smaller

The $B^{\pm} \rightarrow D(K\pi)K^{\pm}$ decays

4 B[±] \rightarrow (K π)_DK[±] decays

$$\Gamma(B^+ \to (K^+\pi^-)_D K^+) \propto 1 + (r_B r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cos(\delta_B - \delta_D^{K\pi} + \gamma)$$
 (1) 56000*

$$\Gamma(B^+ \to (K^- \pi^+)_D K^+) \propto r_B^2 + (r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cos(\delta_B + \delta_D^{K\pi} + \gamma)$$
 (2) 700

$$\Gamma(B^- \to (K^- \pi^+)_D K^-) \propto 1 + (r_R r_D^{K\pi})^2 + 2r_R r_D^{K\pi} \cos(\delta_R - \delta_D^{K\pi} - \gamma)$$
 (3) 56000

$$\Gamma(B^- \to (K^+ \pi^-)_D K^-) \propto r_B^2 + (r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cos(\delta_B + \delta_D^{K\pi} - \gamma)$$
 (4) 700

*both charges

$$\frac{A(DCS)}{A(favoured)} = \frac{A(\overline{D^0} \to K^- \pi^+)}{A(D^0 \to K^- \pi^+)} = \frac{A(D^0 \to K^+ \pi^-)}{A(\overline{D^0} \to K^+ \pi^-)} \equiv r_D^{K\pi} e^{-i\delta_D^{K\pi}}$$
Interference parameters

☐ From the B decays:

- γ because have b \rightarrow u, b \rightarrow c interference
- r_B the ratio in magnitude of two diagrams (≤0.1 for DK[±])
- δ_B a CP conserving strong phase difference
- ☐ The D decays introduce:
- $r_D^{K\pi}$ the ratio in magnitude of two diagrams (0.060)
- $\delta_{D}^{K\pi}$ a CP conserving strong phase difference

but these suppressed rates have order 1 interference term, as r_B~r_D

B[±] →DK[±] strategy: ADS+GLW

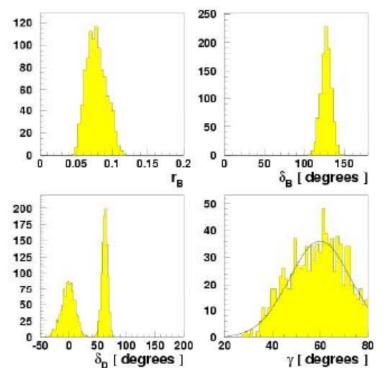
\blacksquare $D^0 \rightarrow K\pi$

3 observables from the relative rates of the 4 processes, depend on 4 unknowns γ , r_B , δ_B , $\delta_D^{K\pi}$

- \Box $r_D^{K\pi}$ is already well measured
- \square may benefit from $\cos(\delta_D)$ measurements in CLEO-c and/or BES III
- ☐ Need another D⁰ decay channel to solve for all unknowns
- D⁰→Kπππ (BR ~ 8%): provides 3 observables which depends on 4 unknowns γ , r_B , δ_B , $\delta_D^{K3π}$ only $\delta_D^{K3π}$ new, $r_D^{K3π}$ is already well measured

■ $D^0 \rightarrow KK/\pi\pi$

each CP mode provides one more observables with no new unknowns


$$\Gamma(B^- \to (h^+ h^-)_D K^-) \propto 1 + r_B^2 + 2r_B \cos(\delta_B - \gamma)$$

$$\Gamma(B^+ \to (h^+h^-)_D K^+) \propto 1 + r_B^2 + 2r_B \cos(\delta_B + \gamma)$$

