Saturation, Geometric Scaling and Dipole Phenomenology

Emil Avsar

In Collaboration with Gösta Gustafson and Leif Lönnblad

Department of Theoretical Physics,

Lund University, Sweden

Outline

- Mueller's Dipole Model.
- Improving the Dipole Model.
- HERA Phenomenology.
- Some predicitons.
- Summary and Conclusions.

Mueller's Dipole Model

Decay probability given by

$$\frac{d\mathcal{P}}{dY} = \frac{\bar{\alpha}}{2\pi} \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{z} - \boldsymbol{y})^2} d^2 \boldsymbol{z}, \quad \bar{\alpha} = \frac{\alpha_s N_c}{\pi}, \quad Y = \ln 1/x$$

Reproduces LO BFKL evolution.

Energy-Momentum Conservation

- Large fraction of NLO corrections related to energy conservation.
- $d\mathcal{P}/dY \to \infty$ as $(\boldsymbol{x}-\boldsymbol{z})^2$ or $(\boldsymbol{z}-\boldsymbol{y})^2 \to 0$. Must be screened by a cutoff.
- Small dipoles interact weakly ⇒ cascade contains many noninteracting virtual dipoles.
- Dipole size $r \sim 1/k_{\perp} \Rightarrow$ Constraint from energy conservation. Evolution similar to LDC model.
- Large effects on the evolution, JHEP 0507:062, hep-ph/0503181.

Multiple Interactions

In Mueller's model all dipoles interact independently via two gluon exchange.

$$f_{ij} = f(\boldsymbol{x}_i, \boldsymbol{y}_i | \boldsymbol{x}_j, \boldsymbol{y}_j) = \frac{\alpha_s^2}{8} \left[\log \left(\frac{(\boldsymbol{x}_i - \boldsymbol{y}_j)^2 (\boldsymbol{y}_i - \boldsymbol{x}_j)^2}{(\boldsymbol{x}_i - \boldsymbol{x}_j)^2 (\boldsymbol{y}_i - \boldsymbol{y}_j)^2} \right) \right]^2.$$

- Multiple scattering series can be summed in eikonal approximation.
- ⇒ Unitarised formula for amplitude, $T = 1 \exp(-\sum_{ij} f_{ij})$.
- Multiple scatterings ⇒ pomeron loops.

Multiple Collisions and Saturation

Multiple collisions give rise to Pomeron Loops in elastic diagram. However, no loops in evolution.

formalism not frame independent.

Dipole Swing

- Need colour suppressed effects also during evolution.
- Dipole swing: $2 \rightarrow 2$ transition.

■ Happens instantenously. Swing probability $\sim 1/N_c^2$. Limits number of dipoles in $d^2 b d^2 r$:

$$\frac{dN}{d^2\boldsymbol{b}d^2\boldsymbol{r}} \lesssim N_c^2 \sim \frac{1}{\alpha_s^2}$$

Gives almost frame independent formalism. hep-ph/0610157, JHEP 01(2007)012.

Generating the Loops

• Loops can be generated by $1 \rightarrow 2$ splitting $+2 \rightarrow 2$ "swing".

Full Results

• $\tau \equiv Q^2/Q_s^2(x)$, $Q_s^2(x) = (x_0/x)^{0.3}$, $x_0 = 3 \cdot 10^{-4}$. Effective light quark mass = 60MeV and $m_c = 1.4$ GeV.

Effects of Saturation and Charm Mass

▶ Large effect from c—quark mass. Scaling also in linear approximation. hep-ph/0702087.

Scaling in the Charm Contribution

- HERA charm data does not scale with $\tau = Q^2/Q_s^2$. Large c-mass modifies the scaling properties.
- γ^* splitting to $q\bar{q}$ given by $\psi_L(z,r,Q^2)$ and $\psi_T(z,r,Q^2)$.
- $\psi \sim \psi(\epsilon r)$ where $\epsilon^2 = z(1-z)Q^2 + m_f^2$.
- Scaling restored if $Q^2/Q_s^2 \to (Q^2 + n \cdot m_c^2)/Q_s^2$ with $n \sim 4$.
- Finite $m_f \Rightarrow$ cutoff for large dipoles, confinement.

Charm results

•
$$\tau_c \equiv (Q^2 + 6m_c^2)/Q_s^2$$
, $m_c = 1.4$ GeV.

Below Q_s^2

- Effect of finite mass approximately multiplicative factor which suppresses σ for smaller Q^2 .
- For higher energy one can reach $\tau < 1$ while keeping $Q^2 > 1 \text{GeV}^2 \Rightarrow \text{small suppression from light quark mass.}$
- No longer scaling for $\lambda \approx 0.3$. Scaling behaviour pushed to higher λ values.

Results below Q_s^2

• Difference about a factor 1.4 for $\tau \approx 0.07$. $Q^2 = 2 \text{GeV}^2 \Rightarrow x \approx 3 \cdot 10^{-9}$. For $x \approx 1.4 \cdot 10^{-7}$, $\tau \approx 0.2 \Rightarrow$ factor 1.2.

Summary and Conclusions

- We have constructed a dipole model based on a set of fairly simple ingredients.
- Using these in a MC we reproduce σ_{tot} for γ^*p , and also for pp collisions.
- For DIS, charm has large effect. Scaling not dependent on saturation.
- Charm contribution scales fairly well with $(Q^2+n\cdot m_c^2)/Q_s^2(x)$, $n\sim 4$. (Goncalves et al hep-ph/0607125.)
- Scalebreaking effects at low Q^2 due to large c-quark mass and also due to confinement related effects for u, d and s.