QCD Parton Dynamics, 30 years later

Yuri Dokshitzer
Paris-Jussieu \& St. Petersburg

Munich, DIS 2007, 16.04 2007

1. Three loops (scary movie)
2. Parton Dynamics made simple(r)

- Innovative Bookkeeping
- Divide and Conquer

3. $\mathcal{N}=4$ SYM serving QCD
4. Conclusions
5. Three loops (scary movie)
6. Parton Dynamics made simple(r)

- Innovative Bookkeeping
- Divide and Conquer

3. $\mathcal{N}=4$ SYM serving QCD
4. Conclusions

1-loop drill, 2-loop thrill, 3-loop chill ...

$$
P_{\mathrm{ns}}^{(2)+}(x)=16 C_{A} C_{F} n_{f}\left(\frac { 1 } { 6 } p _ { \mathrm { qq } } (x) \left[\frac{10}{3} \zeta_{2}-\frac{209}{36}-9 \zeta_{3}-\frac{167}{18} \mathrm{H}_{0}+2 \mathrm{H}_{0} \zeta_{2}-7 \mathrm{H}_{0}\right.\right.
$$

$$
\left.+3 \mathrm{H}_{1,0,0}-\mathrm{H}_{3}\right]+\frac{1}{3} p_{\mathrm{qq}}(-x)\left[\frac{3}{2} \zeta_{3}-\frac{5}{3} \zeta_{2}-\mathrm{H}_{-2,0}-2 \mathrm{H}_{-1} \zeta_{2}-\frac{10}{3} \mathrm{H}_{-1,0}-\mathrm{H}_{-}\right.
$$

$$
\left.+2 \mathrm{H}_{-1,2}+\frac{1}{2} \mathrm{H}_{0} \zeta_{2}+\frac{5}{3} \mathrm{H}_{0,0}+\mathrm{H}_{0,0,0}-\mathrm{H}_{3}\right]+(1-x)\left[\frac{1}{6} \zeta_{2}-\frac{257}{54}-\frac{43}{18} \mathrm{H}_{0}-\right.
$$

$$
-(1+x)\left[\frac{2}{3} \mathrm{H}_{-1,0}+\frac{1}{2} \mathrm{H}_{2}\right]+\frac{1}{3} \zeta_{2}+\mathrm{H}_{0}+\frac{1}{6} \mathrm{H}_{0,0}+\delta(1-x)\left[\frac{5}{4}-\frac{167}{54} \zeta_{2}+\frac{1}{20} \zeta_{2}\right.
$$

$$
+16 C_{A} C_{F}^{2}\left(p _ { \mathrm { qq } } (x) \left[\frac{5}{6} \zeta_{3}-\frac{69}{20} \zeta_{2}^{2}-\mathrm{H}_{-3,0}-3 \mathrm{H}_{-2} \zeta_{2}-14 \mathrm{H}_{-2,-1,0}+3 \mathrm{H}_{-2,0}\right.\right.
$$

$$
-4 \mathrm{H}_{-2,2}-\frac{151}{48} \mathrm{H}_{0}+\frac{41}{12} \mathrm{H}_{0} \zeta_{2}-\frac{17}{2} \mathrm{H}_{0} \zeta_{3}-\frac{13}{4} \mathrm{H}_{0,0}-4 \mathrm{H}_{0,0} \zeta_{2}-\frac{23}{12} \mathrm{H}_{0,0,0}+5 \mathrm{H}
$$

$$
-24 \mathrm{H}_{1} \zeta_{3}-16 \mathrm{H}_{1,-2,0}+\frac{67}{9} \mathrm{H}_{1,0}-2 \mathrm{H}_{1,0} \zeta_{2}+\frac{31}{3} \mathrm{H}_{1,0,0}+11 \mathrm{H}_{1,0,0,0}+8 \mathrm{H}_{1,1,0,0}
$$

$\left.+\frac{67}{9} \mathrm{H}_{2}-2 \mathrm{H}_{2} \zeta_{2}+\frac{11}{3} \mathrm{H}_{2,0}+5 \mathrm{H}_{2,0,0}+\mathrm{H}_{3,0}\right]+p_{\mathrm{qq}}(-x)\left[\frac{1}{4} \zeta_{2}{ }^{2}-\frac{67}{9} \zeta_{2}+\frac{31}{4} \zeta^{2}\right.$ $-32 \mathrm{H}_{-2} \zeta_{2}-4 \mathrm{H}_{-2,-1,0}-\frac{31}{6} \mathrm{H}_{-2,0}+21 \mathrm{H}_{-2,0,0}+30 \mathrm{H}_{-2,2}-\frac{31}{3} \mathrm{H}_{-1} \zeta_{2}-42 \mathrm{H}$ $-4 \mathrm{H}_{-1,-2,0}+56 \mathrm{H}_{-1,-1} \zeta_{2}-36 \mathrm{H}_{-1,-1,0,0}-56 \mathrm{H}_{-1,-1,2}-\frac{134}{9} \mathrm{H}_{-1,0}-42 \mathrm{H}_{-1}$ $+32 \mathrm{H}_{-1,3}-\frac{31}{6} \mathrm{H}_{-1,0,0}+17 \mathrm{H}_{-1,0,0,0}+\frac{31}{3} \mathrm{H}_{-1,2}+2 \mathrm{H}_{-1,2,0}+\frac{13}{12} \mathrm{H}_{0} \zeta_{2}+\frac{29}{2} \mathrm{H}$ $\left.+13 \mathrm{H}_{0,0} \zeta_{2}+\frac{89}{12} \mathrm{H}_{0,0,0}-5 \mathrm{H}_{0,0,0,0}-7 \mathrm{H}_{2} \zeta_{2}-\frac{31}{6} \mathrm{H}_{3}-10 \mathrm{H}_{4}\right]+(1-x)\left[\frac{133}{36}\right.$ $-\frac{167}{4} \zeta_{3}-2 \mathrm{H}_{0} \zeta_{3}-2 \mathrm{H}_{-3,0}+\mathrm{H}_{-2} \zeta_{2}+2 \mathrm{H}_{-2,-1,0}-3 \mathrm{H}_{-2,0,0}+\frac{77}{4} \mathrm{H}_{0,0,0}-\frac{20}{6}$ $\left.+4 \mathrm{H}_{1,0,0}+\frac{14}{3} \mathrm{H}_{1,0}\right]+(1+x)\left[\frac{43}{2} \zeta_{2}-3 \zeta_{2}^{2}+\frac{25}{2} \mathrm{H}_{-2,0}-31 \mathrm{H}_{-1} \zeta_{2}-14 \mathrm{H}_{-1,-}\right.$ $+24 \mathrm{H}_{-1,2}+23 \mathrm{H}_{-1,0,0}+\frac{55}{2} \mathrm{H}_{0} \zeta_{2}+5 \mathrm{H}_{0,0} \zeta_{2}+\frac{1457}{48} \mathrm{H}_{0}-\frac{1025}{36} \mathrm{H}_{0,0}-\frac{155}{6} \mathrm{H}_{2}$

$$
\left.+2 \mathrm{H}_{2,0,0}-3 \mathrm{H}_{4}\right]-5 \zeta_{2}-\frac{1}{2} \zeta_{2}^{2}+50 \zeta_{3}-2 \mathrm{H}_{-3,0}-7 \mathrm{H}_{-2,0}-\mathrm{H}_{0} \zeta_{3}-\frac{37}{2} \mathrm{H}_{0} \zeta_{2}
$$

$$
-2 \mathrm{H}_{0,0} \zeta_{2}+\frac{185}{6} \mathrm{H}_{0,0}-22 \mathrm{H}_{0,0,0}-4 \mathrm{H}_{0,0,0,0}+\frac{28}{3} \mathrm{H}_{2}+6 \mathrm{H}_{3}+\delta(1-x)\left[\frac{151}{64}+\right.
$$

$$
\left.\left.-\frac{247}{60} \zeta_{2}^{2}+\frac{211}{12} \zeta_{3}+\frac{15}{2} \zeta_{5}\right]\right)+16 C_{A}^{2} C_{F}\left(p _ { \mathrm { qq } } (x) \left[\frac{245}{48}-\frac{67}{18} \zeta_{2}+\frac{12}{5} \zeta_{2}^{2}+\frac{1}{2}\right.\right.
$$

$$
+\mathrm{H}_{-3,0}+4 \mathrm{H}_{-2,-1,0}-\frac{3}{2} \mathrm{H}_{-2,0}-\mathrm{H}_{-2,0,0}+2 \mathrm{H}_{-2,2}-\frac{31}{12} \mathrm{H}_{0} \zeta_{2}+4 \mathrm{H}_{0} \zeta_{3}+\frac{389}{72}
$$