LHCb sensitivity

- Toy MC to simulate 2 fb⁻¹ signal data:
 - → fit results return input values
- Combine Kπ with:
 - K3π similar yields and identical background level
 - \Box KK $\pi\pi$ 4300 B⁺ and 3300 B⁻ with B/S ~ 2

w/o bkgrd

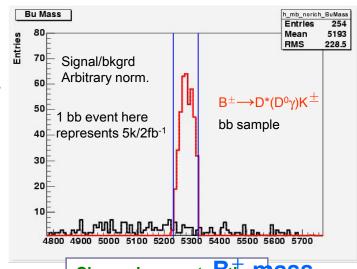
$\delta_D^{K\pi}$, $\delta_D^{K3\pi}$	-25	-16.6	-8.3	0	8.3	16.6	25
-180	3.8	3.1	3.0	3.9	3.2	2.8	2.7
-120	2.8	2.5	2.5	2.5	2.2	2.2	1.9
-60	3.9	3.6 4.2	3.4	4.3	4.2	3.7	3.6
				5.6	8.0	6.1	4.9
60	3.3	3.1	3.3	4.6	6.6	9.4	11.0
120	3.4	3.6	3.8	4.1	3.9	3.6	3.3
180	3.5	3.0	2.9	3.8	3.2	2.8	2.6

estimated bkgrd

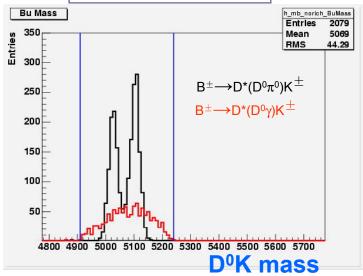
$\delta_{D}^{K\pi}, \delta_{\underline{D}^{K3\pi}}$	-25	-16.6	-8.3	0	8.3	16.6	25
-180	8.6	7.5	6.5	6.8	7.2	7.3	6.0
				6.4			4.7
-60	8.0	7.9	8.1	7.8	7.4	6.7	6.2
0	10.3	11.1	12.4	11.5	12.1	13.1	13.0
60	9.1	10.6	11.2	12.9	13.4	15.0	15.2
120	11.6	11.3	11.8	11.0	10.9	11.1	10.8
180	8.5	7.4	6.5	6.8	7.1	7.3	6.5

(Highlighted are RMS quoted from non-Gaussian distribution of fit results due to close ambiguous solutions, will disappear as statistics increase. Global analysis using all modes will also help.)

$$\sigma(\gamma) \sim 5^{\circ}\text{-}15^{\circ} \text{ in 2 fb}^{\text{-}1}$$
 depending on r_{B} , $\delta_{\text{D}}^{\text{K}\pi}$ and $\delta_{\text{D}}^{\text{K}3\pi}$

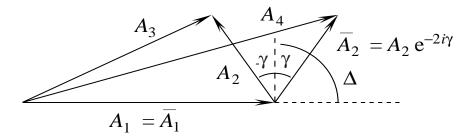

ADS with $B^{\pm} \rightarrow D^*K^{\pm}$ decays

Attractive feature


- □ D*→D⁰π⁰ (BR~2/3) has strong (CP con.) phase δ_B
- □ D*→D⁰γ (BR~1/3) strong phase δ_B+π
- → if can distinguish the two decays, powerful additional constraint!
- □ Preliminary studies (without background) show that, including D*K improves precision of previous analyses to σ(γ) = 2° 5° (favored mode: 17k/2 fb⁻¹)

However...

- Reconstruction efficiency is small for soft γ while background is enormous
- \square Non trivial to separate $D^0\pi^0$ and $D^0\gamma$
- \Box Fit DK mass shape to get π^0 and γ components ignoring neutrals



GLW method - γ from B⁰ \rightarrow D⁰K*⁰

Dunietz variant of Gronau-Wyler method makes use of interference between two color-suppressed diagrams interfering via D⁰ common final states ($\pi\pi$, π K, KK)

$$B^{0} \begin{cases} \overline{b} & \longrightarrow \begin{bmatrix} \overline{c} \\ u \end{bmatrix} \overline{D}^{0} \\ \overline{s} \\ d \end{bmatrix} K^{*0}$$

