QCD Parton Dynamics, 30 years later

Yuri Dokshitzer

Paris-Jussieu & St. Petersburg

Munich, DIS 2007, 16.04 2007

- 1. Three loops (scary movie)
- 2. Parton Dynamics made simple(r)
 - Innovative Bookkeeping
 - Divide and Conquer
- 3. $\mathcal{N} = 4$ SYM serving QCD
- 4. Conclusions

- 1. Three loops (scary movie)
- 2. Parton Dynamics made simple(r)
 - Innovative Bookkeeping
 - Divide and Conquer
- 3. $\mathcal{N}=4$ SYM serving QCD
- 4. Conclusions

1-loop drill, 2-loop thrill, 3-loop chill ...

$$\begin{split} P_{\rm ns}^{(2)+}(x) &= 16 \textit{C}_{A} \textit{C}_{F} \textit{n}_{f} \left(\frac{1}{6} p_{\rm qq}(x) \left[\frac{10}{3} \zeta_{2} - \frac{209}{36} - 9\zeta_{3} - \frac{167}{18} H_{0} + 2 H_{0} \zeta_{2} - 7 H_{0} \right] \right. \\ &+ 3 H_{1,0,0} - H_{3} \right] + \frac{1}{3} p_{\rm qq}(-x) \left[\frac{3}{2} \zeta_{3} - \frac{5}{3} \zeta_{2} - H_{-2,0} - 2 H_{-1} \zeta_{2} - \frac{10}{3} H_{-1,0} - H_{-1} \right. \\ &+ 2 H_{-1,2} + \frac{1}{2} H_{0} \zeta_{2} + \frac{5}{3} H_{0,0} + H_{0,0,0} - H_{3} \right] + (1 - x) \left[\frac{1}{6} \zeta_{2} - \frac{257}{54} - \frac{43}{18} H_{0} - \frac{1}{6} H_{0,0} \right] \\ &- (1 + x) \left[\frac{2}{3} H_{-1,0} + \frac{1}{2} H_{2} \right] + \frac{1}{3} \zeta_{2} + H_{0} + \frac{1}{6} H_{0,0} + \delta (1 - x) \left[\frac{5}{4} - \frac{167}{54} \zeta_{2} + \frac{1}{20} \zeta_{2} \right] \end{split}$$

$$+16 C_{A} C_{F}^{2} \left(p_{qq}(x) \left[\frac{5}{6} \zeta_{3} - \frac{69}{20} \zeta_{2}^{2} - H_{-3,0} - 3H_{-2} \zeta_{2} - 14H_{-2,-1,0} + 3H_{-2,0} + 2H_{-2,2} - \frac{151}{48} H_{0} + \frac{41}{12} H_{0} \zeta_{2} - \frac{17}{2} H_{0} \zeta_{3} - \frac{13}{4} H_{0,0} - 4H_{0,0} \zeta_{2} - \frac{23}{12} H_{0,0,0} + 5H_{0,0} \right) \right)$$

 $-4H_{-2,2} - \frac{33}{48}H_0 + \frac{12}{12}H_0\zeta_2 - \frac{24}{2}H_0\zeta_3 - \frac{33}{4}H_{0,0} - 4H_{0,0}\zeta_2 - \frac{23}{12}H_{0,0,0} + 5H_{0,0} + \frac{31}{2}H_{0,0,0} + \frac{31}{2}H_{0,0,0}$

$$+\frac{67}{9}H_{2}-2H_{2}\zeta_{2}+\frac{11}{3}H_{2,0}+5H_{2,0,0}+H_{3,0}\Big]+p_{qq}(-x)\Big[\frac{1}{4}\zeta_{2}{}^{2}-\frac{67}{9}\zeta_{2}+\frac{31}{4}\zeta_{2}$$

$$-32H_{-2}\zeta_{2} - 4H_{-2,-1,0} - \frac{31}{6}H_{-2,0} + 21H_{-2,0,0} + 30H_{-2,2} - \frac{31}{3}H_{-1}\zeta_{2} - 42H_{-2,0,0} + 4H_{-1,-2,0} + 56H_{-1,-1}\zeta_{2} - 36H_{-1,-1,0,0} - 56H_{-1,-1,2} - \frac{134}{3}H_{-1,0,0} - 42H_{-1,0,0}$$

$$-4H_{-1,-2,0} + 56H_{-1,-1}\zeta_2 - 36H_{-1,-1,0,0} - 56H_{-1,-1,2} - \frac{134}{9}H_{-1,0} - 42H_{-1,0} + 32H_{-1,3} - \frac{31}{6}H_{-1,0,0} + 17H_{-1,0,0,0} + \frac{31}{3}H_{-1,2} + 2H_{-1,2,0} + \frac{13}{12}H_0\zeta_2 + \frac{29}{2}H_{-1,0,0} + \frac{31}{12}H_0\zeta_2 + \frac{3$$

$$+32H_{-1,3} - \frac{31}{6}H_{-1,0,0} + 17H_{-1,0,0,0} + \frac{31}{3}H_{-1,2} + 2H_{-1,2,0} + \frac{13}{12}H_{0}\zeta_{2} + \frac{29}{2}H_{-1,2,0} + \frac{13}{12}H_{0}\zeta_{2} + \frac{29}{12}H_{0,0,0} - 5H_{0,0,0,0} - 7H_{2}\zeta_{2} - \frac{31}{6}H_{3} - 10H_{4} + (1-x)\left[\frac{133}{36} + \frac{13}{36}H_{0,0,0} - \frac{13}{36}H_{0$$

$$+13H_{0,0}\zeta_{2} + \frac{89}{12}H_{0,0,0} - 5H_{0,0,0,0} - 7H_{2}\zeta_{2} - \frac{31}{6}H_{3} - 10H_{4} + (1-x)\left[\frac{133}{36} - \frac{167}{4}\zeta_{3} - 2H_{0}\zeta_{3} - 2H_{-3,0} + H_{-2}\zeta_{2} + 2H_{-2,-1,0} - 3H_{-2,0,0} + \frac{77}{4}H_{0,0,0} - \frac{20}{6}H_{0,0,0} - \frac{167}{4}H_{0,0,0} - \frac{20}{6}H_{0,0,0,0} - \frac{20}{6}H_{0,0,0,0,0} - \frac{20}{6}H_{0,0,0,0} - \frac{20}{6}H_{0,0,0,0,0} - \frac{20}{6}H_{0,0,0,0} - \frac{20}{6}H_{0,0,0,0} - \frac{20}{6}H_{0,0,0,0} - \frac{20}{6}H_{0,0,0,0} - \frac{20}{6}H_{0,0,0,0} - \frac{20}{6}H_{0,0,0,0} - \frac{20}{6}H_{0,0,0,0,0} -$$

$$-\frac{167}{4}\zeta_{3} - 2H_{0}\zeta_{3} - 2H_{-3,0} + H_{-2}\zeta_{2} + 2H_{-2,-1,0} - 3H_{-2,0,0} + \frac{77}{4}H_{0,0,0} - \frac{20}{6}H_{1,0,0} + \frac{14}{3}H_{1,0} + (1+x)\left[\frac{43}{2}\zeta_{2} - 3\zeta_{2}^{2} + \frac{25}{3}H_{-2,0} - 31H_{-1}\zeta_{2} - 14H_{-1,-1}\right]$$

 $+4H_{1,0,0} + \frac{14}{3}H_{1,0} + (1+x) \left| \frac{43}{2}\zeta_2 - 3\zeta_2^2 + \frac{25}{2}H_{-2,0} - 31H_{-1}\zeta_2 - 14H_{-1,-1}\zeta_2 \right|$

 $+2H_{2,0,0}-3H_4\Big|-5\zeta_2-\frac{1}{2}{\zeta_2}^2+50\zeta_3-2H_{-3,0}-7H_{-2,0}-H_0\zeta_3-\frac{37}{2}H_0\zeta_2-\frac{37}{2}H_0\zeta_3$

$$-2H_{0,0}\zeta_{2} + \frac{185}{6}H_{0,0} - 22H_{0,0,0} - 4H_{0,0,0,0} + \frac{28}{3}H_{2} + 6H_{3} + \delta(1-x)\left[\frac{151}{64} + \frac{247}{60}\zeta_{2}^{2} + \frac{211}{12}\zeta_{3} + \frac{15}{2}\zeta_{5}\right]\right) + 16C_{A}{}^{2}C_{F}\left(\rho_{qq}(x)\left[\frac{245}{48} - \frac{67}{18}\zeta_{2} + \frac{12}{5}\zeta_{2}^{2} + \frac{1}{2}\zeta_{5}\right]\right)$$

 $+H_{-3,0}+4H_{-2,-1,0}-\frac{3}{2}H_{-2,0}-H_{-2,0,0}+2H_{-2,2}-\frac{31}{12}H_{0}\zeta_{2}+4H_{0}\zeta_{3}+\frac{389}{72}$

$$-H_{0,0,0,0} + 9H_{1}\zeta_{3} + 6H_{1,-2,0} - H_{1,0}\zeta_{2} - \frac{11}{4}H_{1,0,0} - 3H_{1,0,0,0} - 4H_{1,1,0,0} + 4$$

 $-3H_{-1,0,0,0} + \frac{11}{3}H_{-1}\zeta_2 + 12H_{-1}\zeta_3 - 16H_{-1,-1}\zeta_2 + 8H_{-1,-1,0,0} + 16H_{-1,-1,0,0}$ $-8H_{-2,2} + 11H_{-1,0}\zeta_2 + \frac{11}{6}H_{-1,0,0} - \frac{11}{3}H_{-1,2} - 8H_{-1,3} - \frac{3}{4}H_0 - \frac{1}{6}H_0\zeta_2 - 4$

$$-3H_{0,0}\zeta_{2} - \frac{31}{12}H_{0,0,0} + H_{0,0,0,0} + 2H_{2}\zeta_{2} + \frac{11}{6}H_{3} + 2H_{4} + (1-x)\left[\frac{1883}{108} - \frac{1}{2}H_{-2,0,0} + \frac{1}{2}H_{-2,0,0} + \frac{1}{2}H_{-2,0,0} + \frac{523}{36}H_{0} + H_{0}\zeta_{3} - \frac{13}{3}H_{0,0} - \frac{5}{2}H_{-2,0,0} + (1+x)\left[8H_{-1}\zeta_{2} + 4H_{-1,-1,0} + \frac{8}{3}H_{-1,0} - 5H_{-1,0,0} - 6H_{-1,2} - \frac{13}{3}H_{0,0} + \frac{13}{3}H_{$$

$$\begin{split} & + \frac{1}{4}\zeta_{2}^{2} - \frac{8}{3}\zeta_{2} + \frac{17}{2}\zeta_{3} + H_{-2,0} - \frac{19}{2}H_{0} + \frac{5}{2}H_{0}\zeta_{2} - H_{0}\zeta_{3} + \frac{13}{3}H_{0,0} + \frac{5}{2}H_{0,0,0} - \frac{1}{2}H_{0,0} - \frac{1}$$

 $-\frac{43}{4}\zeta_{3}-\frac{5}{2}H_{-2,0}-\frac{11}{2}H_{0}\zeta_{2}-\frac{1}{2}H_{2}\zeta_{2}-\frac{5}{4}H_{0,0}\zeta_{2}+7H_{2}-\frac{1}{4}H_{2,0,0}+3H_{3}+\frac{3}{4}H_{0,0}\zeta_{2}+\frac{1}{$

$$-\frac{55}{16} + \frac{5}{8}H_0 + H_0\zeta_2 + \frac{3}{2}H_{0,0} - H_{0,0,0} - \frac{10}{3}H_{1,0} - \frac{10}{3}H_2 - 2H_{2,0} - 2H_3 \Big] + \frac{2}{3}H_0\zeta_2 - \frac{3}{2}\zeta_3 + H_{-2,0} + 2H_{-1}\zeta_2 + \frac{10}{3}H_{-1,0} + H_{-1,0,0} - 2H_{-1,2} - \frac{1}{2}H_0\zeta_2 - \frac{5}{3}H_{0,0} - \frac{10}{3}H_0\zeta_2 - \frac{10}{3}H_0\zeta$$

$$-(1-x)\left[\frac{10}{9} + \frac{19}{18}H_{0,0} - \frac{4}{3}H_1 + \frac{2}{3}H_{1,0} + \frac{4}{3}H_2\right] + (1+x)\left[\frac{4}{3}H_{-1,0} - \frac{25}{24}H_0 + \frac{7}{9}H_{0,0} + \frac{4}{3}H_2 - \delta(1-x)\left[\frac{23}{16} - \frac{5}{12}\zeta_2 - \frac{29}{30}\zeta_2^2 + \frac{17}{6}\zeta_3\right]\right) + 16C_F^3\left(p_{qq}(x)\right]$$

$$+6H_{-2}\zeta_{2} + 12H_{-2,-1,0} - 6H_{-2,0,0} - \frac{3}{16}H_{0} - \frac{3}{2}H_{0}\zeta_{2} + H_{0}\zeta_{3} + \frac{13}{8}H_{0,0} - 2H_{0}\zeta_{2} + H_{0}\zeta_{3} + \frac{13}{8}H_{0,0} - 2H_{0}\zeta_{2} + H_{0}\zeta_{3} + 8H_{1,-2,0} - 6H_{1,0,0} - 4H_{1,0,0,0} + 4H_{1,2,0} - 3H_{2,0} + 2H_{2,0,0} + 4H_{2,1}\zeta_{3} + 4H_{3,0} + 4H_{3,1} + 2H_{4} + \rho_{qq}(-x) \left[\frac{7}{2}\zeta_{2}^{2} - \frac{9}{2}\zeta_{3} - 6H_{-3,0} + 32H_{-2}\zeta_{2} + 8H_{-2}\zeta_{3} + \frac{13}{8}H_{0,0} - 2H_{0}\zeta_{3} + \frac{13}{8}H_{0,0} + \frac{13}{8}H_{0,0$$