$$
-\mathrm{H}_{0,0,0,0}+9 \mathrm{H}_{1} \zeta_{3}+6 \mathrm{H}_{1,-2,0}-\mathrm{H}_{1,0} \zeta_{2}-\frac{11}{4} \mathrm{H}_{1,0,0}-3 \mathrm{H}_{1,0,0,0}-4 \mathrm{H}_{1,1,0,0}+4 \mathrm{I}
$$

$$
\left.+\frac{11}{12} \mathrm{H}_{3}+\mathrm{H}_{4}\right]+p_{\mathrm{qq}}(-x)\left[\frac{67}{18} \zeta_{2}-\zeta_{2}^{2}-\frac{11}{4} \zeta_{3}-\mathrm{H}_{-3,0}+8 \mathrm{H}_{-2} \zeta_{2}+\frac{11}{6} \mathrm{H}_{-2,0}\right.
$$

$$
-3 \mathrm{H}_{-1,0,0,0}+\frac{11}{3} \mathrm{H}_{-1} \zeta_{2}+12 \mathrm{H}_{-1} \zeta_{3}-16 \mathrm{H}_{-1,-1} \zeta_{2}+8 \mathrm{H}_{-1,-1,0,0}+16 \mathrm{H}_{-1,-1,2}
$$

$$
-8 \mathrm{H}_{-2,2}+11 \mathrm{H}_{-1,0} \zeta_{2}+\frac{11}{6} \mathrm{H}_{-1,0,0}-\frac{11}{3} \mathrm{H}_{-1,2}-8 \mathrm{H}_{-1,3}-\frac{3}{4} \mathrm{H}_{0}-\frac{1}{6} \mathrm{H}_{\underline{\underline{0}}} \zeta_{2}-4
$$

$$
\begin{aligned}
& \left.-3 \mathrm{H}_{0,0} \zeta_{2}-\frac{31}{12} \mathrm{H}_{0,0,0}+\mathrm{H}_{0,0,0,0}+2 \mathrm{H}_{2} \zeta_{2}+\frac{11}{6} \mathrm{H}_{3}+2 \mathrm{H}_{4}\right]+(1-x)\left[\frac{1883}{108}-\frac{1}{2}\right. \\
& -\mathrm{H}_{-2,-1,0}+\frac{1}{2} \mathrm{H}_{-3,0}-\frac{1}{2} \mathrm{H}_{-2} \zeta_{2}+\frac{1}{2} \mathrm{H}_{-2,0,0}+\frac{523}{36} \mathrm{H}_{0}+\mathrm{H}_{0} \zeta_{3}-\frac{13}{3} \mathrm{H}_{0,0}-\frac{5}{2} \mathrm{H} \\
& \left.-2 \mathrm{H}_{1,0,0}\right]+(1+x)\left[8 \mathrm{H}_{-1} \zeta_{2}+4 \mathrm{H}_{-1,-1,0}+\frac{8}{3} \mathrm{H}_{-1,0}-5 \mathrm{H}_{-1,0,0}-6 \mathrm{H}_{-1,2}-\frac{13}{3}\right. \\
& -\frac{43}{4} \zeta_{3}-\frac{5}{2} \mathrm{H}_{-2,0}-\frac{11}{2} \mathrm{H}_{0} \zeta_{2}-\frac{1}{2} \mathrm{H}_{2} \zeta_{2}-\frac{5}{4} \mathrm{H}_{0,0} \zeta_{2}+7 \mathrm{H}_{2}-\frac{1}{4} \mathrm{H}_{2,0,0}+3 \mathrm{H}_{3}+\frac{3}{4}
\end{aligned}
$$

$$
+\frac{1}{4} \zeta_{2}^{2}-\frac{8}{3} \zeta_{2}+\frac{17}{2} \zeta_{3}+\mathrm{H}_{-2,0}-\frac{19}{2} \mathrm{H}_{0}+\frac{5}{2} \mathrm{H}_{0} \zeta_{2}-\mathrm{H}_{0} \zeta_{3}+\frac{13}{3} \mathrm{H}_{0,0}+\frac{5}{2} \mathrm{H}_{0,0,0}
$$

$$
\left.-\delta(1-x)\left[\frac{1657}{576}-\frac{281}{27} \zeta_{2}+\frac{1}{8} \zeta_{2}^{2}+\frac{97}{9} \zeta_{3}-\frac{5}{2} \zeta_{5}\right]\right)+16 C_{F} n_{f}^{2}\left(\frac { 1 } { 1 8 } p _ { \mathrm { qq } } (x) \left[\mathrm{H}_{0,}\right.\right.
$$

$$
\left.+(1-x)\left[\frac{13}{54}+\frac{1}{9} \mathrm{H}_{0}\right]-\delta(1-x)\left[\frac{17}{144}-\frac{5}{27} \zeta_{2}+\frac{1}{9} \zeta_{3}\right]\right)+16 C_{F}^{2} n_{f}\left(\frac{1}{3} p_{\mathrm{qq}}(x)[\right.
$$

$$
\left.-\frac{55}{16}+\frac{5}{8} \mathrm{H}_{0}+\mathrm{H}_{0} \zeta_{2}+\frac{3}{2} \mathrm{H}_{0,0}-\mathrm{H}_{0,0,0}-\frac{10}{3} \mathrm{H}_{1,0}-\frac{10}{3} \mathrm{H}_{2}-2 \mathrm{H}_{2,0}-2 \mathrm{H}_{3}\right]+\frac{2}{3}
$$

$$
-\frac{3}{2} \zeta_{3}+\mathrm{H}_{-2,0}+2 \mathrm{H}_{-1} \zeta_{2}+\frac{10}{3} \mathrm{H}_{-1,0}+\mathrm{H}_{-1,0,0}-2 \mathrm{H}_{-1,2}-\frac{1}{2} \mathrm{H}_{0} \zeta_{2}-\frac{5}{3} \mathrm{H}_{0,0}-
$$

$$
-(1-x)\left[\frac{10}{9}+\frac{19}{18} \mathrm{H}_{0,0}-\frac{4}{3} \mathrm{H}_{1}+\frac{2}{3} \mathrm{H}_{1,0}+\frac{4}{3} \mathrm{H}_{2}\right]+(1+x)\left[\frac{4}{3} \mathrm{H}_{-1,0}-\frac{25}{24} \mathrm{H}_{0}+\right.
$$

$$
\left.+\frac{7}{9} \mathrm{H}_{0,0}+\frac{4}{3} \mathrm{H}_{2}-\delta(1-x)\left[\frac{23}{16}-\frac{5}{12} \zeta_{2}-\frac{29}{30} \zeta_{2}^{2}+\frac{17}{6} \zeta_{3}\right]\right)+16 C_{F}^{3}\left(p_{\mathrm{qq}}(x)[\right.
$$

$$
+6 \mathrm{H}_{-2} \zeta_{2}+12 \mathrm{H}_{-2,-1,0}-6 \mathrm{H}_{-2,0,0}-\frac{3}{16} \mathrm{H}_{0}-\frac{3}{2} \mathrm{H}_{0} \zeta_{2}+\mathrm{H}_{0} \zeta_{3}+\frac{13}{8} \mathrm{H}_{0,0}-2 \mathrm{H}_{0}
$$

$$
+12 \mathrm{H}_{1} \zeta_{3}+8 \mathrm{H}_{1,-2,0}-6 \mathrm{H}_{1,0,0}-4 \mathrm{H}_{1,0,0,0}+4 \mathrm{H}_{1,2,0}-3 \mathrm{H}_{2,0}+2 \mathrm{H}_{2,0,0}+4 \mathrm{H}_{2,1}
$$

$$
\left.+4 \mathrm{H}_{3,0}+4 \mathrm{H}_{3,1}+2 \mathrm{H}_{4}\right]+p_{\mathrm{qq}}(-x)\left[\frac{7}{2} \zeta_{2}^{2}-\frac{9}{2} \zeta_{3}-6 \mathrm{H}_{-3,0}+32 \mathrm{H}_{-2} \zeta_{2}+8 \mathrm{H}_{-2}\right.
$$

$$
-26 \mathrm{H}_{-2,0,0}-28 \mathrm{H}_{-2,2}+6 \mathrm{H}_{-1} \zeta_{2}+36 \mathrm{H}_{-1} \zeta_{3}+8 \mathrm{H}_{-1,-2,0}-48 \mathrm{H}_{-1,-1} \zeta_{2}+40
$$

