Electroweak Measurements and Beyond the Standard Model: Session Summary II

James Ferrando, <u>Thomas Nunnemann</u>, Michael Spira, Martin Wessels

DIS 2007, Munich, 09.04.2007

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics Higgs searches SUSY searches Non-SUSY

The EW and BSM Parallel Sessions

- probably most exotic group at this conference as dominated by non-DIS experiments
- broad range of physics covered
 - electroweak boson production and properties
 - top quark physics
 - flavour physics
 - Searches for:
 - Higgs-Boson
 - Supersymmetry
 - Non-SUSY BSM
- Apologies for omissions in the following slides!

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics

Higgs searches

SUSY searches

$\sigma({\sf NC})$ with polarized e^+/e^- (S. Bhadra)

EW+BSM Summary II T. Nunnemann

$$A^{\pm} = \frac{2}{P_e^+ - P_e^-} \frac{\sigma^{\pm}(P_e^+) - \sigma^{\pm}(P_e^-)}{\sigma^{\pm}(P_e^+) + \sigma^{\pm}(P_e^-)} \propto a_e \frac{F_2^{\gamma Z}}{F_2^{\gamma}} \propto a_e v_q$$

 \Rightarrow directly see effect of parity violation due to $a_e v_q$ term

EW couplings of Z boson (G. Li)

FW+BSM

Summary II

- NC+CC DIS included in fits • $\frac{\sigma^{NC}}{dxdQ^2} \propto \sigma^{\gamma} + \sigma^{\gamma Z} + \sigma^{Z}$ $\sigma^{\gamma} \propto \alpha^{2}$, $\sigma^{\gamma Z} \propto \alpha G_{F} \times v_{q}$, $\sigma^{Z} \propto G_{F}^{2} \times (v_{q}^{2} + a_{q}^{2})$
- additional sensitivity w.r.t. published HERA-I fit due to polarization
- CDF (72 pb⁻¹): A_{FB} in lepton pair production

Diboson production at the Tevatron (Y. Maravin)

 $DØ: 0.9 \, fb^{-1}$

• $Q \times \Delta \eta$: first hint of radiation amplitude zero

- WZ: observation (CDF, 1.1 fb⁻¹) $\sigma(WZ) = 5.0^{+1.8}_{-1.6}$ (stat+syst) pb (5.9 σ)
 - ZZ: evidence (CDF, 1.5 fb⁻¹) $\sigma(ZZ) = 0.75^{+0.71}_{-0.54}$ (stat+syst) pb (3.0 σ)

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics Higgs searches SUSY searches Non-SUSY BSM

M(W) and ΓW from CDF (S. Malik)

W width

 80413 ± 48 (stat+syst) MeV

combination (e, μ) : $\Gamma(W) =$ 2032 ± 71 (stat+syst) MeV

⇒ most precise single measurements

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics Higgs searches SUSY searches Non-SUSY BSM

M(W) and $\Gamma(W)$: new world averages

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics Higgs searches SUSY searches Non-SUSY BSM

before: $80392 \pm 29 \text{ MeV}$ now: $80398 \pm 25 \text{ MeV}$ before: $2139 \pm 60 \text{ MeV}$ now: $2095 \pm 47 \text{ MeV}$ (only direct measurements)

Top quark production at Tevatron

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics

Higgs searches

SUSY searches

Evidence for single top quark prod. at DØ (S. Jabeen)

 validation of background model in side-band regions

- large background from W+jets and $t\bar{t}$
- largest sensitivity with boosted decision tree analysis
- combined significance: 3.5σ

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics Higgs searches SUSY searches Non-SUSY BSM

$t\overline{t}$ production cross sections (C. Gerber)

 \Rightarrow experimental results reaching theoretical precision of $\sim 12\%$

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics

Higgs searches

SUSY searches

Top mass measurements (J. Wagner)

best precisions obtained with Matrix-Element method $\mathcal{P}_{t\bar{t}}(\vec{x_i}, M_t) \propto \int \mathrm{d}p_a \mathrm{d}p_{\bar{a}} f(p_a) f(p_{\bar{a}}) \,\mathrm{d}\sigma_{t\bar{t}}(\vec{y}, M_t) \, W(\vec{x_i}, \vec{y})$