 $-26H_{-2,0,0} - 28H_{-2,2} + 6H_{-1}\zeta_2 + 36H_{-1}\zeta_3 + 8H_{-1,-2,0} - 48H_{-1,-1}\zeta_2 + 40H_{-1,-1}\zeta_2 + 4$

$$+48H_{-1,-1,2} + 40H_{-1,0}\zeta_2 + 3H_{-1,0,0} - 22H_{-1,0,0,0} - 6H_{-1,2} - 4H_{-1,2,0} - 32H_{-1,0,0,0}$$

$$-\frac{3}{2}H_{0}\zeta_{2} - 13H_{0}\zeta_{3} - 14H_{0,0}\zeta_{2} - \frac{9}{2}H_{0,0,0} + 6H_{0,0,0,0} + 6H_{2}\zeta_{2} + 3H_{3} + 2H_{3,0} + (1-x)\left[2H_{-3,0} - \frac{31}{8} + 4H_{-2,0,0} + H_{0,0}\zeta_{2} - 3H_{0,0,0,0} + 35H_{1} + 6H_{1}\zeta_{2} - H_{1,0}\right]$$

$$+(1+x)\left[\frac{37}{10}\zeta_{2}^{2} - \frac{93}{4}\zeta_{2} - \frac{81}{2}\zeta_{3} - 15H_{-2,0} + 30H_{-1}\zeta_{2} + 12H_{-1,-1,0} - 2H_{-1,0}\right]$$

$$-24H_{-1,2} - \frac{539}{16}H_0 - 28H_0\zeta_2 + \frac{191}{8}H_{0,0} + 20H_{0,0,0} + \frac{85}{4}H_2 - 3H_{2,0,0} - 2H_3$$

$$-H_4 + 4\zeta_2 + 33\zeta_3 + 4H_{-3,0} + 10H_{-2,0} + \frac{67}{2}H_0 + 6H_0\zeta_3 + 19H_0\zeta_2 - 25H_{0,0}$$

$$-2H_2 - H_{2,0} - 4H_3 + \delta(1-x) \left[\frac{29}{32} - 2\zeta_2\zeta_3 + \frac{9}{8}\zeta_2 + \frac{18}{5}\zeta_2^2 + \frac{17}{4}\zeta_3 - 15\zeta_5 \right] \right)$$

 2×2 anomalous dimension matrix occupies

1 st loop: 1/10 page

- 2×2 anomalous dimension matrix occupies
- 1 st loop: 1/10 page
- 2 nd loop: 1 page

- 2×2 anomalous dimension matrix occupies
- 1 st loop: 1/10 page
- 2 nd loop: 1 page
- 3 rd loop: 100 pages (200 K asci)

Moch, Vermaseren and Vogt

[waterfall of results launched March 2004, and counting]

- 2×2 anomalous dimension matrix occupies
- 1 st loop: 1/10 page
- 2 nd loop: 1 page
- 3 rd loop: 100 pages (200 K asci)

Moch, Vermaseren and Vogt

[waterfall of results launched March 2004, and counting]

$$V \sim \left\{ egin{array}{l} 10^{rac{N(N-1)}{2}-1} \ 10^{2^{N-1}-2} \end{array}
ight.$$

facing music of the spheres

- 2×2 anomalous dimension matrix occupies
- 1 st loop: 1/10 page
- 2 nd loop: 1 page
- 3 rd loop: 100 pages (200 K asci)

Moch, Vermaseren and Vogt

[waterfall of results launched March 2004, and counting]

$$V \sim \left\{ \begin{array}{l} 10^{\frac{N(N-1)}{2}-1} \\ 10^{2^{N-1}-2} \end{array} \right.$$

not too encouraging a trend ...

- ✓ exploit internal properties:
 - ► Drell-Levy-Yan relation
 - Gribov–Lipatov reciprocity

- ✓ exploit internal properties:
 - Drell-Levy-Yan relation
 - Gribov–Lipatov reciprocity

- ✓ exploit internal properties:
 - ► Drell-Levy-Yan relation
 - Gribov–Lipatov reciprocity
- ✓ separate classical & quantum effects in the gluon sector

Guidelines

- ✓ exploit internal properties:
 - ► Drell-Levy-Yan relation
 - Gribov–Lipatov reciprocity
- ✓ separate classical & quantum effects in the gluon sector

An essential part of gluon dynamics is Classical.

(F.Low)

Guidelines

- ✓ exploit internal properties:
 - ► Drell-Levy-Yan relation
 - Gribov–Lipatov reciprocity
- ✓ separate classical & quantum effects in the gluon sector

An essential part of gluon dynamics is Classical.

"Classical" does not mean "Simple".

However, it has a good chance to be Exactly Solvable.

(F.Low)

Guidelines

- ✓ exploit internal properties:
 - ► Drell-Levy-Yan relation
 - Gribov–Lipatov reciprocity
- ✓ separate classical & quantum effects in the gluon sector

An essential part of gluon dynamics is Classical.

"Classical" does not mean "Simple".

However, it has a good chance to be Exactly Solvable.

(F.Low)

Guidelines

- ✓ exploit internal properties:
 - ► Drell-Levy-Yan relation
 - Gribov–Lipatov reciprocity
- ✓ separate classical & quantum effects in the gluon sector

An essential part of gluon dynamics is Classical.

(F.Low)

"Classical" does not mean "Simple".

However, it has a good chance to be Exactly Solvable.

→ A playing ground for theoretical theory: SUSY, AdS/CFT, ...

In the standard approach,

- parton splitting functions are equated with anomalous dimensions;
- ▶ they are different for DIS and e^+e^- evolution;
- "clever evolution variables" are different too

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- ▶ the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov–Lipatov reciprocity relation true in all orders);
- unique evolution variable parton fluctuation time

Fluctuation time ordering

Kinematics of the parton splitting $A \rightarrow B + C$

Kinematics of the parton splitting $A \rightarrow B + C$ $k_B \simeq x \cdot P$, $k_A \simeq \frac{x}{2} \cdot P$

Kinematics of the parton splitting $A \to B + C$ $k_B \simeq x \cdot P$, $k_A \simeq \frac{x}{2} \cdot P$

Kinematics of the parton splitting $A \rightarrow B + C$ $k_B \simeq z k_A$, $k_C \simeq (1 - z) k_A$

Kinematics of the parton splitting $A \rightarrow B + C$

$$k_B \simeq z k_A \,, \quad k_C \simeq (1-z) k_A$$

$$\frac{|k_B^2|}{z} = \frac{|k_A^2|}{1} + \frac{k_C^2}{1-z} + \frac{k_\perp^2}{z(1-z)}$$

Kinematics of the parton splitting $A \rightarrow B + C$

$$k_B \simeq z k_A \,, \quad k_C \simeq (1-z) k_A \ \frac{|k_B^2|}{z} = \frac{|k_A^2|}{1} + \frac{k_C^2}{1-z} + \frac{k_\perp^2}{z(1-z)}$$

Probability of the splitting process :

$$dw \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2 k_{\perp}^2}{(k_B^2)^2}$$

Kinematics of the parton splitting $A \rightarrow B + C$

$$k_B \simeq z k_A$$
, $k_C \simeq (1-z)k_A$
 $\frac{|k_B^2|}{z} = \frac{|k_A^2|}{1} + \frac{k_C^2}{1-z} + \frac{k_\perp^2}{z(1-z)}$

Probability of the splitting process :

$$dw \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2 k_{\perp}^2}{(k_B^2)^2} \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2}{k_{\perp}^2},$$

Kinematics of the parton splitting $A \rightarrow B + C$

$$k_B \simeq z k_A$$
, $k_C \simeq (1-z)k_A$
 $\frac{|k_B^2|}{z} = \frac{|k_A^2|}{1} + \frac{k_C^2}{1-z} + \frac{k_\perp^2}{z(1-z)}$

Probability of the splitting process :

$$dw \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2 k_{\perp}^2}{(k_B^2)^2} \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2}{k_{\perp}^2},$$

$$rac{|k_B^2|}{z} \simeq rac{k_\perp^2}{z(1-z)} \, \gg \, rac{|k_A^2|}{1} \, igg(ext{as well as } rac{k_C^2}{1-z} igg).$$

Kinematics of the parton splitting $A \rightarrow B + C$

$$k_B \simeq z k_A$$
, $k_C \simeq (1-z) k_A$
 $\frac{|k_B^2|}{z} = \frac{|k_A^2|}{1} + \frac{k_C^2}{1-z} + \frac{k_\perp^2}{z(1-z)}$

Probability of the splitting process:

$$dw \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2 k_{\perp}^2}{(k_B^2)^2} \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2}{k_{\perp}^2}$$

$$\frac{|k_B^2|}{z} \simeq \frac{k_\perp^2}{z(1-z)} \gg \frac{|k_A^2|}{1}$$
 (as well as $\frac{k_C^2}{1-z}$).

This inequality has a transparent physical meaning:

$$\frac{z \cdot E_A}{|k_A^2|} \ll \frac{E_A}{|k_A^2|}$$

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B + C$

$$k_B \simeq z k_A$$
, $k_C \simeq (1-z)k_A$
 $\frac{|k_B^2|}{z} = \frac{|k_A^2|}{1} + \frac{k_C^2}{1-z} + \frac{k_\perp^2}{z(1-z)}$

Probability of the splitting process :

$$dw \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2 k_{\perp}^2}{(k_B^2)^2} \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2}{k_{\perp}^2}$$

$$\frac{|k_B^2|}{z} \simeq \frac{k_\perp^2}{z(1-z)} \gg \frac{|k_A^2|}{1} \left(\text{as well as } \frac{k_C^2}{1-z} \right).$$

This inequality has a transparent physical meaning:

$$\frac{E_B}{|k_B^2|} = \frac{z \cdot E_A}{|k_B^2|} \ll \frac{E_A}{|k_A^2|}$$

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B + C$

$$k_B \simeq z k_A \,, \quad k_C \simeq (1-z) k_A \ \frac{|k_B^2|}{z} = \frac{|k_A^2|}{1} + \frac{k_C^2}{1-z} + \frac{k_\perp^2}{z(1-z)}$$

Probability of the splitting process :

$$dw \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2 k_{\perp}^2}{(k_B^2)^2} \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2}{k_{\perp}^2}$$

$$\frac{|k_B^2|}{z} \simeq \frac{k_\perp^2}{z(1-z)} \gg \frac{|k_A^2|}{1} \left(\text{as well as } \frac{k_C^2}{1-z} \right).$$

This inequality has a transparent physical meaning:

$$t_B \equiv \frac{E_B}{|k_B^2|} = \frac{z \cdot E_A}{|k_B^2|} \ll \frac{E_A}{|k_A^2|} \equiv t_A$$

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B + C$

$$k_B \simeq z k_A \,, \quad k_C \simeq (1-z) k_A \ \frac{|k_B^2|}{z} = \frac{|k_A^2|}{1} + \frac{k_C^2}{1-z} + \frac{k_\perp^2}{z(1-z)}$$

Probability of the splitting process :

$$dw \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2 k_{\perp}^2}{(k_B^2)^2} \propto \frac{\alpha_s}{\pi} \frac{dk_{\perp}^2}{k_{\perp}^2},$$

$$\frac{|k_B^2|}{z} \simeq \frac{k_\perp^2}{z(1-z)} \gg \frac{|k_A^2|}{1} \left(\text{as well as } \frac{k_C^2}{1-z} \right).$$

This inequality has a transparent physical meaning:

$$t_B \equiv \frac{E_B}{|k_B^2|} = \frac{z \cdot E_A}{|k_B^2|} \ll \frac{E_A}{|k_A^2|} \equiv t_A$$

strongly ordered *lifetimes* of successive parton fluctuations!

The "clever choices" had been established quite some time ago

$$d\xi = d \ln \frac{k_\perp^2}{1} \quad \text{(space-like)}, \qquad d\xi = d \ln \frac{k_\perp^2}{z^2} \quad \text{(time-like)}.$$

Transverse momentum ordering vs. angular ordering.

Each of these two clever choices — consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $(\alpha_s \ln^2 x)^n$ from appearing in higher loop anomalous dimensions.

A good dynamical move. But a lousy one kinematically:

$$d\xi = d \ln \frac{k_\perp^2}{1}$$
 (space-like), $d\xi = d \ln \frac{k_\perp^2}{z^2}$ (time-like).

Transverse momentum ordering vs. angular ordering.

Each of these two clever choices — consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $(\alpha_s \ln^2 x)^n$ from appearing in higher loop anomalous dimensions.