$$
-\frac{3}{2} \mathrm{H}_{0} \zeta_{2}-13 \mathrm{H}_{0} \zeta_{3}-14 \mathrm{H}_{0,0} \zeta_{2}-\frac{9}{2} \mathrm{H}_{0,0,0}+6 \mathrm{H}_{0,0,0,0}+6 \mathrm{H}_{2} \zeta_{2}+3 \mathrm{H}_{3}+2 \mathrm{H}_{3,0}-
$$

$$
+(1-x)\left[2 \mathrm{H}_{-3,0}-\frac{31}{8}+4 \mathrm{H}_{-2,0,0}+\mathrm{H}_{0,0} \zeta_{2}-3 \mathrm{H}_{0,0,0,0}+35 \mathrm{H}_{1}+6 \mathrm{H}_{1} \zeta_{2}-\mathrm{H}_{1},\right.
$$

$$
+(1+x)\left[\frac{37}{10} \zeta_{2}{ }^{2}-\frac{93}{4} \zeta_{2}-\frac{81}{2} \zeta_{3}-15 \mathrm{H}_{-2,0}+30 \mathrm{H}_{-1} \zeta_{2}+12 \mathrm{H}_{-1,-1,0}-2 \mathrm{H}_{-1,0}\right.
$$

$$
-24 \mathrm{H}_{-1,2}-\frac{539}{16} \mathrm{H}_{0}-28 \mathrm{H}_{0} \zeta_{2}+\frac{191}{8} \mathrm{H}_{0,0}+20 \mathrm{H}_{0,0,0}+\frac{85}{4} \mathrm{H}_{2}-3 \mathrm{H}_{2,0,0}-2 \mathrm{H}_{3}
$$

$$
\left.-\mathrm{H}_{4}\right]+4 \zeta_{2}+33 \zeta_{3}+4 \mathrm{H}_{-3,0}+10 \mathrm{H}_{-2,0}+\frac{67}{2} \mathrm{H}_{0}+6 \mathrm{H}_{0} \zeta_{3}+19 \mathrm{H}_{0} \zeta_{2}-25 \mathrm{H}_{0,0}
$$

$$
\left.-2 \mathrm{H}_{2}-\mathrm{H}_{2,0}-4 \mathrm{H}_{3}+\delta(1-x)\left[\frac{29}{32}-2 \zeta_{2} \zeta_{3}+\frac{9}{8} \zeta_{2}+\frac{18}{5} \zeta_{2}^{2}+\frac{17}{4} \zeta_{3}-15 \zeta_{5}\right]\right)
$$

2×2 anomalous dimension matrix occupies
1 st loop: 1/10 page
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched
March 2004, and counting]
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched
March 2004, and counting]
$V \sim\left\{\begin{array}{l}10^{\frac{N(N-1)}{2}-1} \\ 10^{2^{N-1}-2}\end{array}\right.$
2×2 anomalous dimension matrix occupies 1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched March 2004, and counting]
$V \sim\left\{\begin{array}{l}10^{\frac{N(N-1)}{2}-1} \\ 10^{2^{N-1}-2}\end{array}\right.$ not too encouraging a trend ...

Fighting complexity

How to reduce complexity?

How to reduce complexity?

Guidelines

How to reduce complexity?

Guidelines

exploit internal properties :

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

How to reduce complexity?

Guidelines

\checkmark exploit internal properties :

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

Extract

Solve

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

Extract

Solve

An essential part of gluon dynamics is Classical.

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical. "Classical" does not mean "Simple". However, it has a good chance to be Exactly Solvable.

How to reduce complexity?

Guidelines

\checkmark exploit internal properties :

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical. "Classical" does not mean "Simple". However, it has a good chance to be Exactly Solvable.
\Leftrightarrow A playing ground for theoretical theory: SUSY, AdS/CFT, ...

In the standard approach,

Splitting functions

Evolution Hamiltonian

Anomalous Dimensions

- parton splitting functions are equated with anomalous dimensions;
- they are different for DIS and $e^{+} e^{-}$evolution;
- "clever evolution variables" are different too

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

Kinematics of the parton splitting $A \rightarrow B+C$

Long-living parton fluctuations

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq x \cdot P, \quad k_{A} \simeq \frac{x}{z} \cdot P
$$

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq x \cdot P, \quad k_{A} \simeq \frac{x}{z} \cdot P
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
k_{B} & \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z} & =\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
\frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
t_{B} \equiv \frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|} \equiv t_{A}
$$

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
t_{B} \equiv \frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|} \equiv t_{A}
$$

strongly ordered lifetimes of successive parton fluctuations !

How to Order parton splittings?

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time".
The "clever choices" had been established quite some time ago:

Transverse momentum ordering

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like }) .
$$

Transverse momentum ordering vs. angular ordering.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like })
$$

Transverse momentum ordering

How to Order parton splittings?

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like }) .
$$

Transverse momentum ordering vs. angular ordering.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like })
$$

Transverse momentum ordering vs. angular ordering.
Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like })
$$

Transverse momentum ordering vs. angular ordering.
Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions.
A good dynamical move.

How to Order parton splittings?

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like }) .
$$

Transverse momentum ordering vs. angular ordering.
Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions.
A good dynamical move. But a lousy one kinematically:
Having abandoned fluctuation time ordering,

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{z}
$$

we've lost quite a bit of wisdom along with it

How to Order parton splittings?

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like }) .
$$

Transverse momentum ordering vs. angular ordering.
Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions.
A good dynamical move. But a lousy one kinematically: Having abandoned fluctuation time ordering,

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{z}
$$

we've lost quite a bit of wisdom along with it

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)
Drell-Levy-Yan relation beyond leading log
Blümlein, Ravindran, W.L. van Neerven (2000)

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov relation

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov relation

$$
P_{B A}^{(T)}\left(x_{\text {Feynman }}\right)=P_{B A}^{(S)}\left(x_{\text {Bjorken }}\right) ; \quad x_{B}=\frac{-q^{2}}{2 p q}, \quad x_{F}=\frac{2 p q}{q^{2}}
$$

Mark the different meaning of x in the two channels!

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov reciprocity

$$
P_{B A}(x)=\mp x \cdot P_{A B}\left(x^{-1}\right)
$$

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov reciprocity

$$
P_{B A}(x)=\mp x \cdot P_{A B}\left(x^{-1}\right)
$$

GLR was found to be broken beyond the 1st loop.

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov reciprocity

$$
P_{B A}(x)=\mp x \cdot P_{A B}\left(x^{-1}\right)
$$

GLR was found to be broken beyond the 1st loop.

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right)
$$

Fluctuation time ordering :
$\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right)$,
$\sigma= \begin{cases}+1, & (\mathrm{~T}) \\ -1, & (\mathrm{~S})\end{cases}$

Fluctuation time ordering :
D-r (HERA, 1993)
$\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}+1, \\ -1,\end{array}\right.$
which is non-local due to the mixing of z and Q^{2} in the hardness scale.

Reciprocity Respecting Evolution

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \tag{T}\\
-1,
\end{array}\right.
$$

which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:

$$
\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}
$$

Reciprocity Respecting Evolution

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \tag{T}\\
-1,
\end{array}\right.
$$

which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:

$$
\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}
$$

In the Mellin moment space,

$$
P_{N} \equiv \int_{0}^{1} \frac{d z}{z} P(z) z^{N} \quad \Longrightarrow \quad \gamma_{N} \cdot D_{N}\left(Q^{2}\right)=\mathcal{P}_{N+\sigma d} \cdot D_{N}\left(Q^{2}\right)
$$

the evolution kernel \mathcal{P} emerges with the differential operator for argument.

Reciprocity Respecting Evolution

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \tag{T}\\
-1,
\end{array}\right.
$$

which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:

$$
\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}
$$

In the Mellin moment space,

$$
P_{N} \equiv \int_{0}^{1} \frac{d z}{z} P(z) z^{N} \quad \Longrightarrow \quad \gamma_{N} \cdot D_{N}\left(Q^{2}\right)=\mathcal{P}_{N+\sigma d} \cdot D_{N}\left(Q^{2}\right)
$$

the evolution kernel \mathcal{P} emerges with the differential operator for argument.

Expanding, get an equation for the an.dim. γ
$\gamma[\alpha]=\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\mathcal{O}\left(\alpha^{4}\right)$.