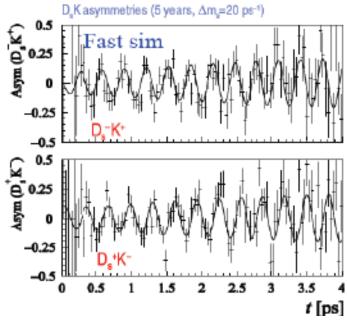
$$B^0 \left\{ \begin{array}{c} \overline{b} \\ d \end{array} \right. \qquad \left\{ \begin{array}{c} \overline{u} \\ c \\ \overline{s} \\ d \end{array} \right\} K^{*0}$$

$$\begin{array}{c} \overline{u} \\ \overline{S} \\ \overline{S} \\ \end{array} \} K^{*0} \\ \begin{array}{c} A_1 = A(B^0 \to \overline{D}{}^0 K^{*0}) \text{: b} \to \text{c transition, phase 0} \\ A_2 = A(B^0 \to D^0 K^{*0}) \text{: b} \to \text{u transition, phase } \Delta + \gamma \\ A_3 = \sqrt{2} \ A(B^0 \to D_{CP} K^{*0}) = A_1 + A_2 \text{, because} \\ D_{CP} = (D^0 + D^0) / \sqrt{2} \\ \end{array}$$

Measuring the 6 decay rates, $B^0 \rightarrow D^0(K\pi,\pi\pi,KK)K^{*0} + CP$ conjugates, allows γ to be extracted without flavor tagging or proper time determination

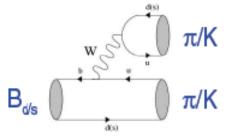
Mode (+ cc)	Yield*	B _{bb} /S (90%CL)
$B^0 o (K^+\pi^-)_D K^{\star 0}$	3400	< 0.3
$B^0 o (K^-\pi^+)_D K^{\star 0}$	500	< 1.7
$B^0 \rightarrow (K^+K^-)_D K^{*0}$	600	< 1.4

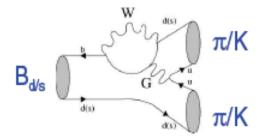

$$\sigma(\gamma) \sim 7^{\circ}$$
 - 10° (2 fb⁻¹) depending on , $\delta_{\rm D}^{\rm K\pi}$ and $\delta_{\rm D}^{\rm K3\pi}$


*in 2 fb⁻¹, both charges

$B_s \rightarrow D_s K$

- Interference between tree level decays via B_S mixing (s-version of $B_d \rightarrow D^*\pi$): time dependent analysis (clean, no penguins)
- Measures $\gamma + \phi_S$ (ϕ_S from B_S \rightarrow J/Ψ Φ)
- Expect 5400 events/2fb⁻¹
- Excellent proper-time resolution (σ_t ~ 40 fs) allows to resolve B_S oscillations
- $\sigma(\gamma) \sim 13^{\circ}$ from 2fb⁻¹ data [$\Delta m_s = 17.3 \text{ ps}^{-1}$]
- Main background from $D_S\pi$ (BR×10)
 - Suppressed using kaon ID from RICH detector
 - □ B/S <1 @ 90% CL</p>
- Parallel analysis possible with $B_d \rightarrow D\pi^{\pm}$ (~790k events/2fb⁻¹ with B/S ~ 0.3, γ extraction requires $r_{D\pi}$ or combined $B_s \rightarrow D_s K$ U-spin analysis)




Ŋ

γ from B⁰ \rightarrow hh

■ $B^0 \to \pi\pi$ originally proposed to measure α but the influence of penguin diagrams