A good *dynamical* move. But a lousy one *kinematically*

$$d\xi = d \ln \frac{k_{\perp}^2}{1}$$
 (space-like), $d\xi = d \ln \frac{k_{\perp}^2}{z^2}$ (time-like).

Transverse momentum ordering vs. angular ordering.

Each of these two clever choices — consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $(\alpha_s \ln^2 x)^n$ from appearing in higher loop anomalous dimensions. A good *dynamical* move. But a lousy one *kinematically*:

$$d\xi = d \ln \frac{k_{\perp}^2}{1}$$
 (space-like), $d\xi = d \ln \frac{k_{\perp}^2}{z^2}$ (time-like).

Transverse momentum ordering vs. angular ordering.

Each of these two clever choices — consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $(\alpha_s \ln^2 x)^n$ from appearing in higher loop anomalous dimensions. A good *dynamical* move. But a lousy one *kinematically*:

$$d\xi = d \ln \frac{k_{\perp}^2}{1}$$
 (space-like), $d\xi = d \ln \frac{k_{\perp}^2}{z^2}$ (time-like).

Transverse momentum ordering vs. angular ordering. Each of these two clever choices — consequence of taking into full

consideration soft gluon coherence in order to prevent explosively large terms $(\alpha_s \ln^2 x)^n$ from appearing in higher loop anomalous dimensions.

A good *dynamical* move. But a lousy one *kinematically* :

$$d\xi = d \ln \frac{k_\perp^2}{1}$$
 (space-like), $d\xi = d \ln \frac{k_\perp^2}{z^2}$ (time-like).

Transverse momentum ordering vs. angular ordering.

Each of these two clever choices — consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $(\alpha_s \ln^2 x)^n$ from appearing in higher loop anomalous dimensions.

A good dynamical move. But a lousy one kinematically:

$$d\xi = d \ln \frac{k_{\perp}^2}{1}$$
 (space-like), $d\xi = d \ln \frac{k_{\perp}^2}{z^2}$ (time-like).

Transverse momentum ordering vs. angular ordering.

Each of these two clever choices — consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $(\alpha_s \ln^2 x)^n$ from appearing in higher loop anomalous dimensions.

A good *dynamical* move. But a lousy one *kinematically*: Having abandoned fluctuation time ordering,

$$d\xi = d \ln \frac{k_{\perp}^2}{z},$$

$$d\xi = d \ln \frac{k_{\perp}^2}{1}$$
 (space-like), $d\xi = d \ln \frac{k_{\perp}^2}{z^2}$ (time-like).

Transverse momentum ordering vs. angular ordering.

Each of these two clever choices — consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $(\alpha_s \ln^2 x)^n$ from appearing in higher loop anomalous dimensions.

A good *dynamical* move. But a lousy one *kinematically*: Having abandoned fluctuation time ordering,

$$d\xi = d \ln \frac{k_{\perp}^2}{z},$$

we've lost quite a bit of wisdom along with it ...

Space-like parton evolution (S) vs. time-like fragmentation (T) Drell-Levy-Yan relation

$$P_{BA}^{(T)}(x) = \mp x \cdot P_{AB}^{(S)}(x^{-1}).$$

Space-like parton evolution (S) vs. time-like fragmentation (T) Drell-Levy-Yan relation

$$P_{BA}^{(T)}(x) = \mp x \cdot P_{AB}^{(S)}(x^{-1}).$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from x < 1 to x > 1:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)

Space-like parton evolution (S) vs. time-like fragmentation (T) Drell-Levy-Yan relation

$$P_{BA}^{(T)}(x) = \mp x \cdot P_{AB}^{(S)}(x^{-1}).$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from x < 1 to x > 1:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)

(2000

In the Leading Log Approximation (1 loop),

Gribov-Lipatov relation

Space-like parton evolution (S) vs. time-like fragmentation (T) Drell-Levy-Yan relation

$$P_{BA}^{(T)}(x) = \mp x \cdot P_{AB}^{(S)}(x^{-1}).$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from x < 1 to x > 1:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)

In the Leading Log Approximation (1 loop),

Gribov-Lipatov relation

$$P_{BA}^{(T)}(x_{\mathsf{Feynman}}) = P_{BA}^{(S)}(x_{\mathsf{Bjorken}}); \qquad x_B = \frac{-q^2}{2pq}, \quad x_F = \frac{2pq}{q^2}$$

Mark the different meaning of x in the two channels!

Space-like parton evolution (S) vs. time-like fragmentation (T) Drell-Levy-Yan relation

$$P_{BA}^{(T)}(x) = \mp x \cdot P_{AB}^{(S)}(x^{-1}).$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from x < 1 to x > 1:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)

In the Leading Log Approximation (1 loop),

Gribov-Lipatov reciprocity

$$P_{BA}(x) = \mp x \cdot P_{AB}(x^{-1})$$

Space-like parton evolution (S) vs. time-like fragmentation (T) Drell-Levy-Yan relation

$$P_{BA}^{(T)}(x) = \mp x \cdot P_{AB}^{(S)}(x^{-1}).$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from x < 1 to x > 1:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)

(2000)

In the Leading Log Approximation (1 loop),

Gribov-Lipatov reciprocity

$$P_{BA}(x) = \mp x \cdot P_{AB}(x^{-1})$$

GLR was found to be broken beyond the 1st loop.

Space-like parton evolution (S) vs. time-like fragmentation (T) Drell-Levy-Yan relation

$$P_{BA}^{(T)}(x) = \mp x \cdot P_{AB}^{(S)}(x^{-1}).$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from x < 1 to x > 1:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)

In the Leading Log Approximation (1 loop),

Gribov-Lipatov reciprocity

$$P_{BA}(x) = \mp x \cdot P_{AB}(x^{-1})$$

GLR was found to be broken beyond the 1st loop.

But WHY?

Fluctuation time ordering:

$$\frac{dD^{A}(x,Q^{2})}{d \ln Q^{2}} = \int_{0}^{1} \frac{dz}{z} \mathcal{P}_{B}^{A}(z;\alpha_{s}) D^{B}\left(\frac{x}{z},z^{\sigma}Q^{2}\right)$$

Fluctuation time ordering:

$$\frac{dD^A(x,Q^2)}{d\ln Q^2} = \int_0^1 \frac{dz}{z} \, \mathcal{P}_B^A(z;\alpha_s) \, D^B\left(\frac{x}{z},z^{\sigma}Q^2\right), \qquad \sigma = \left\{ \begin{array}{l} +1, \quad (\mathsf{T}) \\ -1, \quad (\mathsf{S}) \end{array} \right.$$

Fluctuation time ordering:

D-r (HERA, 1993)

$$\frac{dD^{A}(x,Q^{2})}{d \ln Q^{2}} = \int_{0}^{1} \frac{dz}{z} \mathcal{P}_{B}^{A}(z;\alpha_{s}) D^{B}\left(\frac{x}{z}, \mathbf{z}^{\sigma} \mathbf{Q}^{2}\right), \qquad \sigma = \left\{\begin{array}{l} +1, & (\mathsf{T}) \\ -1, & (\mathsf{S}) \end{array}\right.$$

which is *non-local* due to the mixing of z and Q^2 in the hardness scale.

Fluctuation time ordering:

D-r (HERA, 1993)

$$\frac{dD^A(x,Q^2)}{d\ln Q^2} = \int_0^1 \frac{dz}{z} \, \mathcal{P}_B^A(z;\alpha_s) \, D^B\left(\frac{x}{z},z^\sigma Q^2\right), \qquad \sigma = \left\{ \begin{array}{l} +1, \quad (\mathsf{T}) \\ -1, \quad (\mathsf{S}) \end{array} \right.$$

which is *non-local* due to the mixing of z and Q^2 in the hardness scale. This non-locality can be handled using the Taylor series trick:

$$\int_0^1 \frac{dz}{z} \, \mathcal{P}(z,\alpha_s) \, D\left(\mathbf{z}^\sigma Q^2\right) = \int_0^1 \frac{dz}{z} \, \mathcal{P}(z) \, \mathbf{z}^\sigma \tfrac{d}{d \ln Q^2} D(Q^2), \quad d \equiv \frac{d}{d \ln Q^2}.$$

Fluctuation time ordering:

D-r (HERA, 1993)

$$\frac{dD^A(x,Q^2)}{d\ln Q^2} = \int_0^1 \frac{dz}{z} \, \mathcal{P}_B^A(z;\alpha_s) \, D^B\left(\frac{x}{z},z^\sigma Q^2\right), \qquad \sigma = \left\{ \begin{array}{l} +1, \quad (\mathsf{T}) \\ -1, \quad (\mathsf{S}) \end{array} \right.$$

which is *non-local* due to the mixing of z and Q^2 in the hardness scale. This non-locality can be handled using the Taylor series trick:

$$\int_0^1 \frac{dz}{z} \, \mathcal{P}(z,\alpha_s) \, D\left(z^\sigma Q^2\right) = \int_0^1 \frac{dz}{z} \, \mathcal{P}(z) \, \frac{z^\sigma \frac{d}{d \ln Q^2}}{D(Q^2)}, \quad d \equiv \frac{d}{d \ln Q^2}.$$

In the Mellin moment space,

$$P_N \equiv \int_0^1 \frac{dz}{z} P(z) z^N \implies \gamma_N \cdot D_N(Q^2) = \mathcal{P}_{N+\sigma d} \cdot D_N(Q^2)$$

the evolution kernel ${\mathcal P}$ emerges with the differential operator for argument.

Fluctuation time ordering:

D-r (HERA, 1993)

$$\frac{dD^A(x,Q^2)}{d\ln Q^2} = \int_0^1 \frac{dz}{z} \, \mathcal{P}_B^A(z;\alpha_s) \, D^B\left(\frac{x}{z},z^\sigma Q^2\right), \qquad \sigma = \left\{ \begin{array}{l} +1, \quad (\mathsf{T}) \\ -1, \quad (\mathsf{S}) \end{array} \right.$$

which is *non-local* due to the mixing of z and Q^2 in the hardness scale. This non-locality can be handled using the Taylor series trick:

$$\int_0^1 \frac{dz}{z} \, \mathcal{P}(z,\alpha_s) \, D\left(z^\sigma Q^2\right) = \int_0^1 \frac{dz}{z} \, \mathcal{P}(z) \, z^{\sigma \frac{d}{d \ln Q^2}} D(Q^2), \quad d \equiv \frac{d}{d \ln Q^2}.$$

In the Mellin moment space,

$$P_N \equiv \int_0^1 \frac{dz}{z} P(z) z^N \implies \gamma_N \cdot D_N(Q^2) = \mathcal{P}_{N+\sigma d} \cdot D_N(Q^2)$$

the evolution kernel ${\cal P}$ emerges with the differential operator for argument.

Expanding, get an equation for the an.dim. γ

$${\color{red} {\boldsymbol{\gamma}}[\alpha] = \mathcal{P} + \dot{\mathcal{P}} \cdot \left(\sigma {\color{red} {\boldsymbol{\gamma}}} + \beta / \alpha\right) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left[{\color{red} {\boldsymbol{\gamma}}}^2 + \sigma(2\beta / \alpha {\color{red} {\boldsymbol{\gamma}}} + \beta \partial_\alpha {\color{red} {\boldsymbol{\gamma}}}) + \beta / \alpha \partial_\alpha \beta\right] + \mathcal{O}\left(\alpha^4\right)}.$$

Fluctuation time ordering:

D-r (HERA, 1993)

$$\frac{dD^A(x,Q^2)}{d\ln Q^2} = \int_0^1 \frac{dz}{z} \, \mathcal{P}_B^A(z;\alpha_s) \, D^B\left(\frac{x}{z},z^\sigma Q^2\right), \qquad \sigma = \left\{ \begin{array}{l} +1, \quad (\mathsf{T}) \\ -1, \quad (\mathsf{S}) \end{array} \right.$$

which is *non-local* due to the mixing of z and Q^2 in the hardness scale. This non-locality can be handled using the Taylor series trick:

$$\int_0^1 \frac{dz}{z} \, \mathcal{P}(z, \alpha_s) \, D\left(z^{\sigma} Q^2\right) = \int_0^1 \frac{dz}{z} \, \mathcal{P}(z) \, z^{\sigma \frac{d}{d \ln Q^2}} D(Q^2), \quad d \equiv \frac{d}{d \ln Q^2}.$$

In the Mellin moment space,

$$P_N \equiv \int_0^1 \frac{dz}{z} P(z) z^N \implies \gamma_N \cdot D_N(Q^2) = \mathcal{P}_{N+\sigma d} \cdot D_N(Q^2)$$

the $\emph{evolution}$ \emph{kernel} $\mathcal P$ emerges with the $\emph{differential operator}$ for argument.