Reciprocity Respecting Evolution

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \tag{T}\\
-1,
\end{array}\right.
$$

which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:

$$
\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}
$$

In the Mellin moment space,

$$
P_{N} \equiv \int_{0}^{1} \frac{d z}{z} P(z) z^{N} \quad \Longrightarrow \quad \gamma_{N} \cdot D_{N}\left(Q^{2}\right)=\mathcal{P}_{N+\sigma d} \cdot D_{N}\left(Q^{2}\right)
$$

the evolution kernel \mathcal{P} emerges with the differential operator for argument.

Expanding, get an equation for the an.dim. γ, one for both channels
$\gamma[\alpha]=\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\mathcal{O}\left(\alpha^{4}\right)$.

GLR beyond the 1st loop

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}\right) \quad+\mathcal{O}\left(\alpha^{3}\right) .
\end{aligned}
$$

GLR beyond the 1st loop

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}\right) \quad+\mathcal{O}\left(\alpha^{3}\right)
\end{aligned}
$$

The difference between time- and space-like anomalous dimensions,

$$
\frac{1}{2}\left[P^{(T)}-P^{(S)}\right]=\alpha^{2} \cdot P_{1} \dot{P}_{1}+\mathcal{O}\left(\alpha^{3}\right),
$$

in the x-space corresponds to the convolution

$$
\frac{1}{2}\left[P_{q q}^{(2), T}-P_{q q}^{(2), S}\right]=\int_{0}^{1} \frac{d z}{z}\left\{P_{q q}^{(1)}\left(\frac{x}{z}\right)\right\}_{+} \cdot P_{q q}^{(1)}(z) \ln z
$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski \& Petronzio
(1980)

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}+\mathcal{P}_{2}\right)+\mathcal{O}\left(\alpha^{3}\right)
\end{aligned}
$$

The difference between time- and space-like anomalous dimensions,

$$
\frac{1}{2}\left[P^{(T)}-P^{(S)}\right]=\alpha^{2} \cdot P_{1} \dot{P}_{1}+\mathcal{O}\left(\alpha^{3}\right)
$$

in the x-space corresponds to the convolution

$$
\frac{1}{2}\left[P_{q q}^{(2), T}-P_{q q}^{(2), S}\right]=\int_{0}^{1} \frac{d z}{z}\left\{P_{q q}^{(1)}\left(\frac{x}{z}\right)\right\}_{+} \cdot P_{q q}^{(1)}(z) \ln z,
$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski \& Petronzio
(1980)
$\Longrightarrow \quad$ the genuine \mathcal{P}_{2} does not contain σ, is GLR respecting

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\quad \mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}+\mathcal{P}_{2}\right)+\mathcal{O}\left(\alpha^{3}\right)
\end{aligned}
$$

The difference between time- and space-like anomalous dimensions,

$$
\frac{1}{2}\left[P^{(T)}-P^{(S)}\right]=\alpha^{2} \cdot P_{1} \dot{P}_{1}+\mathcal{O}\left(\alpha^{3}\right)
$$

in the x-space corresponds to the convolution

$$
\frac{1}{2}\left[P_{q q}^{(2), T}-P_{q q}^{(2), S}\right]=\int_{0}^{1} \frac{d z}{z}\left\{P_{q q}^{(1)}\left(\frac{x}{z}\right)\right\}_{+} \cdot P_{q q}^{(1)}(z) \ln z,
$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski \& Petronzio
(1980)

More generally, a renormalization scheme transformation as a cure for/against GLR violation was proposed by Stratmann \& Vogelsang (1996)

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

A gap between classical radiation (Low-Burnett-Kroll wisdom)

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Generated:

$$
C=-\sigma A^{2}
$$

- relation observed by MVV in 3 loops

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Generated:

$$
\begin{aligned}
& C=-\sigma A^{2} \\
& D=-\sigma A B+\mathcal{O}(\beta)
\end{aligned}
$$

- relation observed by MVV in 3 loops
- another all-order relation

RREE relates two long-standing puzzles :

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$
$\mathrm{BFKL}: \quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

BFKL : $\quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

BFKL : $\quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$
$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

BFKL : $\quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$
$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

BFKL : $\quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$
$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2 \quad \Longrightarrow \quad$ Angular Ordering

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

BFKL : $\quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$
$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2$
\Longrightarrow
Angular Ordering
$1 \rightarrow 1+2+3$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

BFKL : $\quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$
$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2 \quad \Longrightarrow \quad$ Exact Angular Ordering
$1 \rightarrow 1+2+3 \quad \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3)$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$
$\mathrm{BFKL}: \quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$
$e^{+} e^{-}$annihilation (time-like cascades) - a similar story: $1 \rightarrow 1+2 \quad \Longrightarrow \quad$ Exact Angular Ordering
$1 \rightarrow 1+2+3 \quad \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3)$
$1 \rightarrow 1+2+3+4$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$
$\mathrm{BFKL}: \quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$
$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2 \quad \Longrightarrow \quad$ Exact Angular Ordering still intact!
$1 \rightarrow 1+2+3 \quad \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3)$
$1 \rightarrow 1+2+3+4 \quad \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3) \otimes(3 \rightarrow 3+4)$
so-called "Malaza puzzle"

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

$$
\gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots
$$

$e^{+} e^{-}$annihilation (time-like cascades) - a similar story: $1 \rightarrow 1+2 \quad \Longrightarrow \quad$ Exact Angular Ordering

$$
\begin{array}{ll}
1 \rightarrow 1+2+3 & \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3) \\
1 \rightarrow 1+2+3+4 & \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3) \otimes(3 \rightarrow 3+4)
\end{array}
$$

Solid - BFKL (black) and N-BFKL (green) known in all orders.

Dashed blue -
γ_{+}terms generated by α / N and α.

Yellow - unknown.

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$. By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$ Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$
Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- Also true for SUSYs,
- 2loop quark transversity
- in 4 loops in $\lambda \phi^{4}$,
- 2loop linearly polarized gluon
- in QCD $\beta_{0} \rightarrow \infty$, all loops,
- 2loop singlet polarized
- $\operatorname{AdS} / \operatorname{CFT}(\mathcal{N}=4 \mathrm{SYM} \alpha \gg 1)$

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$
Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- Also true for SUSYs,
- 2loop quark transversity
- in 4 loops in $\lambda \phi^{4}$,
- 2loop linearly polarized gluon
- in QCD $\beta_{0} \rightarrow \infty$, all loops,
- 2loop singlet polarized
- $\operatorname{AdS} / \operatorname{CFT}(\mathcal{N}=4 \mathrm{SYM} \alpha \gg 1)$

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the newest result, still smoking : in $\mathcal{N}=4$
$X \quad$ GLR holds for twist 3, in $3+4$ loops
Matteo Beccaria et al. (2007)

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the newest result, still smoking : in $\mathcal{N}=4$
x GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the newest result, still smoking : in $\mathcal{N}=4$
x GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be solvable - "integrable". Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, - integrals of motion.

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the newest result, still smoking : in $\mathcal{N}=4$
X GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be solvable - "integrable". Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, - integrals of motion.

Recall an old hint from QCD ...

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

Four "parton splitting functions"

$$
{ }_{q}^{q[g]}(z), \quad{\underset{q}{g}}_{[q]}(z), \quad \quad_{g}^{q[\bar{q}]}(z), \quad g_{g}^{g[g]}(z)
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$

$$
{ }_{q}^{q[g]}(z) \quad{ }_{q}^{g[q]}(z) \quad{ }_{g}^{q[q]}(z) \quad{ }_{g}^{g[g]}(z)
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$

$$
{ }_{q}^{q[g]}(z) \quad{ }_{q}^{g[q]}(z), \quad g_{g}^{q[\bar{q}]}(z) \quad{ }_{g}^{g}[g](z)
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$

Three (QED) "kernels" are inter-related; gluon self-interaction stays put :

$$
{ }_{q}^{q[g]}(z), \quad{ }_{q}^{g[q]}(z), \quad{ }_{g}^{q[\bar{q}]}(z)
$$

```
g
```


Relating parton splittings

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however :

All four are related!