EW+BSM Summary II

T Nunnemann LMU Munich

top quark physics

200

220 Event Top Mass (GeV/c

Top Mass Combination

- relative uncertainty ${\sim}1\%$
- new ambitious goal $\Delta m_t \sim 1\,{
 m GeV}$
- for Higgs mass constraint Δm_t corresponds to $\Delta m_W \sim 10~{
 m MeV}$

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics Higgs searches SUSY searches Non-SUSY BSM

LHC: Top as Commissioning Tool A.-C. Le Bihan, F.-P. Schilling

- ATLAS: jet energy scale calibration through M(W) (/+jets)
- CMS: *b*-tagging efficiency (dilepton)

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics Higgs searches SUSY searches Non-SUSY

Higgs Searches at the Tevatron R. Vilar

EW+BSM Summary II

T. Nunnemann LMU Munich

Tevatron combination 07.06

top quark physics Higgs searches

- many new results not yet included in Summer 06 Tevatron combination
- new results are scaling much better than just the luminosity factor

SUSY Higgs: $\phi \rightarrow \tau \tau$ (R. Ströhmer)

- MSSM: 2-Higgs-doublet model:
 - 5 *H*-bosons: h^0 , H^0 , A^0 , H^{\pm}
 - all $^{\mathrm{O}}=\phi^{\mathrm{O}}$
- $\sigma(gg \rightarrow H)$ and $\sigma(b\bar{b}H)$ enhanced at large tan β
- CDF: some excess seen (only $e\tau$, $\mu\tau$), but significance $< 2\sigma$
- DØ: no excess

Search for \tilde{q} , \tilde{g} at the Tevatron (R. Ströhmer)

- combination of different jets

 + ∉_t selections, optimized
 for different m(ğ) m(q̃)
- most conservative limits (for $\tan \beta = 3, A_0 = 0, \mu < 0$): $M_{\tilde{g}} > 289 \,\text{GeV}$ $M_{\tilde{q}} > 375 \,\text{GeV}$
- interpretation within mSUGRA: improved limits w.r.t. LEP for $m_0 \sim 75 - 250 \, {\rm GeV}$ and $m_{1/2} \sim 125 - 165 \, {\rm GeV}$

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics

Higgs searches

SUSY searches

Prospects for BSM Searches at LHC D. Rebuzzi

SUSY early searches

SUSY most popular template for exploration of new physics at the LHC

SUSY is a broken symmetry (no sparticles observed to date) → several models of SUSY breaking (mSUGRA, GMSB, AMSB)

Minimal SUSY Standard Model (MSSM) with R-parity conservation

- · sparticles are produced in pairs
- the Lightest SUSY Particle (LSP) is stable

sparticles \rightarrow lighter sparticles + SM particles down to stable, undetected LSP

Inclusive signatures in mSUGRA parameter spaces - 5σ discovery reach for ATLAS (below) and CMS (bottom-left)

1 fb⁻¹

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics

Higgs searches

SUSY searches

A. Raspereza

Exploring SUSY Complementarity of LHC & ILC

LHC explores in detail strongly interacting SUSY sector (squarks, gluinos)

- > Most of other SUSY particles are within reach of sub-TeV ILC
 - ★ Big chance to observe SUSY particles at early stage of ILC operation (√s=500 GeV)
 - Clean signatures, low backgrounds precise SUSY spectroscopy (EW-interacting sector)
- From physical observables to SUSY Lagrangian
 - $M_{I'}, M_2, M_3, tan\beta, \mu, m_0 \dots etc$ (Joint LHC & LC effort)

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

. _ . . .

top quark physics

Higgs searches

SUSY searches

Events with Isolated Leptons and $\not\!\!\!E_t$ at HERA (K. Korcak-Gorzo, Y. de Boer)

EW+BSM

Summary II T. Nunnemann

LMU Munich

	P ₁ ×> 25	i GeV	electrons Data/SM	muons Data/SM
e⁺p	H <mark>1</mark>	294 pb ⁻¹	11/4.7±0.9	10/4.2±0.7
	ZEUS	228 pb ⁻¹	1/3.2±0.4	3/3.1±0.5
e p	H1	184 pb ⁻¹	3/3.8±0.6	0/3.1±0.5
	ZEUS	204 pb ⁻¹	5/3.8±0.6	2/2.2±0.3

 \Rightarrow H1 excess still at 3.0 σ

Multi-Lepton Production at HERA

G. Brandt, Osamu Ota

• Excess of *ee* and *eee* events at high *M*₁₂ observed in H1 at HERA-1 vanished!