Expanding, get an equation for the an.dim. γ , one for both channels

$$\gamma[\alpha] = \mathcal{P} + \dot{\mathcal{P}} \cdot (\sigma \gamma + \beta/\alpha) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left[\gamma^2 + \sigma(2\beta/\alpha \gamma + \beta \partial_\alpha \gamma) + \beta/\alpha \partial_\alpha \beta \right] + \mathcal{O}(\alpha^4).$$

$$\begin{split} \gamma[\alpha] &= \mathcal{P} + \dot{\mathcal{P}} \cdot \left(\sigma\gamma + \beta/\alpha\right) + \frac{1}{2}\ddot{\mathcal{P}} \cdot \left[\gamma^2 + \sigma(2\beta/\alpha\gamma + \beta\partial_{\alpha}\gamma) + \beta/\alpha\partial_{\alpha}\beta\right] + \dots \\ &= \alpha P_1 + \alpha^2 \cdot \left(\sigma P_1 \dot{P}_1 + \beta_0\right) + \mathcal{O}(\alpha^3) \,. \end{split}$$

$$\gamma[\alpha] = \mathcal{P} + \dot{\mathcal{P}} \cdot (\sigma \gamma + \beta/\alpha) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left[\gamma^2 + \sigma(2\beta/\alpha \gamma + \beta \partial_\alpha \gamma) + \beta/\alpha \partial_\alpha \beta \right] + \dots$$
$$= \alpha P_1 + \alpha^2 \cdot (\sigma P_1 \dot{P}_1 + \beta_0) + \mathcal{O}(\alpha^3).$$

The difference between time- and space-like anomalous dimensions, $\frac{1}{2}\left[P^{(T)}-P^{(S)}\right] = \alpha^2 \cdot P_1 \dot{P}_1 + \mathcal{O}\left(\alpha^3\right),$ in the x-space corresponds to the convolution

$$\frac{1}{2} \left[P_{qq}^{(2),T} - P_{qq}^{(2),S} \right] = \int_0^1 \frac{dz}{z} \left\{ P_{qq}^{(1)} \left(\frac{x}{z} \right) \right\}_+ \cdot P_{qq}^{(1)}(z) \ln z \,,$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski & Petronzio (1980)

$$\gamma[\alpha] = \mathcal{P} + \dot{\mathcal{P}} \cdot (\sigma \gamma + \beta/\alpha) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left[\gamma^2 + \sigma(2\beta/\alpha \gamma + \beta \partial_{\alpha} \gamma) + \beta/\alpha \partial_{\alpha} \beta \right] + \dots$$
$$= \alpha P_1 + \alpha^2 \cdot (\sigma P_1 \dot{P}_1 + \beta_0 + P_2) + \mathcal{O}(\alpha^3).$$

The difference between time- and space-like anomalous dimensions, $\frac{1}{2}\left[P^{(T)}-P^{(S)}\right] = \alpha^2 \cdot P_1 \dot{P}_1 + \mathcal{O}\left(\alpha^3\right),$ in the x-space corresponds to the convolution

$$\frac{1}{2} \left[P_{qq}^{(2),T} - P_{qq}^{(2),S} \right] = \int_0^1 \frac{dz}{z} \left\{ P_{qq}^{(1)} \left(\frac{x}{z} \right) \right\}_+ \cdot P_{qq}^{(1)}(z) \ln z \,,$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski & Petronzio (1980)

 \implies the genuine \mathcal{P}_2 does not contain σ , is GLR respecting

$$\gamma[\alpha] = \mathcal{P} + \dot{\mathcal{P}} \cdot (\sigma \gamma + \beta/\alpha) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left[\gamma^2 + \sigma(2\beta/\alpha \gamma + \beta \partial_{\alpha} \gamma) + \beta/\alpha \partial_{\alpha} \beta \right] + \dots$$
$$= \alpha P_1 + \alpha^2 \cdot (\sigma P_1 \dot{P}_1 + \beta_0 + \mathcal{P}_2) + \mathcal{O}(\alpha^3).$$

The difference between time- and space-like anomalous dimensions, $\frac{1}{2}\left[P^{(T)}-P^{(S)}\right] = \alpha^2 \cdot P_1 \dot{P}_1 + \mathcal{O}\left(\alpha^3\right),$ in the x-space corresponds to the convolution

$$\frac{1}{2} \left[P_{qq}^{(2),T} - P_{qq}^{(2),S} \right] = \int_0^1 \frac{dz}{z} \left\{ P_{qq}^{(1)} \left(\frac{x}{z} \right) \right\}_+ \cdot P_{qq}^{(1)}(z) \ln z \,,$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski & Petronzio $\,$ (1980)

More generally, a *renormalization scheme transformation* as a cure for/against GLR violation was proposed by Stratmann & Vogelsang (1996)

$$\gamma[\alpha] = \frac{\mathcal{P} + \dot{\mathcal{P}} \cdot (\sigma \gamma + \beta/\alpha) + \frac{1}{2} \ddot{\mathcal{P}} \cdot (\gamma^2 + \sigma(2\beta/\alpha \gamma + \beta \partial_\alpha \gamma) + \beta/\alpha \partial_\alpha \beta) + \dots}{\alpha \ln \mathcal{N} + \alpha^2 \cdot (1/\mathcal{N}) + \alpha^3 \cdot (1/\mathcal{N}^2) + \alpha^4 \cdot (1/\mathcal{N}^3) + \dots}$$

$$\begin{split} \gamma[\alpha] &= \ \mathcal{P} + \dot{\mathcal{P}} \cdot \left(\sigma \gamma + \beta/\alpha\right) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left(\gamma^2 + \sigma(2\beta/\alpha \ \gamma + \beta \partial_\alpha \gamma) + \beta/\alpha \ \partial_\alpha \beta\right) + \dots \\ &= \ \alpha \ln N + \alpha^2 \cdot \left(1/N\right) + \alpha^3 \cdot \left(1/N^2\right) + \alpha^4 \cdot \left(1/N^3\right) + \dots \end{split}$$

$$\gamma[\alpha] = \mathcal{P} + \dot{\overline{\mathcal{P}}} \cdot (\sigma \gamma + \beta/\alpha) + \frac{1}{2} \ddot{\mathcal{P}} \cdot (\gamma^2 + \sigma(2\beta/\alpha \gamma + \beta \partial_\alpha \gamma) + \beta/\alpha \partial_\alpha \beta) + \dots$$

$$= \alpha \ln N + \alpha^2 \cdot (1/N) + \alpha^3 \cdot (1/N^2) + \alpha^4 \cdot (1/N^3) + \dots$$

$$\begin{split} \gamma[\alpha] &= \ \mathcal{P} + \dot{\mathcal{P}} \cdot \left(\sigma \gamma + \beta / \alpha \right) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left(\gamma^2 + \sigma (2\beta / \alpha \gamma + \beta \partial_{\alpha} \gamma) + \beta / \alpha \partial_{\alpha} \beta \right) + \dots \\ &= \ \alpha \ln N + \alpha^2 \cdot \left(1/N \right) + \alpha^3 \cdot \left(\frac{1/N^2}{N^2} \right) + \alpha^4 \cdot \left(1/N^3 \right) + \dots \end{split}$$

$$\begin{split} \gamma[\alpha] &= \ \mathcal{P} + \dot{\mathcal{P}} \cdot \left(\sigma \gamma + \beta/\alpha\right) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left(\gamma^2 + \sigma(2\beta/\alpha \, \gamma + \beta \, \partial_\alpha \gamma) + \beta/\alpha \, \partial_\alpha \beta\right) + \dots \\ &= \ \alpha \ln N + \alpha^2 \cdot \left(1/N\right) + \alpha^3 \cdot \left(1/N^2\right) + \alpha^4 \cdot \left(1/N^3\right) + \dots \end{split}$$

In the $x \to 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$\begin{split} \gamma[\alpha] &= \ \mathcal{P} + \dot{\mathcal{P}} \cdot \left(\sigma \gamma + \beta/\alpha\right) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left(\gamma^2 + \sigma(2\beta/\alpha \ \gamma + \beta \partial_\alpha \gamma) + \beta/\alpha \ \partial_\alpha \beta\right) + \dots \\ &= \ \alpha \ln N + \alpha^2 \cdot \left(1/N\right) + \alpha^3 \cdot \left(1/N^2\right) + \alpha^4 \cdot \left(1/N^3\right) + \dots \end{split}$$

In the $x \to 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$\gamma(x) = \frac{Ax}{(1-x)_{+}} + B\delta(1-x) + C\ln(1-x) + D + \mathcal{O}((1-x)\log^{p}(1-x))$$

$$\begin{split} \gamma[\alpha] &= \ \mathcal{P} + \dot{\mathcal{P}} \cdot \left(\sigma \gamma + \beta/\alpha\right) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left(\gamma^2 + \sigma(2\beta/\alpha \ \gamma + \beta \partial_\alpha \gamma) + \beta/\alpha \ \partial_\alpha \beta\right) + \dots \\ &= \ \alpha \ln N + \alpha^2 \cdot \left(1/N\right) + \alpha^3 \cdot \left(1/N^2\right) + \alpha^4 \cdot \left(1/N^3\right) + \dots \end{split}$$

In the $x \to 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$\gamma(x) = \frac{Ax}{(1-x)_{+}} + B\delta(1-x) + C\ln(1-x) + D + \mathcal{O}((1-x)\log^{p}(1-x))$$

A gap between *classical radiation* (Low–Burnett–Kroll wisdom)

Another important aspect of the RREE is the "double nature" of the perturbative expansion — in α_{phys} and, at the same time, in (1-x):

$$\begin{split} \gamma[\alpha] &= \ \mathcal{P} + \dot{\mathcal{P}} \cdot \left(\sigma \gamma + \beta/\alpha\right) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left(\gamma^2 + \sigma(2\beta/\alpha \gamma + \beta \partial_\alpha \gamma) + \beta/\alpha \ \partial_\alpha \beta\right) + \dots \\ &= \ \alpha \ln N + \alpha^2 \cdot \left(1/N\right) + \alpha^3 \cdot \left(1/N^2\right) + \alpha^4 \cdot \left(1/N^3\right) + \dots \end{split}$$

In the $x \to 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$\gamma(x) = \frac{Ax}{(1-x)_{+}} + B\delta(1-x) + C\ln(1-x) + D + \mathcal{O}((1-x)\log^{p}(1-x))$$

and quantum fluctuations

Another important aspect of the RREE is the "double nature" of the perturbative expansion — in α_{phys} and, at the same time, in (1-x):

$$\begin{split} \gamma[\alpha] &= \ \mathcal{P} + \dot{\mathcal{P}} \cdot \left(\sigma \gamma + \beta/\alpha\right) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left(\gamma^2 + \sigma(2\beta/\alpha \gamma + \beta \partial_\alpha \gamma) + \beta/\alpha \ \partial_\alpha \beta\right) + \dots \\ &= \ \alpha \ln N + \alpha^2 \cdot \left(1/N\right) + \alpha^3 \cdot \left(1/N^2\right) + \alpha^4 \cdot \left(1/N^3\right) + \dots \end{split}$$

In the $x \to 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$\gamma(x) = \frac{Ax}{(1-x)_{+}} + B\delta(1-x) + C\ln(1-x) + D + O((1-x)\log^{p}(1-x))$$

Generated:

D-r, Marchesini & Salam (2005)

$$C = -\sigma A^2$$

— relation observed by MVV in 3 loops

Another important aspect of the RREE is the "double nature" of the perturbative expansion — in α_{phys} and, at the same time, in (1-x):

$$\begin{split} \gamma[\alpha] &= \ \mathcal{P} + \dot{\mathcal{P}} \cdot \left(\sigma \gamma + \beta/\alpha\right) + \frac{1}{2} \ddot{\mathcal{P}} \cdot \left(\gamma^2 + \sigma(2\beta/\alpha \, \gamma + \beta \, \partial_\alpha \gamma) + \beta/\alpha \, \partial_\alpha \beta\right) + \dots \\ &= \ \alpha \ln N + \alpha^2 \cdot \left(1/N\right) + \alpha^3 \cdot \left(1/N^2\right) + \alpha^4 \cdot \left(1/N^3\right) + \dots \end{split}$$

In the $x \to 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$\gamma(x) = \frac{Ax}{(1-x)_{+}} + B\delta(1-x) + C\ln(1-x) + \frac{D}{D} + \mathcal{O}((1-x)\log^{p}(1-x))$$

Generated:

D-r, Marchesini & Salam (2005)

$$C = -\sigma A^2$$
 — relation observed by MVV in 3 loops
 $D = -\sigma A B + \mathcal{O}(\beta)$ — another all-order relation

DIS (space-like evolution). Look at small x that is, $N \ll 1$

$$\mathsf{BFKL} \ : \quad \gamma_{\mathsf{N}} = \frac{\alpha_{\mathsf{s}}}{\mathsf{N}} \ + \qquad \left(\frac{\alpha_{\mathsf{s}}}{\mathsf{N}}\right)^2 \ + \qquad \left(\frac{\alpha_{\mathsf{s}}}{\mathsf{N}}\right)^3 \ + \qquad \left(\frac{\alpha_{\mathsf{s}}}{\mathsf{N}}\right)^4 + \dots$$

DIS (space-like evolution). Look at small x that is, $N\ll 1$

$$\mathsf{BFKL} \ : \ \gamma_{\mathsf{N}} = \frac{\alpha_{\mathsf{s}}}{\mathsf{N}} \, + \, \mathbf{0} \cdot \left(\frac{\alpha_{\mathsf{s}}}{\mathsf{N}}\right)^2 \, + \, \mathbf{0} \cdot \left(\frac{\alpha_{\mathsf{s}}}{\mathsf{N}}\right)^3 \, + \, \left(\frac{\alpha_{\mathsf{s}}}{\mathsf{N}}\right)^4 + \dots$$

