

A. Sbrizzi - University of Bologna, Italy

B and Upsilon cross sections (HERA-B)

On behalf of the HERA-B collaboration

Outline

- HERA-B detector
- Dilepton triggered data sample
- Open $b\bar{b}$ production cross section
 - inclusive J/ψ decays
 - double semileptonic b decays
- Y production cross section

HERA-B (top view)

<u>high vertex resolution</u> (500 μm along beam)

good PID $(e^{\pm}, \mu^{\pm}, \pi, K, p) + \gamma$ reconstruction

Dilepton triggered data sample

Hardware track finding behind magnet, seeded by ECAL or MUON hits.

Independent software track finding + vertex fit.

Performance: ~150·10⁶ events @ 100 Hz (~1000 J/ ψ per hour).

Statistics per wire: ¹²C (64%), ⁴⁸Ti (9%), ¹⁸⁴W (27%).

Study of charmonium $(J/\psi, \chi_c, \psi', \text{ with A-dependence}) \rightarrow \text{see talk of M. Zur Nedden}$.

Open beauty: Motivation

Experiments: poor statistics, incompatible results.

Theory: test of pQCD in the near threshold energy regime (41.6 GeV).

At first order, bb quark pairs are produced by gluon-gluon fusion. Higher order processes, such as soft gluon emission, are calculated.

Theoretical uncertainty includes variations of *b* mass (4.5-5.0 GeV), factorization and renormalization scales (0.5-2.0 *b* mass).

Theory	Order	$\sigma_{_{bar{b}}}[ext{nb/nucleon}]$
Kidonakis <i>etal.,</i> Eur. Phys. J. C36 (2004), 201	NLO + NNL	30 ± 18
Bonciani <i>etal.</i> , Nucl. Phys. B529 (1998), 424	NLO + NNLL	25 ± 17

Open beauty: Measurement methods

Exploit the *b*-hadron (B) long lifetime ($\approx 9 \text{ mm} = 18 \sigma_Z @ \text{HERA-B}$).

 $pA \rightarrow J/\psi \rightarrow l^+l^-X$ Upstream
Downstream l^+ Proton l^-

Signal: detached J/ψ

Signal: double semileptonic

$$pA \rightarrow b\bar{b} \rightarrow J/\psi \rightarrow l^{+}l^{-}X$$

$$High p_{T} \qquad l^{+}$$

$$B \qquad Y$$

$$I_{lepton} \qquad l^{-}$$

 J/ψ method: count events with a J/ψ detached from the primary vertex.

<u>Double semileptonic method</u>: count events with at least two heavy quarks $(b, \bar{b}, c \text{ or } \bar{c})$ decaying semimuonically (high p_T and high impact to the wire).

Open beauty: Measurement methods

The rate of b-hadrons is normalized to prompt $J/\psi \rightarrow$ systematic effects are reduced.

$$R_{\Delta\sigma} = \frac{\sigma(b\overline{b})}{\sigma(J/\psi)} = \frac{n_B}{n_{J/\psi}} \cdot \frac{1}{\varepsilon_R \cdot \varepsilon_B^{\Delta z} \cdot \text{Br}(b\overline{b} \to J/\psi + X)}$$

 ϵ_R : ratio of trigger efficiency of prompt and detached J/ ψ ϵ_B : efficiency of Δz cut $\sigma_{J/\psi}$: 502 ± 44 nb/nucleon [hep-ex/0003003]

 $\sigma_{J/\psi}$ from a NRQCD fit to world data (incl. HERA-B) \rightarrow M. Zur Nedden's talk.

$$R_{\Delta\sigma} = \frac{\sigma(b\bar{b})}{\sigma(J/\psi)} = \frac{n_B \cdot \text{Br}(J/\psi \to \mu^+\mu^-) \cdot \varepsilon_{J/\psi}}{n_{J/\psi} \sum_{j} \text{Br}_{j}(b\bar{b} \to \mu^+\mu^-) \cdot (1 - \vartheta_{j}) \cdot \varepsilon_{j,B}}$$

All possibile decays leading to dimuon final state are included (via $c \rightarrow \mu$ decays). The θ factor accounts for the effect of neutral B meson mixing.