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics

Higgs searches

SUSY searches

General Search for BSM at HERA (E. Sauvan)

- event yields: good agreement with SM in most classes
- search for deviations in $\sum P_T$ and M_{all}
- quantify significance by comparing with random histograms from SM
- most deviating μ − j − ν (cf. excess in isolated lepton search)

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics

Higgs searches

SUSY searches

Automated Model Testing (S.Caron)

Quaero@H1

- compare to published data
 - H1 general search HERA-I (histograms of all channels)
 - DØ Quaero samples (3 channels, with 4-vectors)
- provide fast simulation of detector response

The user provides commands to the build ir event generators

Event generator makes HERA events with the right luminosity

H1 detector response, analysis efficiencies and cuts are simulated using Turbosim

Systematic error is integrated numerically and results from different experiments are combined

The observable(s) with the most difference is used to determine the likelihood ratio L = $p(D \mid H) / p(D \mid SM)$

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics

Higgs searches

SUSY searches

Limits on BSM with NC DIS (S.Schlenstedt)

limits on EW quark radius $\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2}\right)_{SM} \left(1 - \frac{1}{6}R_q^2Q^2\right)^2$

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics

Higgs searches

SUSY searches

Non-SUSY BSM

 $\Rightarrow R_q < 0.67 \times 10^{-3} \, \mathrm{fm}$

also derived: limits on contact interactions, heavy leptoquarks and large extra dimensions

Search for Leptoquarks at H1 (A. Dubak)

EW physics

top quark physics

Higgs searches

SUSY searches

- 2 xcluded LO S_{0.L} 10⁻¹ H1 (05) prelim. single LQ H1 (94-00) single LQ D0 pair prod. s-channel $\sigma \sim \lambda^2$ u-channel $\sigma \sim \lambda^4$ 10⁻² L3 indir. limit $M_{LQ} \approx (sx)^{1/2}$ $M_{LQ} > s^{1/2}$ 200 250 300 350 400 M_o/GeV
- new: increased e⁻p statistics
- $S_{O,L} \rightarrow \beta = Br(LQ \rightarrow eq) = 0.5$ (Tevatron has higher sensitivity at $\beta = 1$)
- complementarity HERA \leftrightarrow Tevatron

Search for excited leptons at H1 (T. Trinh)

- also new results on excited neutrinos
- excited leptons couple to gauge bosons (Gauge Mediated Interaction)
- Note: at Tevatron the production cross section via Contact Interaction is about a factor 100 higher than GMI (not included here)

EW+BSM Summary II

Non-SUSY BSM Searches at Tevatron (D. Stuart)

LMU Munich $\mathsf{D} \emptyset: Z \to ee^* \to ee\gamma$ **CDF**: $Z' \rightarrow ee$ 95% CL Limits (Spin-1, e⁺e⁻) ∧ [TeV] DØ Bun II Preliminary 1.0 fb¹ σ.Br(Z'→e⁺e') (pb) - 95% CL limit $L dt = 1.3 fb^{-1}$ ······ Expected 95% limit Z'_{SM} (LO σ.Br × 1.3) --- Z', (LO σ.Br × 1.3) — Ζ', (LO σ.Br × 1.3) Z'_{w} (LO σ .Br \times 1.3) $Z'_{LO} \sigma.Br \times 1.3)$ Non-SUSY **BSM** 10 excluded 95% CL 10-2 200 600 CDF Bun II Preliminary 300 400 500 700 800 m. [GeV] 700 800 900 M₂ (GeV/c²) including CI and GMI

EW+BSM

Summary II

- many model and signature driven searches at Tevatron:
 - extra dimensions, leptoquarks, 4th generation quarks, ...
 - Z + X, $\gamma\gamma + X$, ...

Summary of the Summary

- many, many new interesting results, too much to be able to give appropriate credits here
- Thanks for the speakers of our session for the very high quality of the presentations!
- Also thanks to the other participants in the sessions for the lively discussions!

EW+BSM Summary II

T. Nunnemann LMU Munich

EW physics

top quark physics

Higgs searches

SUSY searches