DIS (space-like evolution). Look at small x that is, $N\ll 1$

BFKL :
$$\gamma_N = \frac{\alpha_s}{N} + 0 \cdot \left(\frac{\alpha_s}{N}\right)^2 + 0 \cdot \left(\frac{\alpha_s}{N}\right)^3 + \left(\frac{\alpha_s}{N}\right)^4 + \dots$$

DIS (space-like evolution). Look at small x that is, $N\ll 1$

BFKL :
$$\gamma_N = \frac{\alpha_s}{N} + 0 \cdot \left(\frac{\alpha_s}{N}\right)^2 + 0 \cdot \left(\frac{\alpha_s}{N}\right)^3 + \left(\frac{\alpha_s}{N}\right)^4 + \dots$$

$$1 \rightarrow 1 + 2$$

DIS (space-like evolution). Look at small x that is, $N\ll 1$

BFKL :
$$\gamma_N = \frac{\alpha_s}{N} + 0 \cdot \left(\frac{\alpha_s}{N}\right)^2 + 0 \cdot \left(\frac{\alpha_s}{N}\right)^3 + \left(\frac{\alpha_s}{N}\right)^4 + \dots$$

$$1 \rightarrow 1 + 2$$
 \Longrightarrow Angular Ordering

DIS (space-like evolution). Look at small x that is, $N\ll 1$

BFKL :
$$\gamma_N = \frac{\alpha_s}{N} + 0 \cdot \left(\frac{\alpha_s}{N}\right)^2 + 0 \cdot \left(\frac{\alpha_s}{N}\right)^3 + \left(\frac{\alpha_s}{N}\right)^4 + \dots$$

$$1 \rightarrow 1 + 2$$
 \Longrightarrow Angular Ordering

$$1 \rightarrow 1 + 2 + 3$$

DIS (space-like evolution). Look at small x that is, $N\ll 1$

BFKL :
$$\gamma_N = \frac{\alpha_s}{N} + 0 \cdot \left(\frac{\alpha_s}{N}\right)^2 + 0 \cdot \left(\frac{\alpha_s}{N}\right)^3 + \left(\frac{\alpha_s}{N}\right)^4 + \dots$$

$$1 \rightarrow 1 + 2$$
 \Longrightarrow Exact Angular Ordering

$$1 \rightarrow 1 + 2 + 3 \implies (1 \rightarrow 1 + 2) \otimes (2 \rightarrow 2 + 3)$$

DIS (space-like evolution). Look at small x that is, $N \ll 1$

BFKL :
$$\gamma_N = \frac{\alpha_s}{N} + 0 \cdot \left(\frac{\alpha_s}{N}\right)^2 + 0 \cdot \left(\frac{\alpha_s}{N}\right)^3 + \left(\frac{\alpha_s}{N}\right)^4 + \dots$$

$$1 \rightarrow 1 + 2 \hspace{1cm} \Longrightarrow \hspace{1cm} \mathsf{Exact} \hspace{0.1cm} \mathsf{Angular} \hspace{0.1cm} \mathsf{Ordering}$$

$$1 \rightarrow 1 + \frac{2}{3} \implies (1 \rightarrow 1 + \frac{2}{2}) \otimes (2 \rightarrow 2 + \frac{3}{3})$$

$$1 \rightarrow 1 + 2 + 3 + 4$$

DIS (space-like evolution). Look at small x that is, $N \ll 1$

BFKL :
$$\gamma_N = \frac{\alpha_s}{N} + 0 \cdot \left(\frac{\alpha_s}{N}\right)^2 + 0 \cdot \left(\frac{\alpha_s}{N}\right)^3 + \left(\frac{\alpha_s}{N}\right)^4 + \dots$$

 e^+e^- annihilation (time-like cascades) — a similar story:

$$1 \rightarrow 1 + 2$$
 \Longrightarrow Exact Angular Ordering still intact!

$$1 \rightarrow 1 + 2 + 3 \implies (1 \rightarrow 1 + 2) \otimes (2 \rightarrow 2 + 3)$$

$$1 \rightarrow 1 + \textcolor{red}{2} + \textcolor{red}{3} + \textcolor{red}{4} \quad \Longrightarrow \quad (1 \rightarrow 1 + \textcolor{red}{2}) \otimes (2 \rightarrow 2 + \textcolor{red}{3}) \otimes (3 \rightarrow 3 + \textcolor{red}{4})$$

so-called "Malaza puzzle"

DIS (space-like evolution). Look at small x that is, $N\ll 1$

$$\gamma_N = \frac{\alpha_s}{N} + \frac{0 \cdot \left(\frac{\alpha_s}{N}\right)^2 + 0 \cdot \left(\frac{\alpha_s}{N}\right)^3}{1 + \left(\frac{\alpha_s}{N}\right)^4 + \dots}$$

$$1 \rightarrow 1 + 2$$
 \Longrightarrow Exact Angular Ordering

$$1 \rightarrow 1 + 2 + 3 \qquad \Longrightarrow \quad (1 \rightarrow 1 + 2) \otimes (2 \rightarrow 2 + 3)$$

$$1 \to 1 + 2 + 3 + 4 \implies (1 \to 1 + 2) \otimes (2 \to 2 + 3) \otimes (3 \to 3 + 4)$$

Solid – BFKL (black) and N-BFKL (green) known in all orders.

Dashed blue – γ_+ terms generated by α/N and α .

Yellow – unknown.

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical: inherited from previous loops!

Hypothesis of the new RR evolution kernel \mathcal{P} D-r, Marchesini & Salam (2005) was verified at 3 loops for the nonsinglet channel, $(\gamma^{(T)} - \gamma^{(S)}) = \text{OK}$ Mitov, Moch & Vogt (2006)

Hypothesis of the new RR evolution kernel \mathcal{P}

D-r, Marchesini & Salam (2005)

was verified at 3 loops for the nonsinglet channel, $(\gamma^{(T)} - \gamma^{(S)}) = OK$ Mitov, Moch & Vogt (2006)

In the moment space, the GL symmetry, $x \to 1/x \Leftrightarrow N \to -(N+1)$, translates into dependence on the conformal Casimir $J^2 = N(N+1)$.

By means of the large N expansion, $\mathcal{P} = \alpha_{\text{phys}} \cdot \ln J^2 + \Sigma_n (J^2)^{-n}$

$$\mathcal{P} = lpha_{\mathsf{phys}} \cdot \ln J^2 + \Sigma_n \, (J^2)^{-n}$$

Hypothesis of the new RR evolution kernel \mathcal{P}

D-r, Marchesini & Salam (2005)

was verified at 3 loops for the nonsinglet channel, $(\gamma^{(T)} - \gamma^{(S)}) = OK$ Mitov, Moch & Vogt (2006)

In the moment space, the GL symmetry, $x \to 1/x \Leftrightarrow N \to -(N+1)$, translates into dependence on the conformal Casimir $J^2 = N(N+1)$.

By means of the large N expansion, $\mathcal{P} = \alpha_{\text{phys}} \cdot \ln J^2 + \sum_{n} (J^2)^{-n}$

$$\mathcal{P} = \alpha_{\mathsf{phys}} \cdot \mathsf{In} \, J^2 + \Sigma_n \, (J^2)^{-n}$$

Extra QCD checks: Basso & Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized

Hypothesis of the new RR evolution kernel \mathcal{P}

D-r, Marchesini & Salam (2005)

was verified at 3 loops for the nonsinglet channel, $(\gamma^{(T)} - \gamma^{(S)}) = OK$ Mitov, Moch & Vogt (2006)

In the moment space, the GL symmetry, $x \to 1/x \Leftrightarrow N \to -(N+1)$, translates into dependence on the conformal Casimir $J^2 = N(N+1)$.

By means of the large
$$N$$
 expansion,
$$\mathcal{P} = \alpha_{\text{phys}} \cdot \ln J^2 + \Sigma_n (J^2)^{-n}$$

$$\mathcal{P} = \alpha_{\mathsf{phys}} \cdot \ln J^2 + \sum_{n} (J^2)^{-n}$$

Extra QCD checks:

Basso & Korchemsky, in coll. with S.Moch (2006) Also true for SUSYs.

- 3loop singlet unpolarized
- \blacktriangleright in 4 loops in $\lambda \phi^4$, 2loop quark transversity
- 2loop linearly polarized gluon

▶ in QCD $\beta_0 \to \infty$, all loops,

2loop singlet polarized

▶ AdS/CFT ($\mathcal{N}=4$ SYM $\alpha\gg1$)

Hypothesis of the new RR evolution kernel \mathcal{P}

D-r, Marchesini & Salam (2005)

was verified at 3 loops for the nonsinglet channel, $(\gamma^{(T)} - \gamma^{(S)}) = OK$ Mitov, Moch & Vogt (2006)

In the moment space, the GL symmetry, $x \to 1/x \Leftrightarrow N \to -(N+1)$, translates into dependence on the conformal Casimir $J^2 = N(N+1)$.

By means of the large N expansion, $\mathcal{P} = \alpha_{\text{phys}} \cdot \ln J^2 + \sum_{n} (J^2)^{-n}$

$$\mathcal{P} = \alpha_{\mathsf{phys}} \cdot \ln J^2 + \Sigma_n \, (J^2)^{-n}$$

Extra QCD checks:

Basso & Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
 - Also true for SUSYs. \blacktriangleright in 4 loops in $\lambda \phi^4$,
- 2loop quark transversity
- ▶ in QCD $\beta_0 \to \infty$, all loops, 2loop linearly polarized gluon
- 2loop singlet polarized

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4$ YM allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$) D-r & Marchesini (2006)

Maximally super-symmetric $\mathcal{N}=4$ YM allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$) D-r & Marchesini (2006)

Moreover, the newest result, still smoking : in $\mathcal{N}=4$

GLR holds for twist 3, in 3+4 loops
Matteo Beccaria et al. (2007)

```
Maximally super-symmetric \mathcal{N}=4 YM allows for a compact analytic solution of the GLR problem in 3 loops (\forall N) D-r & Marchesini (2006)
```

```
Moreover, the newest result, still smoking : in \mathcal{N}=4 
 \mathcal{K} GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)
```

What is so special about $\mathcal{N}=4$ **SYM**?

Maximally super-symmetric $\mathcal{N}=4$ YM allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$) D-r & Marchesini (2006)

Moreover, the newest result, still smoking : in $\mathcal{N}=4$ GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be *solvable* — "integrable". Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, — integrals of motion.

Maximally super-symmetric $\mathcal{N}=4$ YM allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$) D-r & Marchesini (2006)

Moreover, the newest result, still smoking : in $\mathcal{N}=4$ GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be *solvable* — "integrable". Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, — integrals of motion.

Recall an old hint from QCD ...

$$= C_F \cdot \frac{1+z^2}{1-z}$$

$$= T_R \cdot \left[z^2 + (1-z)^2\right]$$

$$= C_F \cdot \frac{1 + (1-z)^2}{z}$$

$$= N_c \cdot \frac{1 + z^4 + (1-z)^4}{z(1-z)}$$

Four "parton splitting functions"

$$q[g] \choose q(z), \qquad q[q] \choose q(z), \qquad q[ar{q}] \choose g(z), \qquad g[g] \choose g(z)$$

$$\int_{1-z}^{z} = C_F \cdot \frac{1+z^2}{1-z}$$

$$= T_R \cdot \left[z^2 + (1-z)^2\right]$$

$$= C_F \cdot \frac{1 + (1-z)^2}{z}$$

$$= N_c \cdot \frac{1 + z^4 + (1-z)^4}{z(1-z)}$$

Exchange the decay products : $z \rightarrow 1-z$

$$q[g] \choose q (z) \qquad q[q] \choose q (z) \qquad q[q] \choose g (z) \qquad g[g] \choose g (z)$$

$$\frac{q[\bar{q}]}{g}(z)$$

$$\frac{g[g]}{g}(z)$$

$$\begin{array}{c}
\downarrow^{z} \\
\downarrow^{1-z} \\
= C_F \cdot \frac{1+z^2}{1-z} \\
= T_R \cdot \left[z^2 + (1-z)^2 \right]
\end{array}$$

$$= C_F \cdot \frac{1 + (1-z)^2}{z}$$

$$= N_c \cdot \frac{1 + z^4 + (1-z)^4}{z^{(1-z)}}$$

- ▶ Exchange the decay products : $z \rightarrow 1 z$
- lacktriangle Exchange the parent and the offspring : $z \rightarrow 1/z$ (GLR)

$$\frac{q[g]}{q}(z)$$
 $\frac{g[q]}{q}(z)$, $\frac{q[\bar{q}]}{g}(z)$ $\frac{g[g]}{g}(z)$

$$\int_{1-z}^{z} = C_F \cdot \frac{1+z^2}{1-z}$$

$$= T_R \cdot \left[z^2 + (1-z)^2\right]$$

$$= C_F \cdot \frac{1 + (1-z)^2}{z}$$

$$= N_c \cdot \frac{1 + z^4 + (1-z)^4}{z(1-z)}$$

- ▶ Exchange the decay products : $z \rightarrow 1 z$
- lacktriangle Exchange the parent and the offspring : $z \to 1/z$ (GLR)

Three (QED) "kernels" are inter-related; gluon self-interaction stays put :

$$\begin{bmatrix}
q[g]\\q
\end{bmatrix}(z), \quad q[q]\\q
\end{bmatrix}(z), \quad q[\bar{q}]\\g(z)$$

