# Forward jet production in DIS

### Lev Khein (Moscow State University)

#### on behalf of the ZEUS collaboration

DIS 2007 Munich

Parton dynamics at low x

**QCD Calculations** 

**MC Models** 

**Forward Jets** 

Forward Jet + Dijet

**Summary & conclusions** 

# Parton dynamics at low x

Perturbative expansion of parton evolution equations  $\sim \Sigma_{mn} A_{mn} \ln(Q^2)^m \ln(1/x)^n$  Cannot be explicitly calculated to all orders

Approximations summing subsets of terms





- ln x
- > DGLAP successful at high Q<sup>2</sup> but expected to break down at low Q<sup>2</sup> and low x
- BFKL should be applicable at very low x
- > CCFM expected to be valid in whole x, Q<sup>2</sup> range

### **QCD Calculations**

DISENT/NLOJET++: Fixed order QCD partonic cross section, on mass shell ME + DGLAP, (collinear factorization)



• NLO for 3-jets:  $O(\alpha_s^3)$ 

### MC Models

**LEPTO**: LO ME on mass shell + PS in DGLAP

→ Strong ordering in k<sub>T</sub>



**CASCADE**: LO off mass shell ME + PS based on k<sub>T</sub> factorized **CCFM** evolution

transverse momentum of emitted gluon  $k_{\perp} > k_{\perp}^{cut}$ 

$$\underline{\text{uPDF set1}}$$
:  $k_{\parallel}^{\text{cut}}$  = 1.33 GeV

Non-singular term in splitting function

At small x<sub>Bj</sub> no ordering in k<sub>T</sub>

**ARIADNE**: implementation of Color Dipole Model (CDM)

- Independently radiating dipoles formed by emitted gluons
- $\rightarrow$  Random walk in  $k_T$



k, - factorization

Two versions, with defalt tuning (default) and retuned by H1 (tuned)

#### **Event & Jet selection**

### Kinematic range

98-00 Data,  $L \cong 82 \text{ pb}^{-1}$ 

$$20 < Q^2 < 100 \text{ GeV}^2$$

$$0.0004 < x_{Bi} < 0.005$$

### **Forward Jet selection**

Inclusive K<sub>T</sub> algorithm

$$E_{+}^{jet} > 5 \text{ GeV}$$



#### 1.4 unit more forward than before

 $0.5 < (E_t^{jet})^2/Q^2 < 2$ 

E<sub>t</sub>jet ~Q<sup>2</sup> suppresses DGLAP evolution

$$x_{jet} > 0.036$$

 $x_{jet} = E_{jet}/E_{proton} >> x_{Bj}$  enhances BFKL evolution

18.04.2007 Munich Lev Khein Forward jets in DIS







- Lepto doesn't suffice
- Ariadne default underestimates high E<sub>t</sub><sup>jet</sup>, overestimates high η<sup>jet</sup> (proton rannant)
- Ariagne tuned is good





Non singular term (in set 2) reduces cross section, but not improves agreement

Shape of all distributions disagrees with data

Shape is a problem

### **Triple differential cross sections**



#### **NLO** is below data

Large theoretical uncertainty prevents decisive conclusion

### **Triple differential cross sections**



Pronounced excess of high E<sub>t</sub><sup>jet</sup> in Ariadne default

Ariadne tuned is fine

### **Event & Jet selection**

Kinematic range the same as for inclusive forward jets

Forward jet the same,

 $0.5 < (E_t^{jet})^2/Q^2 < 2$  constraint excluded

Two additional jets with  $E_{+}^{jet} > 5 \text{ GeV}$ 

 $\eta_{el} < \eta_{jet \ 1} < \eta_{jet - 2} < \eta_{forward - jet}$ 



#### **NLOJET++** vs data

# **ZEUS**





Small  $\Delta\eta_1$  and  $\Delta\eta_2$  jets are most forward. At small  $x_{Bj}$  space is left for additional partons closer to the photon. NLOJET++ underpredicts many partons  $\rightarrow$  below data





### Lepto below data

Ariadne default pronouncedly above data -> too high multigluon emission rate

Ariadne tuned is fine

# **Summary & Conclusions**

- > ZEUS measured jets at small x<sub>Bi</sub> in highly extended forward region
- > NLO is significantly below the data for inclusive forward jets
- > NLO for forward jet + dijet undershoots data in the region of pseudorapidities where multigluon emission is favoured
- > LO DGLAP-based MC, Lepto, is twice below the data
- > CDM (Ariadne) is capable of successfully describing the whole volume of the data
- Cascade MC fails to successfully describe the measurements, other sets of uPDF are to be tried. The data obtained could be highly useful for further uPDF adjusting



Neither set accommodates for all data features





- Set 1 is above data
- Set 2 is below data

- ✓ Hkjhlkhj✓ gkhgkjgh