makes the task difficult

From the time dependent CP asymmetry

$$A_{CP}(t) = A_{dir} \cos(\Delta mt) + A_{mix} \sin(\Delta mt)$$

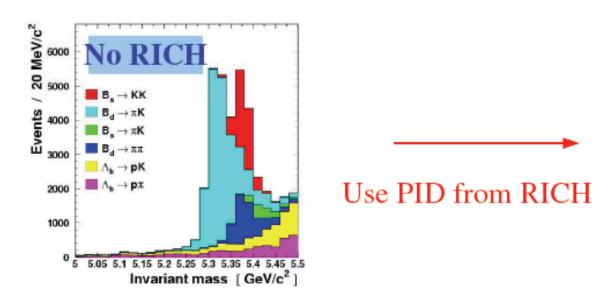
Extract four asymmetries

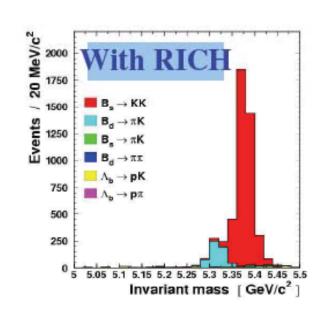
$$A_{dir}(B^{0} \to \pi^{+}\pi^{-}) = f_{1}(d,\theta,\gamma)$$

$$A_{mix}(B^{0} \to \pi^{+}\pi^{-}) = f_{2}(d,\theta,\gamma,\beta)$$

$$A_{dir}(B_{s} \to K^{+}K^{-}) = f_{3}(d',\theta',\gamma)$$

$$A_{mix}(B_{s} \to K^{+}K^{-}) = f_{4}(d',\theta',\gamma,\chi)$$

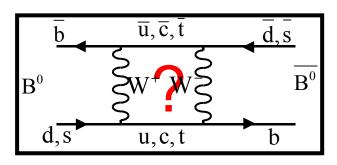

 $de^{i\theta}$ = ratio of penguin and tree amplitude in $B{\to}\pi\pi$ d' $e^{i\theta'}$ = ratio of penguin and tree amplitude in $B{\to}KK$


Assuming U-spin flavor symmetry (u \leftrightarrow s) d=d' and θ = θ ' and taking β from B_d \to J/ ψ K_s and χ from B_s \to J/ ψ ϕ we can solve for γ

γ from B⁰ \rightarrow hh

- 26k $B_d \rightarrow \pi\pi$ events with 2fb⁻¹, B/S < 0.7
- $37k B_s \rightarrow KK \text{ events}, B/S = 0.3$
- $\sigma(\gamma) \sim 5^{\circ}$ + uncertainty from U-spin symmetry breaking
- Sensitive to new physics

Summary of performances on γ


B mode	D mode	Method	σ(γ)
$B^+ \rightarrow DK^+$	Κπ +ΚΚ/ππ + Κπππ	ADS+GLW	5°-15°
$B^+ \rightarrow D^*K^+$	Κπ	ADS+GLW	under study
B⁺→DK⁺	$K_{S}\pi\pi$	Dalitz	15°
B⁺→DK⁺	ΚΚππ	4-body "Dalitz"	15°
B⁺→DK⁺	Κπππ	4-body "Dalitz"	under study
$B^0 \rightarrow DK^{*0}$	Kπ + KK + ππ	ADS+GLW	7°-10°
$B^0 \rightarrow DK^{*0}$	$K_{S}\pi\pi$	Dalitz	under study
$B_S \rightarrow D_S K$	ΚΚπ	tagged, A(t)	13°
$B\to\pi\pi,KK$			4°-10°

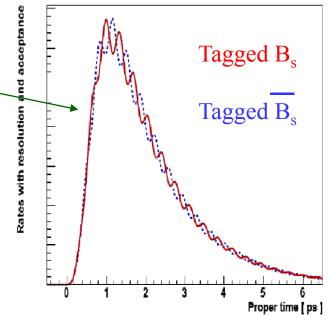
Signal only, no accept. effec

Combining all modes, with a nominal year of data (2 fb⁻¹), LHCb will be able to extract γ with \sim 4° resolution, and compare the B \rightarrow DK direct measurement with the indirect determination (B⁰ $\rightarrow \pi^+\pi^-$, B_s \rightarrow K⁺K⁻) to make a stringent test of the SM