Relating parton splittings

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however : $\quad C_{F}=T_{R}=N_{c}$: Super-Symmetry

All four are related!
$w_{q}(z)={\underset{q}{q[g]}(z)+{ }_{q}^{g[q]}(z)={ }_{g}^{q[\bar{q}]}(z)+\underbrace{g}_{\underline{g}}[g](z)}^{g^{[g]}}=w_{g}(z)$

Relating parton splittings

$$
\begin{aligned}
& =C_{F} \cdot \frac{1+(1-z)^{2}}{z} \\
& =N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
\end{aligned}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however:

$$
C_{F}=T_{R}=N_{c}: \text { Super-Symmetry }
$$

All four are related!
\equiv infinite number of conservation laws!
$w_{q}(z)={\underset{q}{q[g]}(z)+{ }_{q}^{g[q]}(z)={ }_{g}^{q[\bar{q}]}(z)+\underbrace{g[g]}(z)}_{g}^{g}=w_{g}(z)$

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function
\checkmark maximal helicity multi-gluon operators

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo Beisert \& Staudacher
(1997)

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function
Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo
Beisert \& Staudacher

The higher the symmetry, the deeper integrability.

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
\checkmark maximal helicity multi-gluon operators
Minahan \& Zarembo Beisert \& Staudacher
The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
x Full integrability via AdS/CFT
Maldacena; Witten, Gubser, Klebanov, Polyakov

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
\checkmark maximal helicity multi-gluon operators
Minahan \& Zarembo Beisert \& Staudacher
The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
x Full integrability via AdS/CFT
Maldacena; Witten,
Gubser, Klebanov, Polyakov

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
\checkmark maximal helicity multi-gluon operators

Minahan \& Zarembo Beisert \& Staudacher(2003)

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
x Full integrability via AdS/CFT
Maldacena; Witten, Gubser, Klebanov, Polyakov

And here we arrive at the second - Divide and Conquer -issue

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons".

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons". The second - "quaglons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons". The second - "quaglons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Classical and quantum contributions respect the GL relation, individually:

$$
-x f(1 / x)=f(x)
$$

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons". The second - "quaglons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Classical and quantum contributions respect the GL relation, individually:

$$
-x f(1 / x)=f(x)
$$

Let us look at the rôles these animals play on the QCD stage

Gluenatomy

Clagons:

x Classical Field
\checkmark infrared singular, $d \omega / \omega$
\checkmark define the physical coupling
\checkmark responsible for
\Leftrightarrow DL radiative effects,
\Rightarrow reggeization,
\Leftrightarrow QCD/Lund string (gluers)
\checkmark play the major rôle in evolution

Quagons :

x Quantum d.o.f.s (constituents)
\checkmark infrared irrelevant, $d \omega \cdot \omega$
\checkmark make the coupling run
\checkmark responsible for conservation of
$\left.\begin{array}{l}\Leftrightarrow P \text {-parity, } \\ \Leftrightarrow C \text {-parity, }\end{array}\right\}$ in decays, \Leftrightarrow C-parity, $\}$ in production
\Leftrightarrow colour
\checkmark minor rôle

Gluenatomy

Clagons:

x Classical Field
\checkmark infrared singular, $d \omega / \omega$
\checkmark define the physical coupling
\checkmark responsible for
\Leftrightarrow DL radiative effects,
\Rightarrow reggeization,
\Leftrightarrow QCD/Lund string (gluers)
\checkmark play the major rôle in evolution

Quagons :

x Quantum d.o.f.s (constituents)
\checkmark infrared irrelevant, $d \omega \cdot \omega$
\checkmark make the coupling run
\checkmark responsible for conservation of
$\left.\begin{array}{l}\Leftrightarrow P \text {-parity, } \\ \Leftrightarrow C \text {-parity, }\end{array}\right\}$ in $\begin{aligned} & \text { decays, } \\ & \text { production }\end{aligned}$
\Leftrightarrow colour
\checkmark minor rôle

In addition,
X Tree multi-clagon (Parke-Taylor) amplitudes are known exactly
\boldsymbol{X} It is clagons which dominate in all the integrability cases

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}
$$

N=4 SUSY Yang-Mills

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

N=4 SUSY Yang-Mills

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

- $\beta(\alpha) \equiv 0$ in all orders !

N=4 SUSY Yang-Mills

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

- $\beta(\alpha) \equiv 0$ in all orders !
... makes one think of a classical nature (?) of the SYM-4 dynamics

N=4 SUSY Yang-Mills

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

$$
\gamma \Rightarrow \frac{x}{1-x}+\text { no quagons! }
$$

... makes one think of a classical nature (?) of the SYM-4 dynamics

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:

$$
\begin{aligned}
& \gamma_{\mathrm{uni}}(N+2), \gamma_{\mathrm{uni}}(N+1), \gamma_{\mathrm{uni}}(N), \quad \text { with the 1st loop given by } \\
& \gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1}
\end{aligned}
$$

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:

$$
\begin{aligned}
& \gamma_{\mathrm{uni}}(N+2), \gamma_{\mathrm{uni}}(N+1), \gamma_{\mathrm{uni}}(N), \quad \text { with the 1st loop given by } \\
& \gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right] .
\end{aligned}
$$

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:

$$
\begin{gathered}
\gamma_{\mathrm{uni}}(N+2), \gamma_{\mathrm{uni}}(N+1), \gamma_{\mathrm{uni}}(N), \quad \text { with the 1st loop given by } \\
\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right] .
\end{gathered}
$$

Look upon S_{1} as a "harmonic sum",

$$
S_{1}(N)=\sum_{k=1}^{N} \frac{1}{k}=\psi(N+1)-\psi(1)
$$

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:

$$
\begin{gathered}
\gamma_{\mathrm{uni}}(N+2), \gamma_{\mathrm{uni}}(N+1), \gamma_{\mathrm{uni}}(N), \quad \text { with the 1st loop given by } \\
\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right]
\end{gathered}
$$

Look upon S_{1} as a "harmonic sum",

$$
S_{1}(N)=\sum_{k=1}^{N} \frac{1}{k}=\psi(N+1)-\psi(1)
$$

In higher orders enter $m>1$,

$$
S_{m}(N)=\sum_{k=1}^{N} \frac{1}{k^{m}}=\frac{(-1)^{m}}{\Gamma(m)} \int_{0}^{1} d x x^{N} \frac{\ln ^{m-1} x}{1-x}+\zeta(m)
$$

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:

$$
\begin{gathered}
\gamma_{\mathrm{uni}}(N+2), \gamma_{\mathrm{uni}}(N+1), \gamma_{\mathrm{uni}}(N), \quad \text { with the 1st loop given by } \\
\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right]
\end{gathered}
$$

Look upon S_{1} as a "harmonic sum",

$$
S_{1}(N)=\sum_{k=1}^{N} \frac{1}{k}=\psi(N+1)-\psi(1)
$$

In higher orders enter $m>1$,

$$
S_{m}(N)=\sum_{k=1}^{N} \frac{1}{k^{m}}=\frac{(-1)^{m}}{\Gamma(m)} \int_{0}^{1} d x x^{N} \frac{\ln ^{m-1} x}{1-x}+\zeta(m)
$$

as we as multiple indices - nested sums

$$
S_{m, \vec{\rho}}(N)=\sum_{k=1}^{N} \frac{S_{\vec{\rho}}(k)}{k^{m}} \quad\left(\vec{\rho}=\left(m_{1}, m_{2}, \ldots, m_{i}\right)\right)
$$

ᄂ Universal anomalous dimension
Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

The origin of these oscillating sums - the $s \rightarrow u$ crossing:

$$
\begin{aligned}
& (a) \leftrightarrow(b) \\
& P \rightarrow-P \\
& x \rightarrow-x
\end{aligned}
$$

Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

The origin of these oscillating sums - the $s \rightarrow u$ crossing:

$$
\begin{aligned}
& (a) \leftrightarrow(b) \\
& P \rightarrow-P \\
& x \rightarrow-x
\end{aligned}
$$

$$
p_{q \bar{q}}(x)=\alpha_{s}^{2}\left(\frac{1}{2} C_{A}-C_{F}\right) p_{q q}(-x) \cdot \Phi_{2}(x), \quad p_{q q}(x)=\frac{1+x^{2}}{2(1-x)} .
$$

Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

The origin of these oscillating sums - the $s \rightarrow u$ crossing:

$$
\begin{aligned}
& (a) \leftrightarrow(b) \\
& P \rightarrow-P \\
& x \rightarrow-x
\end{aligned}
$$

$\frac{x}{1-x} \cdot \ln ^{2} x \rightarrow S_{3}(N) \quad \frac{x}{1+x} \cdot \Phi_{2}(x) \rightarrow Y_{-3}(N)$

$$
p_{q \bar{q}}(x)=\alpha_{s}^{2}\left(\frac{1}{2} C_{A}-C_{F}\right) p_{q q}(-x) \cdot \Phi_{2}(x), \quad p_{q q}(x)=\frac{1+x^{2}}{2(1-x)} .
$$

L $N=4$ Super-Yang-Mills
-Transcedentality
Loop \# 1: $\quad \gamma_{1}=-S_{1}$.