 $g^{[g]}(z)$

$$\int_{1-z}^{z} = C_F \cdot \frac{1+z^2}{1-z}$$

$$= T_R \cdot \left[z^2 + (1-z)^2\right]$$

$$= C_F \cdot \frac{1 + (1-z)^2}{z}$$

$$= N_c \cdot \frac{1 + z^4 + (1-z)^4}{z(1-z)}$$

- ▶ Exchange the decay products : $z \rightarrow 1 z$
- ► Exchange the parent and the offspring : $z \rightarrow 1/z$ (GLR)
- ► The story continues, however :

All four are related!

$$w_q(z) = \begin{bmatrix} q[g](z) + g[q](z) & = & q[\bar{q}](z) \\ q & z \end{bmatrix} + \begin{bmatrix} g[g](z) \\ g & z \end{bmatrix} = w_g(z)$$

$$= C_F \cdot \frac{1+z^2}{1-z}$$

$$= T_R \cdot \left[z^2 + (1-z)^2 \right]$$

$$= C_F \cdot \frac{1 + (1-z)^2}{z}$$

$$= N_c \cdot \frac{1 + z^4 + (1-z)^4}{z(1-z)}$$

- ▶ Exchange the decay products : $z \rightarrow 1 z$
- Exchange the parent and the offspring : $z \rightarrow 1/z$ (GLR)
- ► The story continues, however :

$$C_F = T_R = N_c$$
: Super-Symmetry

All four are related!

$$w_q(z) = \begin{bmatrix} q[g]\\q(z) + q[q]\\q(z) & = q[\bar{q}]\\g(z) \end{bmatrix} + \begin{bmatrix} g[g]\\g(z) \end{bmatrix} = w_g(z)$$

$$= C_F \cdot \frac{1+z^2}{1-z}$$

$$= T_R \cdot \left[z^2 + (1-z)^2\right]$$

All four are related!

$$= C_F \cdot \frac{1 + (1-z)^2}{z}$$

$$= N_c \cdot \frac{1 + z^4 + (1-z)^4}{z(1-z)}$$

- **Exchange the decay products** : $z \rightarrow 1 z$
- **Exchange the parent and the offspring** : $z \rightarrow 1/z$ $C_F = T_R = N_c$: Super-Symmetry

► The story continues, however :

≡ infinite number of conservation laws!

$$w_q(z) = \begin{bmatrix} q[g](z) + \frac{g[q]}{q}(z) & = & q[\bar{q}](z) \\ q & g \end{bmatrix} + \begin{bmatrix} g[g](z) \\ g & g \end{bmatrix} = w_g(z)$$

from Bookkeeping to Solving

The integrability feature manifests itself already in *certain sectors* of QCD, in specific problems where one can *identify* QCD with SUSY-QCD:

✓ the Regge behaviour (large N_c)

Lipatov

Faddeev & Korchemsky (1994)

✓ baryon wave function

Braun, Derkachov, Korchemsky, Manashov; Belitsky (1999)

Lipatov

(1997)

✓ maximal helicity multi-gluon operators

Minahan & Zarembo

Beisert & Staudacher (2003)

from Bookkeeping to Solving

The integrability feature manifests itself already in *certain sectors* of QCD, in specific problems where one can *identify* QCD with SUSY-QCD:

✓ the Regge behaviour (large N_c)

Faddeev & Korchemsky (1994)

✓ baryon wave function

Braun, Derkachov, Korchemsky,

Manashov; Belitsky (1999)

Lipatov (1997)

Beisert & Staudacher (2003)

The higher the symmetry, the deeper integrability.

from Bookkeeping to Solving

The integrability feature manifests itself already in *certain sectors* of QCD, in specific problems where one can *identify* QCD with SUSY-QCD:

✓ the Regge behaviour (large N_c)

Lipatov

Faddeev & Korchemsky (1994)

✓ baryon wave function

Braun, Derkachov, Korchemsky, Manashov; Belitsky (1999)

Lipatov

(1997)

✓ maximal helicity multi-gluon operators

Minahan & Zarembo

Beisert & Staudacher (2003)

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ — the extreme:

 X Conformal theory $\beta(\alpha) \equiv 0$

ightharpoonup All order expansion for $lpha_{
m phys}$

Beisert. Eden. Staudacher

(2006)

Full integrability via AdS/CFT

Maldacena; Witten,

Gubser, Klebanov, Polyakov (1998)

from Bookkeeping to Solving

The integrability feature manifests itself already in $certain\ sectors$ of QCD, in specific problems where one can $identify\ QCD$ with SUSY-QCD:

✓ the Regge behaviour (large N_c)

Faddeev & Korchemsky (1994)

Braun, Derkachov, Korchemsky,

✓ baryon wave function

Manashov; Belitsky (1999) Lipatov (1997)

✓ maximal helicity multi-gluon operators

Beisert & Staudacher (2003)

Minahan & Zarembo

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ — the extreme:

 X Conformal theory $\beta(\alpha) \equiv 0$

X All order expansion for $\alpha_{\rm phys}$

Beisert, Eden, Staudacher

(2006)

✗ Full integrability via AdS/CFT

Maldacena; Witten,

Gubser, Klebanov, Polyakov (1998)

from Bookkeeping to Solving

The integrability feature manifests itself already in *certain sectors* of QCD, in specific problems where one can *identify* QCD with SUSY-QCD:

Lipatov

✓ the Regge behaviour (large N_c)

Faddeev & Korchemsky (1994)

✓ baryon wave function

Braun, Derkachov, Korchemsky,
Manashov; Belitsky (1999)

Lipatov (1997)

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ — the extreme:

X Conformal theory $\beta(\alpha) \equiv 0$ X All order expansion for α_{phys}

 X Conformal theory $\beta(\alpha) \equiv 0$

Maldacena; Witten,

Full integrability via AdS/CFT

Maldacena; Witten,

Cuber Klabanay D.

Gubser, Klebanov, Polyakov (1998)

(2006)

Beisert, Eden, Staudacher

And here we arrive at the second — Divide and Conquer — issue

$$\begin{split} \tilde{\gamma}_{q \to q(x) + \mathbf{g}} &= \frac{C_F \alpha_{\mathsf{s}}}{\pi} \left[\frac{x}{1 - x} + (1 - x) \cdot \frac{1}{2} \right], \\ \tilde{\gamma}_{\mathbf{g} \to \mathbf{g}(x) + \mathbf{g}} &= \frac{C_A \alpha_{\mathsf{s}}}{\pi} \left[\frac{x}{1 - x} + (1 - x) \cdot (x + x^{-1}) \right]. \end{split}$$

$$\tilde{\gamma}_{q \to q(x) + \mathbf{g}} = \frac{C_F \alpha_s}{\pi} \left[\frac{x}{1 - x} + (1 - x) \cdot \frac{1}{2} \right],$$

$$\tilde{\gamma}_{g \to g(x) + \mathbf{g}} = \frac{C_A \alpha_s}{\pi} \left[\frac{x}{1 - x} + (1 - x) \cdot (x + x^{-1}) \right].$$

The first component is independent of the nature of the radiating particle — the Low–Burnett–Kroll classical radiation \implies "claglons".

$$\begin{split} \tilde{\gamma}_{q \to q(x) + \mathbf{g}} &= \frac{C_F \alpha_{\mathsf{s}}}{\pi} \left[\frac{x}{1 - x} + (1 - x) \cdot \frac{1}{2} \right], \\ \tilde{\gamma}_{g \to g(x) + \mathbf{g}} &= \frac{C_A \alpha_{\mathsf{s}}}{\pi} \left[\frac{x}{1 - x} + (1 - x) \cdot (x + x^{-1}) \right]. \end{split}$$

The first component is independent of the nature of the radiating particle — the Low–Burnett–Kroll classical radiation \Longrightarrow "claglons". The second — "quaglons" — is relatively suppressed as $\mathcal{O}((1-x)^2)$.

$$\begin{split} \tilde{\gamma}_{q \to q(x) + \mathbf{g}} &= \frac{C_F \alpha_{\mathsf{s}}}{\pi} \left[\frac{x}{1 - x} + (1 - x) \cdot \frac{1}{2} \right], \\ \tilde{\gamma}_{g \to g(x) + \mathbf{g}} &= \frac{C_A \alpha_{\mathsf{s}}}{\pi} \left[\frac{x}{1 - x} + (1 - x) \cdot (x + x^{-1}) \right]. \end{split}$$

The first component is independent of the nature of the radiating particle — the Low–Burnett–Kroll classical radiation \implies "claglons". The second — "quaglons" — is relatively suppressed as $\mathcal{O}((1-x)^2)$.

Classical and quantum contributions respect the GL relation, individually:

$$-xf(1/x)=f(x)$$

$$\tilde{\gamma}_{q \to q(x) + \mathbf{g}} = \frac{C_F \alpha_s}{\pi} \left[\frac{x}{1 - x} + (1 - x) \cdot \frac{1}{2} \right],
\tilde{\gamma}_{\mathbf{g} \to \mathbf{g}(x) + \mathbf{g}} = \frac{C_A \alpha_s}{\pi} \left[\frac{x}{1 - x} + (1 - x) \cdot (x + x^{-1}) \right].$$

The first component is independent of the nature of the radiating particle — the Low–Burnett–Kroll classical radiation \implies "claglons". The second — "quaglons" — is relatively suppressed as $\mathcal{O}((1-x)^2)$.

Classical and quantum contributions respect the GL relation, individually:

$$-xf(1/x)=f(x)$$

Let us look at the rôles these animals play on the QCD stage

Clagons:

- X Classical Field
- ✓ infrared singular, $d\omega/\omega$
- ✓ define the physical coupling
- ✓ responsible for
 - DL radiative effects.
 - ➡ reggeization,
 - QCD/Lund string (gluers)
- ✓ play the major rôle in evolution

Quagons:

- Quantum d.o.f.s (constituents)
- ✓ infrared irrelevant. $d\omega \cdot \omega$
- ✓ make the coupling run
- ✓ responsible for conservation of
 - → P-parity,→ C-parity,→ in decays, production

 - colour
- ✓ minor rôle

Clagons:

- X Classical Field
- ✓ infrared singular, $d\omega/\omega$
- ✓ define the physical coupling
- ✓ responsible for
 - DL radiative effects.
 - ➡ reggeization,
 - QCD/Lund string (gluers)
- ✓ play the major rôle in evolution

Quagons:

- Quantum d.o.f.s (constituents)
- ✓ infrared irrelevant. $d\omega \cdot \omega$
- ✓ make the coupling run
- ✓ responsible for conservation of
 - → P-parity,→ C-parity,→ in decays, production

 - colour
- ✓ minor rôle

In addition.

- ✗ Tree multi-clagon (Parke-Taylor) amplitudes are known exactly
- X It is clagons which dominate in all the integrability cases

Maximally super-symmetric YM field model: Matter content = 4 Majorana fermions, 6 scalars; everyone in the ajoint representation. Maximally super-symmetric YM field model: Matter content = 4 Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)_{QCD}^{-1} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \, 2[x^2 + (1-x)^2]$$

$$\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)_{QCD}^{-1} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \, 2[x^2 + (1-x)^2]$$

Now, $\mathcal{N} = 4$ SUSY:

$$\frac{\mathsf{C_A}^{-1} d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1}$$

Matter content = 4 Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)_{QCD}^{-1} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \, 2[x^2 + (1-x)^2]$$

Now, $\mathcal{N}=4$ SUSY:

$$\frac{C_A^{-1} d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1} = -\frac{11}{3} + \frac{4}{2} \cdot \int_0^1 dx \, 2[x^2 + (1-x)^2] + \frac{6}{2!} \cdot \int_0^1 dx \, 2x (1-x) dx$$

Maximally super-symmetric YM field model: Matter content = 4 Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)_{QCD}^{-1} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \, 2[x^2 + (1-x)^2]$$

Now, $\mathcal{N} = 4$ SUSY:

$$\frac{C_A^{-1} d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1} = -\frac{11}{3} + \frac{4}{2} \cdot \int_0^1 dx \, 2[x^2 + (1-x)^2] + \frac{6}{2!} \cdot \int_0^1 dx \, 2x (1-x)^2 dx$$

▶ $\beta(\alpha) \equiv 0$ in all orders!

Maximally super-symmetric YM field model:

Matter content = 4 Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)_{QCD}^{-1} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \, 2[x^2 + (1-x)^2]$$

Now, $\mathcal{N} = 4$ SUSY:

$$\frac{C_A^{-1} d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1} = -\frac{11}{3} + \frac{4}{2} \cdot \int_0^1 dx \, 2[x^2 + (1-x)^2] + \frac{6}{2!} \cdot \int_0^1 dx \, 2x (1-x)^2 dx$$

 $\triangleright \beta(\alpha) \equiv 0$ in all orders!

... makes one think of a classical nature (?) of the SYM-4 dynamics

Maximally super-symmetric YM field model:

Matter content = 4 Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)_{QCD}^{-1} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \, 2[x^2 + (1-x)^2]$$

Now, $\mathcal{N}=4$ SUSY:

$$\frac{C_A^{-1} d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1} = -\frac{11}{3} + \frac{4}{2} \cdot \int_0^1 dx \, 2[x^2 + (1-x)^2] + \frac{6}{2!} \cdot \int_0^1 dx \, 2x (1-x)^2 dx$$

▶
$$\beta(\alpha) \equiv 0$$
 in all orders ! $\Rightarrow \frac{x}{1-x}$ + no quagons !