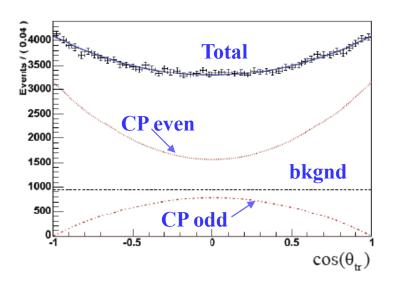
B_s mixing phase, ϕ_s , from $B_s \rightarrow J/\psi(\mu^+\mu^-) \phi$

In the SM ϕ_s^{SM} = -2χ = $-2\lambda^2\eta$ (small) and from UT fits we get ϕ_s = -0.037 ± 0.002 Direct measurements not very precise: recent D0: $-0.79^{+0.47}$ $_{-0.39}$ CP violating decay can proceed directly or through mixing.

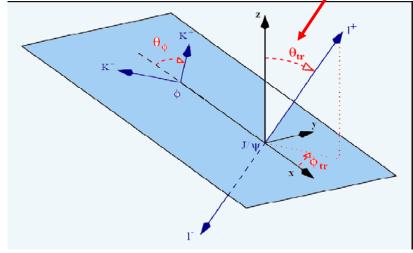
The "mixing box" can have contributions from NP particles, resulting in $\phi_s = \phi_s^{SM} + \phi_s^{NP} \neq -2\lambda^2 \eta$


Measure proper time dependence — Measure time-dependent CP asymmetry

$$\begin{split} A_{\textit{CP}}(t) &= \frac{\Gamma[\overline{B}_s(t) \to f] - \Gamma[B_s(t) \to f]}{\Gamma[\overline{B}_s(t) \to f] + \Gamma[B_s(t) \to f]} \\ A_{\textit{CP}}(t) &= \frac{\eta_f sin\phi_s sin(\Delta m_s)t}{cosh(\Delta \Gamma_s t/2) - \eta_f cos\phi_s sinh(\Delta \Gamma_s t/2)} \\ \end{split}$$


E. Santovetti

DIS2007 Munich 16-20 April

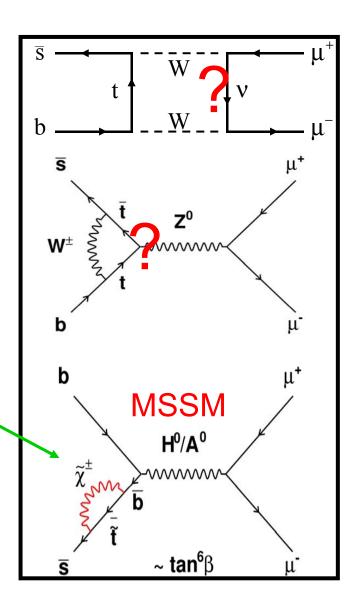


 B_s mixing phase, ϕ_s , from $B_s \rightarrow J/\psi(\mu^+\mu^-) \phi$

- Because the final state contains two vector particles, it is a mixture of CP odd and CP even
- Use θ_{tr} angle between μ^+ and normal to ϕ decay plane to do an angular analysis to identify the states.

Simultaneous fit to time and angular distributions

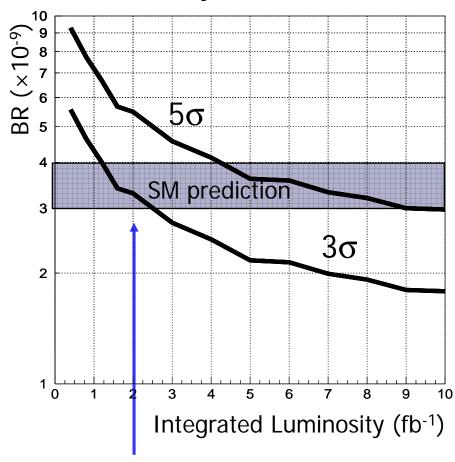
With: 2 fb⁻¹ of data Precision on ϕ_s $\sigma(\phi_s) = 0.023$


From pure CP states $B_s \rightarrow J/\psi \eta$, $\sigma(\phi_s)$ = 0.059

Combining $\sigma(\phi_s)$ = 0.021 (UT fit value: -0.037)

$$B_s \rightarrow \mu^+ \mu^-$$

- Very small branching ratio in SM:
 (3.4 ± 0.5) × 10⁻⁹
- Present limit from Tevatron at 95% CL(1 fb⁻¹): < 7 × 10⁻⁸ (expected final limit at 95% CL (8 fb⁻¹): < 2 × 10⁻⁸)
- Sensitive to New Physics through loops
- Could be strongly enhanced by SUSY.