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$, pick out the maximal transcedentality pieces from the QCD an. dim.

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$,
pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$,
pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

The RREE,

$$
\gamma_{\sigma}(N)=\mathcal{P}\left(N+\sigma \gamma_{\sigma}(N)\right)
$$

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$,
pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

The RREE,

$$
\gamma_{\sigma}(N)=\mathcal{P}\left(N+\sigma \gamma_{\sigma}(N)\right)
$$

generates positives

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$,
pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

The RREE,

$$
\gamma_{\sigma}(N)=\mathcal{P}\left(N+\sigma \gamma_{\sigma}(N)\right)
$$

generates positives and simplifies negatives.

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& \quad a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right) \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& c a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}=- \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& \quad a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right) \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& { }^{2}= \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& \quad a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right) \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}=-S_{1} ; \\
& \mathcal{P}_{2}=\frac{1}{2} \hat{S}_{3}-\frac{1}{2} \hat{Y}_{-3}+B_{2} \text {; } \\
& \mathcal{P}_{3}=-\frac{1}{2} \hat{S}_{5}+\frac{3}{2} \hat{Y}_{-5}+B_{3}+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{3} \\
& +S_{1} \cdot\left[\hat{Y}_{-4}-\frac{1}{2}\left(\hat{S}_{-4}+\hat{S}_{-2}^{2}\right)+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{-2}\right]
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \Phi_{m-1}(x)\right], \\
\Phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) .
\end{gathered}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& \quad a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \Phi_{m-1}(x)\right] \\
\Phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) . \quad \Phi_{m}\left(x^{-1}\right)=-\Phi_{m}(x)
\end{gathered}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& \quad a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \Phi_{m-1}(x)\right] \\
\Phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) . \quad \Phi_{m}\left(x^{-1}\right)=-\Phi_{m}(x)
\end{gathered}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& \quad a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \Phi_{m-1}(x)\right] \\
\Phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) . \quad \Phi_{m}\left(x^{-1}\right)=-\Phi_{m}(x)
\end{gathered}
$$

$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of" (negative index sums)
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in uncertain sense
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in a not yet completely certain sense
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from γ_{1}, in all orders !
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense. If so, the final goal - to derive γ from γ_{1}, in all orders !

QCD and SUSY-QCD share the gluons.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense. If so, the final goal - to derive γ from γ_{1}, in all orders !

QCD and SUSY-QCD share the gluons.

Importantly, the maximal transcedentality (clagon) structures constitute the bulk of the QCD anomalous dimensions.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense. If so, the final goal - to derive γ from γ_{1}, in all orders !

QCD and SUSY-QCD share the gluons.

$$
\frac{\text { clever 2nd loop }}{\text { clever 1st loop }}<2 \%
$$

$$
\binom{\text { Heavy quark fragmentation }}{\text { D-r, Khoze \& Troyan, PRD } 1996}
$$

$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense. If so, the final goal - to derive γ from γ_{1}, in all orders !

QCD and SUSY-QCD share the gluons.

Importantly, the maximal transcedentality (clagon) structures constitute the bulk of the QCD anomalous dimensions.

Employ $\mathcal{N}=4$ SYM to simplify the essential part of the QCD dynamics

- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects

```
Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity
respecting evolution equations (RREE)
- reduces complexity by (at leat) one order of magnitude
> improves perturbative series (less singular, better "converging")
> links interesting phenomena in the DIS and e+ e-}\mathrm{ annihilation channels
```

- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) one order of magnitude
- improves perturbative series (less singular, better "converging")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide one-line-all-orders description of the major part of QCD parton dynamics
- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) one order of magnitude
- improves perturbative series (less singular, better "converging")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide

Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us a one-line-all-orders description of the major part of QCD parton dynamics

- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) one order of magnitude
- improves perturbative series (less singular, better "converging")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide
- Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us a one-line-all-orders description of the major part of QCD parton dynamics
> Long live perturbative QCD
- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) one order of magnitude
- improves perturbative series (less singular, better "converging")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide
- Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us a one-line-all-orders description of the major part of QCD parton dynamics
- Long live perturbative QCD !

Extras

$$
A=\sum_{1}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} A_{n}, \quad \frac{A^{(g)}}{C_{A}}=\frac{A^{(q)}}{C_{F}} \quad P_{a \rightarrow a[x]+g}(x)=\frac{A\left(\alpha_{s}\right)}{1-x}
$$

$$
\frac{A_{1}}{C}=4
$$

$$
\frac{A_{2}}{C}=8\left[\left(\frac{67}{18}-\zeta_{2}\right) C_{A}-\frac{5}{9} n_{f}\right]
$$

$$
\frac{A_{3}}{C}=16 C_{A}^{2}\left(\frac{245}{24}-\frac{67}{9} \zeta_{2}+\frac{11}{6} \zeta_{3}+\frac{11}{5} \zeta_{2}^{2}\right)
$$

$$
+16 C_{F} n_{f}\left(-\frac{55}{24}+2 \zeta_{3}\right)
$$

$$
+16 C_{A} n_{f}\left(-\frac{209}{108}+\frac{10}{9} \zeta_{2}-\frac{7}{3} \zeta_{3}\right)+16 n_{f}^{2}\left(-\frac{1}{27}\right) .
$$

$$
\begin{aligned}
& A=\sum_{1}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} A_{n}, \quad \frac{A^{(g)}}{C_{A}}=\frac{A^{(q)}}{C_{F}} \quad P_{a \rightarrow a[x]+g}(x)=\frac{A\left(\alpha_{s}\right)}{1-x} \\
& \frac{A_{1}}{C}= 4 \\
& \frac{A_{2}}{C}= 8\left[\left(\frac{67}{18}-\zeta_{2}\right) C_{A}-\frac{5}{9} n_{f}\right] \\
& \frac{A_{3}}{C}= 16 C_{A}^{2}\left(\frac{245}{24}-\frac{67}{9} \zeta_{2}+\frac{11}{6} \zeta_{3}+\frac{11}{5} \zeta_{2}^{2}\right) \\
&+16 C_{F} n_{f}\left(-\frac{55}{24}+2 \zeta_{3}\right) \\
&+16 C_{A} n_{f}\left(-\frac{209}{108}+\frac{10}{9} \zeta_{2}-\frac{7}{3} \zeta_{3}\right)+16 n_{f}^{2}\left(-\frac{1}{27}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& A=\sum_{1}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} A_{n}, \quad \frac{A^{(g)}}{C_{A}}=\frac{A^{(q)}}{C_{F}} \quad P_{a \rightarrow a[x]+g}(x)=\frac{A\left(\alpha_{s}\right)}{1-x} x+\mathcal{O}(1-x) \\
& \frac{A_{1}}{C}= 4 \\
& \frac{A_{2}}{C}= 8\left[\left(\frac{67}{18}-\zeta_{2}\right) C_{A}-\frac{5}{9} n_{f}\right] \\
& \frac{A_{3}}{C}= 16 C_{A}^{2}\left(\frac{245}{24}-\frac{67}{9} \zeta_{2}+\frac{11}{6} \zeta_{3}+\frac{11}{5} \zeta_{2}^{2}\right) \\
&+16 C_{F} n_{f}\left(-\frac{55}{24}+2 \zeta_{3}\right) \\
&+16 C_{A} n_{f}\left(-\frac{209}{108}+\frac{10}{9} \zeta_{2}-\frac{7}{3} \zeta_{3}\right)+16 n_{f}^{2}\left(-\frac{1}{27}\right) .
\end{aligned}
$$

$=$ universal magnitude of double-log enhanced contributions.