Detached J/ψ signal

Blind and simultaneous cut optimization, based on the signal significance.

Background

Combinatorial (44%) and double semileptonic b (43%) and c (13%) decays. Prompt J/ ψ are negligible.

Beauty cross section from detached J/ψ

Unbinned likelihood fits, within HERA-B kinematical range ($83 \pm 1\%$).

R _{Δσ} [10 ⁻²]		
Electrons	$2.95 \pm 0.55_{\rm stat}$	
Muons	$3.53 \pm 0.78_{\rm stat}$	
Combined	$3.2 \pm 0.5_{\rm stat} \pm 0.4_{\rm sys}$	

Electron and muon channels results are independent (to a large extent) and consistent.

Main systematic uncertainty: $\sigma(BR_{J/\psi}) = 8.6 \%$

Extrapolation to full range + $\sigma_{J/\psi}$ = 502 ± 44 nb/nucleon

$$\sigma_{b\bar{b}} = 14.9 \pm 2.2_{\rm stat} \pm 2.4_{\rm sys} \, \rm nb/nucleon$$

B lifetime

The lifetime is exploited to confirm the *b*-flavour of the detached candidates.

Long lived candidates are concentrated around the J/ψ mass.

The lifetime is consistent with the PDG value ($\tau = 1.54$ ps).

Other B confirmation

Search for additional tracks consistent with a common vertex (B \rightarrow J/ ψ + h $^{\pm}$)

Selection criteria released

New vertex fit with a 3th charged track, having low momentum, pointing far away from the primary vertex.

Fully reconstructed events are partially overlapped with the previous sample (50% overlap).

The cross section ratio ($R_{\Delta\sigma}$ = 4.3 × 10⁻²) is consistent with the previous result. Cross-check confirmation (not a new measurement).

Selection of double semileptonic b decays

Blind and simultaneous cut optimization, based on the signal significance.

$$I_{lepton} > 4.0 \text{ } \sigma, p_T > 1 \text{ GeV}, \Delta z > 0.2 \text{ cm},$$

 x_F of accepted muons: [-0.3, 0.15]

A soft Δz cut (0.2 cm) on the fictious dimuon vertex rejects unphysical muon pairs, keeping an high signal efficiency.

The J/ψ invariant mass region is excluded in order to be statistically independent from the detached J/ψ method.

Background

Combinatorial, including decays in flight of kaons and pions (from like-sign muon data). Double semileptonic decays of charmed hadrons (from MC).

Beauty cross section

The likelihood function is based on the shape of the simulated distributions of the muon impact parameter and p_T .

$$L(n_S, n_B) = \frac{(n_S + n_B)^n e^{-(n_S + n_B)}}{n!} \prod_{1}^{n} \left(\frac{n_S P_S + n_B P_B}{n_S + n_B} \right)$$

Free parameters

 n_S : number of $bb \rightarrow \mu^+\mu^-$ events n_B : number of background events

The relative strength of the different signal and background contributions are obtained from MC simulations.

Fit result

$$n_S = 83 \pm 12, n_B = 142 \pm 15$$

$$\sigma_{b\bar{b}} = 17.5 \pm 2.6_{\text{stat}} \,\text{nb/nucleon}$$

Comparison with theoretical predictions

Accepted for publication by Phys. Lett. B

σ _{bb} [nb/nucleon]		
J/ψ method	$14.9 \pm 2.2_{\text{stat}} \pm 2.4_{\text{sys}}$	
Semileptonic	$17.5 \pm 2.6_{\rm stat} \pm 3.3_{\rm sys}$	

The results of the two methods are consistent.

The combined result is consistent with the latest QCD predictions based on NLO calculations and resummation of soft gluons.