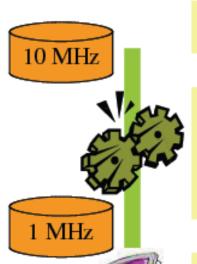


$$B_s \rightarrow \mu^+ \mu^-$$

- LHCb should have good prospect for significant measurement: 17 SM events/2fb⁻¹
- Difficult to get reliable estimate of expected background
 - No background events selected in sample of 33M events but estimation limited by statistic
 - \square Combinatorial: B to μ⁺X, B to μ⁻X known as the main source of background, addressed by very good mass resolution 18 MeV/c²
 - \square B_d, B_s to $\pi\pi$, π K, KK and mis-id. addressed by particle identification and mass resolution.

LHCb Sensitivity (signal+bkg is observed)

with L=2fb⁻¹ 3σ observation if at SM value


Conclusions

- LHCb will be ready to collect data with its full detector as LHC turns on. Physics at 14 TeV starting in 2008
- It will make precision measurements that will severely constrain the unitarity triangle fits and probe rare decays
- These measurements could either limit New Physics contributions to B decays or, more optimistically, uncover them

Spare slides

LHCb trigger

Visible collisions

 $L = 2 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

L0: [hardware]
high Pt particles
calorimeter + muons
4 s latency

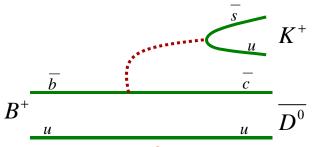
HLT [software]

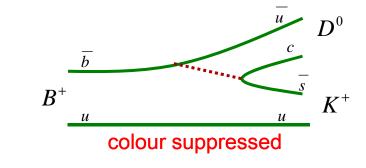
1 MHz readout

~1800 nodes farm

On tape:

Exclusive selections Inclusive streams

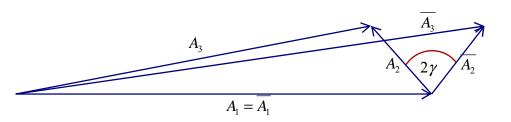

- Selection of the b-b events in the sample: μ, e, h, γ (1-4 GeV) and pile-up veto
 - ☐ High P_t particles
 - Displaced tracks
 - □ Increased b-cont from 1% to ~ 50%
- Different output streams from HLT
 - 200 Hz are dedicated to the exclusive selections of specific channels
 - Main stream for the core LHCb physics program
 - Inclusive streams for calibration and data mining:
 - di-muon stream
 - D* stream
 - single muon


B physics: LHC vs B-factories

	e+e- → Y(4S) → BB PEPII, KEKB	pp → bbX (\sqrt{s} = 14 TeV, Δt_{bunch} =25 ns) LHCb @2x10 ³² cm ⁻² s ⁻¹	
Production σ_{bb}	1 nb	~500 μb	
Typical bb rate	10 Hz	100 kHz)
bb purity	~1/4	$\sigma_{\rm bb}/\sigma_{\rm inel}$ = 0.6% Trigger is a major issue !	\odot
Pileup	0	0.5	
b-hadron types	B+B- (50%) B ⁰ B ⁰ (50%)	B+B- (40%), B ⁰ (40%), B _s (10%) B _c (< 0.1%), b-baryons (10%)	3
b-hadron boost	Small	Large (decay vertexes well separated)	
Production vertex	Not reconstructed	Reconstructed (many tracks)	
Neutral B mixing	Coherent B ⁰ B ⁰ pair mixing	Incoherent B ⁰ and B _s mixing (extra flavour-tagging dilution)	
Event structure	BB pair alone	Many particles not associated with the two b hadrons)