Enters in

large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors,
quark and gluon Regge trajectories,
threshold resummation,
singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor,
distributions of jet event shapes in the near-to-two-jet kinematics,
heavy quark fragmentation functions,
non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.
Enters in :
large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories,
threshold resummation, singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.
Enters in :
large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories,
threshold resummation, singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.
Enters in :
large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories, threshold resummation, singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.
Enters in :
large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories,
threshold resummation, singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.
Enters in :
large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories, threshold resummation, singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,

Second loop $G \rightarrow G \quad$ [quark box]

$$
P_{G}^{(S)}=8 x-16+\frac{20}{3} x^{2}+\frac{4}{3} x^{-1}-(6+10 x) \ln x-2(1+x) \ln ^{2} x
$$

$P_{G}^{(T)}=12 x-4-\frac{164}{9} x^{2}+\frac{92}{9} x^{-1}+\left(10+14 x+\frac{16}{3}\left[x^{2}+x^{-1}\right]\right) \ln x+2(1+x) \ln ^{2} x ;$
Non-singlet $F \rightarrow F \quad$ [via 2 gluons]
$P_{F}^{(S)}=12 x-4-\frac{112}{9} x^{2}+\frac{40}{9} x^{-1}+\left(2+10 x+\frac{16}{3} x^{2}\right) \ln x-2(1+x) \ln ^{2} x$,
$P_{F}^{(T)}=8 x-16+\frac{112}{9} x^{2}-\frac{40}{9} x^{-1}-\left(10+18 x+\frac{16}{3} x^{2}\right) \ln x+2(1+x) \ln ^{2} x$
$P_{G}^{(S)}=8 x-16+\frac{20}{3} x^{2}+\frac{4}{3} x^{-1}-(6+10 x) \ln x-2(1+x) \ln ^{2} x$,
$P_{G}^{(T)}=12 x-4-\frac{164}{9} x^{2}+\frac{92}{9} x^{-1}+\left(10+14 x+\frac{16}{3}\left[x^{2}+x^{-1}\right]\right) \ln x+2(1+x) \ln ^{2} x ;$
Non-singlet $F \rightarrow F \quad$ [via 2 gluons]
$P_{F}^{(S)}=12 x-4-\frac{112}{9} x^{2}+\frac{40}{9} x^{-1}+\left(2+10 x+\frac{16}{3} x^{2}\right) \ln x-2(1+x) \ln ^{2} x$,
$P_{F}^{(T)}=8 x-16+\frac{112}{9} x^{2}-\frac{40}{9} x^{-1}-\left(10+18 x+\frac{16}{3} x^{2}\right) \ln x+2(1+x) \ln ^{2} x$
Cross-differences :

$$
\frac{1}{2}\left[P_{F}^{(T)}-P_{G}^{(S)}\right]=P_{F}^{G} \dot{P}_{G}^{F}, \quad \frac{1}{2}\left[P_{G}^{(T)}-P_{F}^{(S)}\right]=P_{G}^{F} \dot{P}_{F}^{G}
$$

$P_{G}^{(S)}=8 x-16+\frac{20}{3} x^{2}+\frac{4}{3} x^{-1}-(6+10 x) \ln x-2(1+x) \ln ^{2} x$,
$P_{G}^{(T)}=12 x-4-\frac{164}{9} x^{2}+\frac{92}{9} x^{-1}+\left(10+14 x+\frac{16}{3}\left[x^{2}+x^{-1}\right]\right) \ln x+2(1+x) \ln ^{2} x ;$
Non-singlet $F \rightarrow F \quad$ [via 2 gluons]
$P_{F}^{(S)}=12 x-4-\frac{112}{9} x^{2}+\frac{40}{9} x^{-1}+\left(2+10 x+\frac{16}{3} x^{2}\right) \ln x-2(1+x) \ln ^{2} x$,
$P_{F}^{(T)}=8 x-16+\frac{112}{9} x^{2}-\frac{40}{9} x^{-1}-\left(10+18 x+\frac{16}{3} x^{2}\right) \ln x+2(1+x) \ln ^{2} x$
Cross-differences :

$$
\frac{1}{2}\left[P_{F}^{(T)}-P_{G}^{(S)}\right]=P_{F}^{G} \dot{P}_{G}^{F}, \quad \frac{1}{2}\left[P_{G}^{(T)}-P_{F}^{(S)}\right]=P_{G}^{F} \dot{P}_{F}^{G}
$$

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}.

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} P_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} P_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

"wave function"

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} P_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

"time derivative"

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} P_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

"Hamiltonian"

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} P_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

Parton Dynamics turned out to be extremely simple.
Have a deeper look at parton splitting probabilities - our evolution Hamiltonian -
to fully appreciate the power of the probabilistic interpretation of parton cascades

So long as probability of one extra parton emission is large, one has to consider and treat arbitrary number of parton splittings

Perturbative QCD $(38 / 44)$
-Extras
-Parton dynamics

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes :

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes:
$q \rightarrow q(z)+g$
$\quad P_{q}^{q}(z)=C_{F} \cdot \frac{1+z^{2}}{1-z}$,
$z=k_{5} / k_{4}$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes :

$$
\begin{aligned}
& q \rightarrow g(z)+q \\
& \quad P_{q}^{q}(z)=C_{F} \cdot \frac{1+z^{2}}{1-z} \\
& \quad P_{q}^{g}(z)=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
\end{aligned}
$$

$$
z=k_{2} / k_{1}
$$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes:

$$
g \rightarrow q(z)+\bar{q} \quad z=k_{4} / k_{3}
$$

$$
\begin{aligned}
P_{q}^{q}(z) & =C_{F} \cdot \frac{1+z^{2}}{1-z} \\
P_{q}^{g}(z) & =C_{F} \cdot \frac{1+(1-z)^{2}}{z} \\
P_{g}^{q}(z) & =T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
\end{aligned}
$$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes :

$$
g \rightarrow g(z)+g \quad z=k_{3} / k_{2}
$$

$$
\begin{aligned}
P_{q}^{q}(z) & =C_{F} \cdot \frac{1+z^{2}}{1-z} \\
P_{q}^{g}(z) & =C_{F} \cdot \frac{1+(1-z)^{2}}{z} \\
P_{g}^{q}(z) & =T_{R} \cdot\left[z^{2}+(1-z)^{2}\right] \\
P_{g}^{g}(z) & =N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
\end{aligned}
$$

$$
\begin{aligned}
& \mu^{2} \ll k_{1 \perp}^{2} \ll k_{2 \perp}^{2} \ll k_{3 \perp}^{2} \ll k_{4 \perp}^{2} \ll k_{5 \perp}^{2} \ll Q^{2} \\
& \text { Four basic splitting processes : }
\end{aligned}
$$

"Hamiltonian" for parton cascades

$$
\begin{aligned}
P_{q}^{q}(z) & =C_{F} \cdot \frac{1+z^{2}}{1-z} \\
P_{q}^{g}(z) & =C_{F} \cdot \frac{1+(1-z)^{2}}{z} \\
P_{g}^{q}(z) & =T_{R} \cdot\left[z^{2}+(1-z)^{2}\right] \\
P_{g}^{g}(z) & =N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
\end{aligned}
$$

Logarithmic "evolution time" $\quad d \xi=\frac{\alpha_{s}}{2 \pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}$

Integrability

1. anomalous dimensions \Rightarrow eigenvalues of the dilatation operator
2. subset of composite operators su(2) $=$ trace(XXXYYXYXXXYYY) can be mapped onto a spin $1 / 2$ system $(X=$ spin up, $Y=$ spin down $)$
3. At one loop, it is the Hamiltonian of the integrable $X X X$ spin $1 / 2$ chain
4. At higher loops, a more complicated spin chain, but with spins interacting at neighbouring sites (up to a certain distance)
5. At all loops, there are conjectures for the all loop spin Hamiltonian, exploiting the string results, assuming AdS/CFT duality.
6. Integrability $=$ an infinite number of invariants (conserved quantities).

2- and 3-prong colour antennae are sort of "trivial" : coherence being taken

 care of, the answers turned out to be essentially additive The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters)2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters) especially so for gluon-gluon scattering.

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.
Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.
Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators.

gluons in-between-jets

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.
Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators.

Recent (fall 2005) addition to the problem

Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple"

Soft anomalous dimension,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$
\left[E_{i}-\frac{4}{3}\right]^{3}-\frac{\left(1+3 b^{2}\right)\left(1+3 x^{2}\right)}{3}\left[E_{i}-\frac{4}{3}\right]-\frac{2\left(1-9 b^{2}\right)\left(1-9 x^{2}\right)}{27}=0
$$

where

$$
x=\frac{1}{N}, \quad b \equiv \frac{\ln (t / s)-\ln (u / s)}{\ln (t / s)+\ln (u / s)}
$$

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$
\left[E_{i}-\frac{4}{3}\right]^{3}-\frac{\left(1+3 b^{2}\right)\left(1+3 x^{2}\right)}{3}\left[E_{i}-\frac{4}{3}\right]-\frac{2\left(1-9 b^{2}\right)\left(1-9 x^{2}\right)}{27}=0
$$

where

$$
x=\frac{1}{N}, \quad b \equiv \frac{\ln (t / s)-\ln (u / s)}{\ln (t / s)+\ln (u / s)}
$$

Mark the mysterious symmetry w.r.t. to $x \rightarrow b$: interchanging internal (group rank) and external (scattering angle) variables of the problem ...