... makes one think of a *classical nature* (?) of the SYM-4 dynamics

$$\gamma_{\rm uni}(N+2)$$
, $\gamma_{\rm uni}(N+1)$, $\gamma_{\rm uni}(N)$, with the 1st loop given by

$$\gamma_{\text{uni}}^{(1)}(N) = -S_1(N) = -\int_0^1 \frac{dx}{x} \left(x^N - 1\right) \cdot \frac{x}{x - 1}$$

$$\gamma_{\rm uni}(N+2)$$
, $\gamma_{\rm uni}(N+1)$, $\gamma_{\rm uni}(N)$, with the 1st loop given by

$$\gamma_{\text{uni}}^{(1)}(N) = -S_1(N) = -\int_0^1 \frac{dx}{x} \left(x^N - 1\right) \cdot \frac{x}{x - 1} \equiv \mathbf{M} \left[\frac{x}{(1 - x)_+} \right].$$

$$\gamma_{\text{uni}}(N+2)$$
, $\gamma_{\text{uni}}(N+1)$, $\gamma_{\text{uni}}(N)$, with the 1st loop given by

$$\gamma_{\text{uni}}^{(1)}(N) = -S_1(N) = -\int_0^1 \frac{dx}{x} \left(x^N - 1\right) \cdot \frac{x}{x - 1} \equiv \mathbf{M} \left[\frac{x}{(1 - x)_+}\right].$$

Look upon S_1 as a "harmonic sum",

$$S_1(N) = \sum_{k=1}^{N} \frac{1}{k} = \psi(N+1) - \psi(1).$$

$$\gamma_{\rm uni}(N+2)$$
, $\gamma_{\rm uni}(N+1)$, $\gamma_{\rm uni}(N)$, with the 1st loop given by

$$\gamma_{\rm uni}^{(1)}(N) = -S_1(N) = -\int_0^1 \frac{dx}{x} \left(x^N - 1\right) \cdot \frac{x}{x - 1} \equiv \mathbf{M} \left[\frac{x}{(1 - x)_+}\right].$$

Look upon S_1 as a "harmonic sum",

$$S_1(N) = \sum_{k=1}^{N} \frac{1}{k} = \psi(N+1) - \psi(1).$$

In higher orders enter m > 1,

$$S_m(N) = \sum_{k=1}^N \frac{1}{k^m} = \frac{(-1)^m}{\Gamma(m)} \int_0^1 dx \, x^N \, \frac{\ln^{m-1} x}{1-x} + \zeta(m),$$

Euler-Zagier harmonic sums

In spite of having many states $(s = 0, \frac{1}{2}, 1)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:

$$\gamma_{\rm uni}(N+2)$$
, $\gamma_{\rm uni}(N+1)$, $\gamma_{\rm uni}(N)$, with the 1st loop given by

$$\gamma_{\rm uni}^{(1)}(N) = -S_1(N) = -\int_0^1 \frac{dx}{x} \left(x^N - 1\right) \cdot \frac{x}{x - 1} \equiv \mathbf{M} \left[\frac{x}{(1 - x)_+}\right].$$

Look upon S_1 as a "harmonic sum",

$$S_1(N) = \sum_{k=1}^{N} \frac{1}{k} = \psi(N+1) - \psi(1).$$

In higher orders enter m > 1,

$$S_m(N) = \sum_{k=1}^N \frac{1}{k^m} = \frac{(-1)^m}{\Gamma(m)} \int_0^1 dx \, x^N \, \frac{\ln^{m-1} x}{1-x} + \zeta(m),$$

as we as multiple indices — nested sums

$$S_{m,\vec{\rho}}(N) = \sum_{k=1}^{N} \frac{S_{\vec{\rho}}(k)}{k^m} \qquad (\vec{\rho} = (m_1, m_2, \dots, m_i)),$$

$$S_{-m}(N) = \sum_{k=1}^{N} \frac{(-1)^k}{k^m}.$$

$$S_{-m}(N) = \sum_{k=1}^{N} \frac{(-1)^k}{k^m}.$$

The origin of these *oscillating* sums — the $s \rightarrow u$ crossing:

$$(a) \leftrightarrow (b)$$

$$P \rightarrow -P$$

$$S_{-m}(N) = \sum_{k=1}^{N} \frac{(-1)^k}{k^m}.$$

The origin of these *oscillating* sums — the $s \rightarrow u$ crossing:

$$(a) \leftrightarrow (b)$$

$$P \rightarrow -P$$

$$x \rightarrow -x$$

$$p_{q\bar{q}}(x) = \alpha_s^2 \left(\frac{1}{2}C_A - C_F\right) p_{qq}(-x) \cdot \Phi_2(x), \quad p_{qq}(x) = \frac{1+x^2}{2(1-x)}.$$

$$S_{-m}(N) = \sum_{k=1}^{N} \frac{(-1)^k}{k^m}.$$

The origin of these oscillating sums — the $s \to u$ crossing:

$$\begin{array}{c}
(a) \leftrightarrow (b) \\
P \rightarrow -P \\
x \rightarrow -x
\end{array}$$

$$\frac{x}{1-x} \cdot \ln^2 x \to S_3(N)$$

$$\frac{x}{1-x} \cdot \ln^2 x \to S_3(N)$$
 $\frac{x}{1+x} \cdot \Phi_2(x) \to Y_{-3}(N)$

$$p_{q\bar{q}}(x) = \alpha_s^2 \left(\frac{1}{2}C_A - C_F\right) p_{qq}(-x) \cdot \Phi_2(x), \quad p_{qq}(x) = \frac{1+x^2}{2(1-x)}.$$

Loop # 1: $\gamma_1 = -S_1$.

Loop
$$\# 1$$
: $\gamma_1 = -S_1$.

Loop # 2:
$$\gamma_2 = \frac{1}{2}S_3 + S_1S_2 + (\frac{1}{2}S_{-3} + S_1S_{-2} - S_{-2,1})$$
.

(direct calculation by Kotikov & Lipatov, 2000)

Loop # 1: $\gamma_1 = -S_1$.

Loop # 2:
$$\gamma_2 = \frac{1}{2}S_3 + S_1S_2 + (\frac{1}{2}S_{-3} + S_1S_{-2} - S_{-2,1})$$
.

(direct calculation by Kotikov & Lipatov, 2000)

AK observation: γ_2 contains but the "most transcendental" structures!

Loop # 1: $\gamma_1 = -S_1$.

Loop # 2:
$$\gamma_2 = \frac{1}{2}S_3 + S_1S_2 + (\frac{1}{2}S_{-3} + S_1S_{-2} - S_{-2,1}).$$

(direct calculation by Kotikov & Lipatov, 2000)

AK observation: γ_2 contains but the "most transcendental" structures !

Loop # 3 : since neither fermions nor scalars give rise to S_{2L-1} , pick out the *maximal transcedentality* pieces from the QCD an. dim.

Loop
$$\# 1$$
: $\gamma_1 = -S_1$.

Loop # 2:
$$\gamma_2 = \frac{1}{2}S_3 + S_1S_2 + (\frac{1}{2}S_{-3} + S_1S_{-2} - S_{-2,1})$$
. (direct calculation by Kotikov & Lipatov, 2000)

AK observation: γ_2 contains but the "most transcendental" structures !

Loop # 3 : since neither fermions nor scalars give rise to S_{2L-1} , pick out the *maximal transcedentality* pieces from the QCD an. dim.

$$\gamma_{3} = -\frac{1}{2}S_{5} - \left[S_{1}^{2}S_{3} + \frac{1}{2}S_{2}S_{3} + S_{1}S_{2}^{2} + \frac{3}{2}S_{1}S_{4}\right]
- S_{1} \left[4S_{-4} + \frac{1}{2}S_{-2}^{2} + 2S_{2}S_{-2} - 6S_{-3,1} - 5S_{-2,2} + 8S_{-2,1,1}\right]
- (\frac{1}{2}S_{2} + 3S_{1}^{2})S_{-3} - S_{3}S_{-2} + (S_{2} + 2S_{1}^{2})S_{-2,1} + 12S_{-2,1,1,1}
- 6(S_{-3,1,1} + S_{-2,1,2} + S_{-2,2,1}) + 3(S_{-4,1} + S_{-3,2} + S_{-2,3}) - \frac{3}{2}S_{-5}.$$

Loop
$$\# 1$$
: $\gamma_1 = -S_1$.

Loop # 2:
$$\gamma_2 = \frac{1}{2}S_3 + S_1S_2 + (\frac{1}{2}S_{-3} + S_1S_{-2} - S_{-2,1})$$
.

(direct calculation by Kotikov & Lipatov, 2000)

AK observation: γ_2 contains but the "most transcendental" structures !

Loop # 3: since neither fermions nor scalars give rise to S_{2L-1} , pick out the maximal transcedentality pieces from the QCD an. dim.

$$\begin{array}{lll} \gamma_3 & = & -\frac{1}{2}S_5 - \left[S_1^2S_3 + \frac{1}{2}S_2S_3 + S_1S_2^2 + \frac{3}{2}S_1S_4\right] \\ & & - S_1\left[4S_{-4} + \frac{1}{2}S_{-2}^2 + 2S_2S_{-2} - 6S_{-3,1} - 5S_{-2,2} + 8S_{-2,1,1}\right] \\ & & - \left(\frac{1}{2}S_2 + 3S_1^2\right)S_{-3} - S_3S_{-2} + \left(S_2 + 2S_1^2\right)S_{-2,1} + 12S_{-2,1,1,1} \\ & & - 6(S_{-3,1,1} + S_{-2,1,2} + S_{-2,2,1}) + 3(S_{-4,1} + S_{-3,2} + S_{-2,3}) - \frac{3}{2}S_{-5}. \end{array}$$

The RREE.

$$\gamma_{\sigma}(N) = \mathcal{P}(N + \sigma \gamma_{\sigma}(N))$$

Loop
$$\# 1$$
: $\gamma_1 = -S_1$.

Loop # 2:
$$\gamma_2 = \frac{1}{2}S_3 + \frac{S_1S_2}{2} + (\frac{1}{2}S_{-3} + S_1S_{-2} - S_{-2,1})$$
.

(direct calculation by Kotikov & Lipatov, 2000)

AK observation: γ_2 contains but the "most transcendental" structures !

Loop # 3 : since neither fermions nor scalars give rise to S_{2L-1} , pick out the maximal transcedentality pieces from the QCD an. dim.

$$\begin{array}{lll} \gamma_3 & = & -\frac{1}{2}S_5 - \left[S_1^2S_3 + \frac{1}{2}S_2S_3 + S_1S_2^2 + \frac{3}{2}S_1S_4\right] \\ & & -S_1\left[4S_{-4} + \frac{1}{2}S_{-2}^2 + 2S_2S_{-2} - 6S_{-3,1} - 5S_{-2,2} + 8S_{-2,1,1}\right] \\ & & -\left(\frac{1}{2}S_2 + 3S_1^2\right)S_{-3} - S_3S_{-2} + \left(S_2 + 2S_1^2\right)S_{-2,1} + 12S_{-2,1,1,1} \\ & & -6(S_{-3,1,1} + S_{-2,1,2} + S_{-2,2,1}) + 3(S_{-4,1} + S_{-3,2} + S_{-2,3}) - \frac{3}{2}S_{-5}. \end{array}$$

The RREE.

$$\gamma_{\sigma}(N) = \mathcal{P}(N + \sigma \gamma_{\sigma}(N))$$

Loop
$$\# 1$$
: $\gamma_1 = -S_1$.

Loop # 2:
$$\gamma_2 = \frac{1}{2}S_3 + S_1S_2 + \left(\frac{1}{2}S_{-3} + S_1S_{-2} - S_{-2,1}\right)$$
. (direct calculation by Kotikov & Lipatov, 2000)

AK observation: γ_2 contains but the "most transcendental" structures !