The B[±] → DK[±] decays (GLW method)

Consider the following diagrams and the c.c.



colour favoured

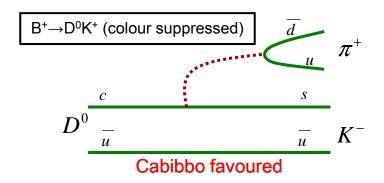
$$A_{1} \equiv A \Big(B^{+} \to \overline{D^{0}} K^{+} \Big) = A \Big(B^{-} \to D^{0} K^{-} \Big)$$

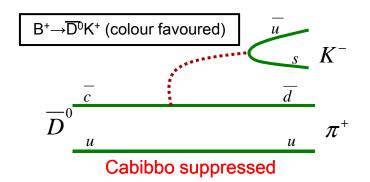
$$A_{2} \equiv A \Big(B^{+} \to D^{0} K^{+} \Big) = A \Big(B^{-} \to \overline{D^{0}} K^{-} \Big) \times e^{2i\gamma}$$

$$A_{3} \equiv \sqrt{2} A \Big(B^{+} \to D_{+}^{0} K^{+} \Big) = A_{1} + A_{2}$$

Measuring the three different decay rates (relative) and the c.c. will allow to extract the gamma angle in a clean way, but...

- two amplitudes (A_1 and A_2) very different \rightarrow large error
- need the D⁰ tag




The ADS method

$$B^{+} \to \overline{D}^{0} [\to f_{i}] K^{+}$$

$$B^{+} \to D^{0} [\to f_{i}] K^{+}$$

Decays of D⁰, \overline{D}^0 to <u>same final state</u> allows the two tree diagrams (theoretically clean!) to interfere. Consider the decay D \rightarrow K⁻ π ⁺

For these decays the reversed suppression of the D decays relative to the B decays results in much more equal amplitudes \rightarrow big interference effects \sim O(1)

Counting experiment: no need for flavor tagging or proper time determination

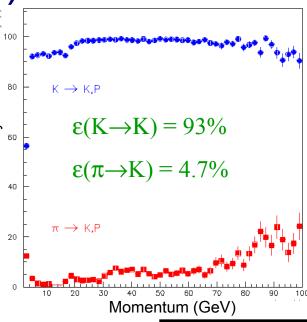
 \rightarrow measure of BR ~ O(10⁻⁷) or smaller

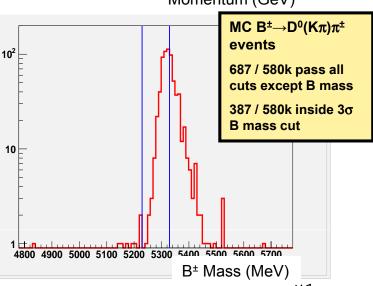
Background studies $B^{\pm} \rightarrow D(K\pi)K^{\pm}$

Favoured modes

- \square Background from D⁰ π decays dominates (BR \times 13)
 - Use RICH information to separate D⁰K and D⁰ π
 - Use dedicated sample of $D^0\pi$ decays
 - \rightarrow Expect ~17k bkgrd events/2fb⁻¹ from D⁰ π
- Use bb sample to assess combinatorial background

~28k/year B⁺
$$\to$$
 (K⁺ π ⁻)_DK⁺ B/S ~ 0.6


~28k/year B
$$^ \rightarrow$$
 (K $^-\pi^+$)_DK $^-$ B/S ~ 0.6


Suppressed modes

- □ bb sample indicates that the combinatorial contribution dominates :
 - → Expect ~0.7k background events/2fb⁻¹

~530/year B⁺→
$$(K^-\pi^+)_D K^+$$
 B/S ~ 1.5

~180/year B
$$^{-} \rightarrow (K^{+}\pi^{-})_{D}K^{-}$$
 B/S ~ 4.3