Exp.	Year	Target	$\mathrm{E}_p[\mathrm{GeV}]$	Events	Method	$\sigma_{bar{b}}[ext{nb/nucleon}]$
E789	1995	Au	800	19	J/ψ	$5.7 \pm 1.5 \pm 1.3$
E771	1999	Si	800	15	Semi	$43^{+27}_{-17} \pm 7$
HERA-B	2006	C/Ti/W	920	176	J/ψ + Semi	$15.8 \pm 1.7_{\text{stat}} \pm 1.3_{\text{sys}}^{\text{uncorr.}} \pm 2.0_{\text{sys}}^{\text{corr.}}$

Y: Measurement method

Measure the number of Υ mesons relative to prompt J/ψ mesons \rightarrow systematic effects are reduced.

$$pA \to \Upsilon \to l^+l^-X$$

$$\operatorname{Br}(\Upsilon \to l^+ l^-) \times \frac{d\sigma_{\Upsilon}}{dy} \bigg|_{y=0} = \operatorname{Br}(J/\psi \to l^+ l^-) \cdot \sigma_{J/\psi} \cdot \frac{N_{\Upsilon}}{N_{J/\psi}} \cdot \frac{\varepsilon_{J/\psi}}{\varepsilon_{\Upsilon}} \cdot \frac{1}{\Delta y_{eff}}$$

 Δy_{eff} : ratio between mid-rapidity (y=0) and full Y cross section $\epsilon_{J/\psi}$ and ϵ_{Υ} : detection efficiency of J/ψ and Y $\sigma_{J/\psi}$: 502 ± 44 nb/nucleon

The same nuclear suppression is assumed for J/ψ and Υ .

Y: Signal

The analysis is performed simultaneously on the electron and muon channel.

The strength of the relative signals Y/Y'/Y'' is fixed according to the E605 results.

Y: Results

Using $\sigma_{J/\psi} = 502 \pm 44$ nb/nucleon.

Exp.	Events	$\operatorname{Br} \times \operatorname{d}\sigma/\operatorname{dy}\big _{y=0}[\operatorname{pb}/\operatorname{n}]$	
μ+μ-	30.8 ± 7.4	$4.0 \pm 1.0_{\text{stat}} \pm 0.8_{\text{sys}}$	
e^+e^-	75 ± 14	$5.5 \pm 1.0_{\mathrm{stat}} \pm 1.4_{\mathrm{sys}}$	
Combined		4.5 ± 1.1	

The results in the muon and electron channel are compatible.

The HERAB result is extrapolated to \sqrt{s} = 38.8 GeV , to be compared with the Fermilab experiments E605 and E771:

$$Br \times d\sigma/dy \big|_{y=0} = 3.4 \pm 0.8 \text{ pb/n}$$

The HERA-B result is half-way, and does not favour one experiments over the other.

The Drell-Yan background is compatible with the value found in literature.

Y: Theory and experiments

The study of Y production provides a test of quarkonium production models.

Craigie parameterisation

$$f(\sqrt{s}) = \sigma_0 \cdot e^{-\frac{m_0}{\sqrt{s}}}$$

Most of the other measurements have large uncertainties, apart from Fermilab experiments, which are in poor agreement among each other.

Theoretical uncertainty includes variations of *b* mass (4.5-5.0 GeV), factorization and renormalization scales (0.5-2.0 *b* mass).

Conclusions

The HERA-B data of pA collisions (\sqrt{s} =41.6 GeV) were used to measure:

• The B cross section from 176 $b \to J/\psi \to \mu^+\mu^- + X$ and $bb \to \mu^+\mu^- + X$ decay events:

$$\sigma_{b\bar{b}} = 15.8 \pm 1.7_{\rm stat} \pm 1.3_{\rm sys}^{\rm uncorr.} \pm 2.0_{\rm sys}^{\rm corr.}$$
 nb/nucleon

The result is consistent with the latest QCD predictions.

• The Y cross section at mid-rapidity from 106 Y $\rightarrow \mu^+\mu^-$ and Y $\rightarrow e^+e^-$ decay events:

Br × d
$$\sigma_{\Upsilon}$$
/dy | _{v=0} = 4.5 ± 1.1 pb/nucleon

The extrapolation to \sqrt{s} =38.8 GeV is consistent with existing (less precise) experimental data and with theoretical predictions.

Both results are obtained assuming $\sigma_{J/\psi}$ = 502 ± 44 nb/nucleon.