Ratio of parton multiplicities in gluon and quark jets in three loops:
$R \frac{\mathcal{N}_{g}}{\mathcal{N}_{q}}=1-\frac{\gamma_{0}}{6}\{1+T(1-2 R)\}+\left(\frac{\gamma_{0}}{6}\right)^{2} \frac{\left(6-4 R-16 R^{2}\right) T^{2}+(58 R-19) T-25}{8}$
where
(J.B. Gaffney and A.H. Mueller, 1985)

$$
\gamma_{0}=\sqrt{2 N_{c} \frac{\alpha_{s}}{\pi}} ; \quad R \equiv \frac{C_{F}}{N_{c}}, \quad T \equiv \frac{2 n_{f} T_{R}}{N_{c}} .
$$

Ratio of parton multiplicities in gluon and quark jets in three loops:
$R \frac{\mathcal{N}_{g}}{\mathcal{N}_{q}}=1-\frac{\gamma_{0}}{6}\{1+T(1-2 R)\}+\left(\frac{\gamma_{0}}{6}\right)^{2} \frac{\left(6-4 R-16 R^{2}\right) T^{2}+(58 R-19) T-25}{8}$
where
(J.B. Gaffney and A.H. Mueller, 1985)

$$
\gamma_{0}=\sqrt{2 N_{c} \frac{\alpha_{s}}{\pi}} ; \quad R \equiv \frac{C_{F}}{N_{c}}, \quad T \equiv \frac{2 n_{f} T_{R}}{N_{c}} .
$$

Follows "algebraically" from the one-loop Evolution Equations with Exact Angular Ordering imposed !?

Ratio of parton multiplicities in gluon and quark jets in three loops:
$R \frac{\mathcal{N}_{g}}{\mathcal{N}_{q}}=1-\frac{\gamma_{0}}{6}\{1+T(1-2 R)\}+\left(\frac{\gamma_{0}}{6}\right)^{2} \frac{\left(6-4 R-16 R^{2}\right) T^{2}+(58 R-19) T-25}{8}$
where
(J.B. Gaffney and A.H. Mueller, 1985)

$$
\gamma_{0}=\sqrt{2 N_{c} \frac{\alpha_{s}}{\pi}} ; \quad R \equiv \frac{C_{F}}{N_{c}}, \quad T \equiv \frac{2 n_{f} T_{R}}{N_{c}} .
$$

Follows "algebraically" from the one-loop Evolution Equations with Exact Angular Ordering imposed !?

NB: a SUSY check

Ratio of parton multiplicities in gluon and quark jets in three loops:
$R \frac{\mathcal{N}_{g}}{\mathcal{N}_{q}}=1-\frac{\gamma_{0}}{6}\{1+T(1-2 R)\}+\left(\frac{\gamma_{0}}{6}\right)^{2} \frac{\left(6-4 R-16 R^{2}\right) T^{2}+(58 R-19) T-25}{8}$
where
(J.B. Gaffney and A.H. Mueller, 1985)

$$
\gamma_{0}=\sqrt{2 N_{c} \frac{\alpha_{s}}{\pi}} ; \quad R \equiv \frac{C_{F}}{N_{c}}, \quad T \equiv \frac{2 n_{f} T_{R}}{N_{c}}
$$

Follows "algebraically" from the one-loop Evolution Equations with Exact Angular Ordering imposed !?

NB: a SUSY check

$$
R=T=1 \quad \Longrightarrow \quad \frac{\mathcal{N}_{g}}{\mathcal{N}_{q}}=1
$$

$$
\begin{aligned}
\sqrt{\alpha_{\mathrm{s}}} & \Longrightarrow \frac{\alpha_{\mathrm{s}}}{N}+\frac{\alpha_{\mathrm{s}}^{2}}{N^{3}}+\frac{\alpha_{\mathrm{s}}^{3}}{N^{5}}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{7}}+\ldots \\
\alpha_{\mathrm{s}} & \Longrightarrow \alpha_{\mathrm{s}}+\frac{\alpha_{\mathrm{s}}^{2}}{N^{2}}+\frac{\alpha_{\mathrm{s}}^{3}}{N^{4}}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{6}}+\ldots \\
\alpha_{\mathrm{s}}^{3 / 2} & \Longrightarrow 0+\frac{\alpha_{\mathrm{s}}^{2}}{N}+\frac{\alpha_{\mathrm{s}}^{3}}{N^{3}}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{5}}+\frac{\alpha_{\mathrm{s}}^{5}}{N^{7}}+\ldots \\
\alpha_{\mathrm{s}}^{2} & \Longrightarrow 0+\alpha_{\mathrm{s}}^{2}+\frac{\alpha_{\mathrm{s}}^{3}}{N^{2}}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{4}}+\frac{\alpha_{\mathrm{s}}^{5}}{N^{6}}+\ldots \\
\alpha_{\mathrm{s}}^{5 / 2} & \Longrightarrow 0+0+\frac{\alpha_{\mathrm{s}}^{3}}{N}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{3}}+\frac{\alpha_{\mathrm{s}}^{5}}{N^{5}}+\ldots \\
\alpha_{\mathrm{s}}^{3} & \Longrightarrow 0+0+\alpha_{\mathrm{s}}^{3}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{2}}+\frac{\alpha_{\mathrm{s}}^{5}}{N^{4}}+\frac{\alpha_{\mathrm{s}}^{6}}{N^{6}}+\ldots
\end{aligned}
$$

$$
\sqrt{\alpha_{\mathrm{s}}} \Longrightarrow \frac{\alpha_{\mathrm{s}}}{N}+\frac{\alpha_{\mathrm{s}}^{2}}{N^{3}}+\frac{\alpha_{\mathrm{s}}^{3}}{N^{5}}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{7}}+\ldots
$$

$$
\begin{aligned}
\sqrt{\alpha_{\mathrm{s}}} & \Longrightarrow \frac{\alpha_{\mathrm{s}}}{N}+\frac{\alpha_{\mathrm{s}}^{2}}{N^{3}}+\frac{\alpha_{\mathrm{s}}^{3}}{N^{5}}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{7}}+\ldots \\
\alpha_{\mathrm{s}} & \Longrightarrow \alpha_{\mathrm{s}}+\frac{\alpha_{\mathrm{s}}^{2}}{N^{2}}+\frac{\alpha_{\mathrm{s}}^{3}}{N^{4}}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{6}}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{\alpha_{\mathrm{s}}} & \Longrightarrow \frac{\alpha_{\mathrm{s}}}{N}+\frac{\alpha_{\mathrm{s}}^{2}}{N^{3}}+\frac{\alpha_{\mathrm{s}}^{3}}{N^{5}}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{7}}+\ldots \\
\alpha_{\mathrm{s}} & \Longrightarrow \alpha_{\mathrm{s}}+\frac{\alpha_{\mathrm{s}}^{2}}{N^{2}}+\frac{\alpha_{\mathrm{s}}^{3}}{N^{4}}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{6}}+\ldots \\
\alpha_{\mathrm{s}}^{3 / 2} & \Longrightarrow 0+\frac{\alpha_{\mathrm{s}}^{2}}{N}+\frac{\alpha_{\mathrm{s}}^{3}}{N^{3}}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{5}}+\frac{\alpha_{\mathrm{s}}^{5}}{N^{7}}+\ldots \\
\alpha_{\mathrm{s}}^{2} & \Longrightarrow 0+\alpha_{\mathrm{s}}^{2}+\frac{\alpha_{\mathrm{s}}^{3}}{N^{2}}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{4}}+\frac{\alpha_{\mathrm{s}}^{5}}{N^{6}}+\ldots \\
\alpha_{\mathrm{s}}^{5 / 2} & \Longrightarrow 0+0+\frac{\alpha_{\mathrm{s}}^{3}}{N}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{3}}+\frac{\alpha_{\mathrm{s}}^{5}}{N^{5}}+\ldots \\
\alpha_{\mathrm{s}}^{3} & \Longrightarrow 0+0+\alpha_{\mathrm{s}}^{3}+\frac{\alpha_{\mathrm{s}}^{4}}{N^{2}}+\frac{\alpha_{\mathrm{s}}^{5}}{N^{4}}+\frac{\alpha_{\mathrm{s}}^{6}}{N^{6}}+\ldots
\end{aligned}
$$