Loop # 3 : since neither fermions nor scalars give rise to S_{2L-1} , pick out the *maximal transcedentality* pieces from the QCD an. dim.

$$\begin{array}{lll} \gamma_3 & = & -\frac{1}{2}S_5 - \left[S_1^2S_3 + \frac{1}{2}S_2S_3 + S_1S_2^2 + \frac{3}{2}S_1S_4\right] \\ & & - S_1\left[4S_{-4} + \frac{1}{2}S_{-2}^2 + 2S_2S_{-2} - 6S_{-3,1} - 5S_{-2,2} + 8S_{-2,1,1}\right] \\ & & - \left(\frac{1}{2}S_2 + 3S_1^2\right)S_{-3} - S_3S_{-2} + \left(S_2 + 2S_1^2\right)S_{-2,1} + 12S_{-2,1,1,1} \\ & & - 6(S_{-3,1,1} + S_{-2,1,2} + S_{-2,2,1}) + 3(S_{-4,1} + S_{-3,2} + S_{-2,3}) - \frac{3}{2}S_{-5}. \end{array}$$

The RREE,

$$\gamma_{\sigma}(N) = \mathcal{P}(N + \sigma \gamma_{\sigma}(N))$$

In terms of the perturbative expansion in the physical coupling,

$$a_{\rm ph} = a \left(1 - \frac{1}{2} \zeta_2 a + \frac{11}{20} \zeta_2^2 a^2 + \ldots \right),$$

$$\mathcal{P}_{1} = -S_{1};$$

$$\mathcal{P}_{2} = \frac{1}{2}\hat{S}_{3} - \frac{1}{2}\hat{Y}_{-3} + B_{2};$$

$$\mathcal{P}_{3} = -\frac{1}{2}\hat{S}_{5} + \frac{3}{2}\hat{Y}_{-5} + B_{3} + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{3}$$

$$+ S_{1} \cdot \left[\hat{Y}_{-4} - \frac{1}{2}(\hat{S}_{-4} + \hat{S}_{-2}^{2}) + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{-2}\right]$$

In terms of the perturbative expansion in the physical coupling,

$$a_{\rm ph} = a \left(1 - \frac{1}{2} \zeta_2 a + \frac{11}{20} \zeta_2^2 a^2 + \ldots \right),$$

$$\mathcal{P}_{1} = -S_{1};$$

$$\mathcal{P}_{2} = \frac{1}{2}\hat{S}_{3} - \frac{1}{2}\hat{Y}_{-3} + B_{2};$$

$$\mathcal{P}_{3} = -\frac{1}{2}\hat{S}_{5} + \frac{3}{2}\hat{Y}_{-5} + B_{3} + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{3}$$

$$[B_{2} = \frac{3}{4}\zeta_{3}]$$

$$[B_{3} = -\frac{1}{8}\zeta_{2}\zeta_{3} - \frac{5}{4}\zeta_{5}]$$

$$+ S_{1} \cdot \left[\hat{Y}_{-4} - \frac{1}{2}(\hat{S}_{-4} + \hat{S}_{-2}^{2}) + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{-2}\right]$$

In terms of the perturbative expansion in the physical coupling,

$$a_{\rm ph} = a \left(1 - \frac{1}{2} \zeta_2 a + \frac{11}{20} \zeta_2^2 a^2 + \ldots \right),$$

$$\mathcal{P}_{1} = -S_{1};$$

$$\mathcal{P}_{2} = \frac{1}{2}\hat{S}_{3} - \frac{1}{2}\hat{Y}_{-3} + B_{2};$$

$$\mathcal{P}_{3} = -\frac{1}{2}\hat{S}_{5} + \frac{3}{2}\hat{Y}_{-5} + B_{3} + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{3}$$

$$+ S_{1} \cdot \left[\hat{Y}_{-4} - \frac{1}{2}(\hat{S}_{-4} + \hat{S}_{-2}^{2}) + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{-2}\right]$$

$$a_{\rm ph} = a \left(1 - \frac{1}{2} \zeta_2 a + \frac{11}{20} \zeta_2^2 a^2 + \ldots \right),$$

$$\mathcal{P}_{1} = -S_{1};$$

$$\mathcal{P}_{2} = \frac{1}{2}\hat{S}_{3} - \frac{1}{2}\hat{Y}_{-3} + B_{2};$$

$$\mathcal{P}_{3} = -\frac{1}{2}\hat{S}_{5} + \frac{3}{2}\hat{Y}_{-5} + B_{3} + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{3}$$

$$+ S_{1} \cdot \left[\hat{Y}_{-4} - \frac{1}{2}(\hat{S}_{-4} + \hat{S}_{-2}^{2}) + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{-2}\right]$$

$$a_{\rm ph} = a \left(1 - \frac{1}{2} \zeta_2 a + \frac{11}{20} \zeta_2^2 a^2 + \ldots \right),$$

$$\mathcal{P}_{1} = -S_{1};$$

$$\mathcal{P}_{2} = \frac{1}{2}\hat{S}_{3} - \frac{1}{2}\hat{Y}_{-3} + B_{2};$$

$$\mathcal{P}_{3} = -\frac{1}{2}\hat{S}_{5} + \frac{3}{2}\hat{Y}_{-5} + B_{3} + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{3}$$

$$+ S_{1} \cdot \left[\hat{Y}_{-4} - \frac{1}{2}(\hat{S}_{-4} + \hat{S}_{-2}^{2}) + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{-2}\right]$$

$$\hat{Y}_{-m}(N) = (-1)^N \mathbf{M} \left[\frac{x}{1+x} \Phi_{m-1}(x) \right],$$

$$\Phi_m(x) = \frac{1}{\Gamma(m)} \int_{x}^{1} \frac{dz}{z} \ln^{m-1} \left(\frac{(1+x)^2 z}{x (1+z)^2} \right).$$

$$a_{\rm ph} = a \left(1 - \frac{1}{2} \zeta_2 a + \frac{11}{20} \zeta_2^2 a^2 + \ldots \right),$$

$$\mathcal{P}_{1} = -S_{1};$$

$$\mathcal{P}_{2} = \frac{1}{2}\hat{S}_{3} - \frac{1}{2}\hat{Y}_{-3} + B_{2};$$

$$\mathcal{P}_{3} = -\frac{1}{2}\hat{S}_{5} + \frac{3}{2}\hat{Y}_{-5} + B_{3} + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{3}$$

$$+ S_{1} \cdot \left[\hat{Y}_{-4} - \frac{1}{2}(\hat{S}_{-4} + \hat{S}_{-2}^{2}) + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{-2}\right]$$

$$\hat{Y}_{-m}(N) = (-1)^N \mathbf{M} \left[\frac{x}{1+x} \Phi_{m-1}(x) \right],$$

$$\Phi_m(x) = \frac{1}{\Gamma(m)} \int_{-\infty}^{1} \frac{dz}{z} \ln^{m-1} \left(\frac{(1+x)^2 z}{x(1+z)^2} \right). \quad \Phi_m(x^{-1}) = -\Phi_m(x).$$

$$a_{\rm ph} = a \left(1 - \frac{1}{2} \zeta_2 a + \frac{11}{20} \zeta_2^2 a^2 + \ldots \right),$$

$$\mathcal{P}_{1} = -S_{1};$$

$$\mathcal{P}_{2} = \frac{1}{2}\hat{S}_{3} - \frac{1}{2}\hat{Y}_{-3} + B_{2};$$

$$\mathcal{P}_{3} = -\frac{1}{2}\hat{S}_{5} + \frac{3}{2}\hat{Y}_{-5} + B_{3} + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{3}$$

$$+ S_{1} \cdot \left[\hat{Y}_{-4} - \frac{1}{2}(\hat{S}_{-4} + \hat{S}_{-2}^{2}) + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{-2}\right]$$

$$\hat{Y}_{-m}(N) = (-1)^N \mathbf{M} \left[\frac{x}{1+x} \Phi_{m-1}(x) \right],$$

$$\Phi_m(x) = \frac{1}{\Gamma(m)} \int_{-\infty}^{1} \frac{dz}{z} \ln^{m-1} \left(\frac{(1+x)^2 z}{x(1+z)^2} \right). \quad \Phi_m(x^{-1}) = -\Phi_m(x).$$

$$a_{\rm ph} = a \left(1 - \frac{1}{2} \zeta_2 a + \frac{11}{20} \zeta_2^2 a^2 + \ldots \right),$$

$$\mathcal{P}_{1} = -S_{1};$$

$$\mathcal{P}_{2} = \frac{1}{2}\hat{S}_{3} - \frac{1}{2}\hat{Y}_{-3} + B_{2};$$

$$\mathcal{P}_{3} = -\frac{1}{2}\hat{S}_{5} + \frac{3}{2}\hat{Y}_{-5} + B_{3} + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{3}$$

$$+ S_{1} \cdot \left[\hat{Y}_{-4} - \frac{1}{2}(\hat{S}_{-4} + \hat{S}_{-2}^{2}) + \zeta_{2} \cdot \frac{1}{2}\hat{S}_{-2}\right] \propto \frac{\ln N}{N^{2}}$$

$$\hat{Y}_{-m}(N) = (-1)^N \mathbf{M} \left[\frac{x}{1+x} \Phi_{m-1}(x) \right],$$

$$\Phi_m(x) = \frac{1}{\Gamma(m)} \int_{-\infty}^{1} \frac{dz}{z} \ln^{m-1} \left(\frac{(1+x)^2 z}{x(1+z)^2} \right). \quad \Phi_m(x^{-1}) = -\Phi_m(x).$$

A deeper understanding of the $s \to u$ crossing ($x \to -x$ symmetry) should turn the "viability of" into the "power of" (negative index sums)

A deeper understanding of the $s \to u$ crossing $(x \to -x \text{ symmetry})$ should turn the "viability of" into the "power of"

 $\mathcal{N}=4$ SYM dynamics is *classical*, in certain sense.

A deeper understanding of the $s \to u$ crossing $(x \to -x \text{ symmetry})$ should turn the "viability of" into the "power of"

 $\mathcal{N}=4$ SYM dynamics is *classical*, in uncertain sense

 $\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea. A deeper understanding of the $s \to u$ crossing ($x \to -x$ symmetry)

 $\mathcal{N}=4$ SYM dynamics is *classical*, in a not yet completely certain sense

should turn the "viability of" into the "power of"

A deeper understanding of the $s \to u$ crossing $(x \to -x \text{ symmetry})$ should turn the "viability of" into the "power of"

 $\mathcal{N}\!=\!4$ SYM dynamics is *classical*, in certain sense. If so, the final goal — to derive γ from γ_1 , in all orders!

A deeper understanding of the $s \to u$ crossing $(x \to -x \text{ symmetry})$ should turn the "viability of" into the "power of"

 $\mathcal{N}\!=\!$ 4 SYM dynamics is *classical*, in certain sense. If so, the final goal — to derive γ from γ_1 , in all orders !

QCD and SUSY-QCD share the gluons.

A deeper understanding of the $s \to u$ crossing $(x \to -x \text{ symmetry})$ should turn the "viability of" into the "power of"

 $\mathcal{N}\!=\!$ 4 SYM dynamics is *classical*, in certain sense. If so, the final goal — to derive γ from γ_1 , in all orders !

QCD and SUSY-QCD share the gluons.

Importantly, the maximal transcedentality (*clagon*) structures constitute *the bulk* of the QCD anomalous dimensions.

A deeper understanding of the $s \to u$ crossing $(x \to -x \text{ symmetry})$ should turn the "viability of" into the "power of"

 $\mathcal{N}\!=\!$ 4 SYM dynamics is *classical*, in certain sense. If so, the final goal — to derive γ from γ_1 , in all orders !

QCD and SUSY-QCD share the gluons.

$$\frac{\text{clever 2nd loop}}{\text{clever 1st loop}} < \frac{2\%}{} \qquad \left(\begin{array}{c} \text{Heavy quark fragmentation} \\ \text{D-r, Khoze \& Troyan , PRD 1996} \end{array} \right)$$

A deeper understanding of the $s \to u$ crossing $(x \to -x \text{ symmetry})$ should turn the "viability of" into the "power of"

 $\mathcal{N}\!=\!$ 4 SYM dynamics is *classical*, in certain sense. If so, the final goal — to derive γ from γ_1 , in all orders !

QCD and SUSY-QCD share the gluons.

Importantly, the maximal transcedentality (clagon) structures constitute the bulk of the QCD anomalous dimensions.

Employ $\mathcal{N}=4$ SYM to simplify the essential part of the QCD dynamics

- ➤ A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- ▶ Reformulation of parton cascades in terms of Gribov—Lipatov reciprocity respecting evolution equations (RREE)
 - reduces complexity by (at leat) one order of magnitude
 - ▶ improves perturbative series (less singular, better "converging")
 - ▶ links interesting phenomena in the DIS and e^+e^- annihilation channels
- ▶ The Low theorem should be part of theor.phys. curriculum, worldwide
- ▶ Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us a one-line-all-orders description of the major part of QCD parton dynamics
- ▶ Long live perturbative QCD!

- ▶ A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- ▶ Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
 - reduces complexity by (at leat) one order of magnitude
 - ▶ improves perturbative series (less singular, better "converging")
 - lacktriangle links interesting phenomena in the DIS and e^+e^- annihilation channels
- ▶ The Low theorem should be part of theor.phys. curriculum, worldwide
- ▶ Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us a one-line-all-orders description of the major part of QCD parton dynamics
- ▶ Long live perturbative QCD!

- ▶ A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov–Lipatov reciprocity respecting evolution equations (RREE)
 - reduces complexity by (at leat) one order of magnitude
 - ▶ improves perturbative series (less singular, better "converging")
 - lacktriangle links interesting phenomena in the DIS and e^+e^- annihilation channels
- ▶ The Low theorem should be part of theor.phys. curriculum, worldwide
- ▶ Complete solution of the $\mathcal{N}{=}4$ SYM QFT should provide us a one-line-all-orders description of the major part of QCD parton dynamics
- ► Long live perturbative QCD!

- ▶ A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov–Lipatov reciprocity respecting evolution equations (RREE)
 - reduces complexity by (at leat) one order of magnitude
 - improves perturbative series (less singular, better "converging")
 - lacktriangle links interesting phenomena in the DIS and e^+e^- annihilation channels
- ▶ The Low theorem should be part of theor.phys. curriculum, worldwide
- ▶ Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us a one-line-all-orders description of the major part of QCD parton dynamics
- ► Long live perturbative QCD!

- ▶ A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- ▶ Reformulation of parton cascades in terms of Gribov–Lipatov reciprocity respecting evolution equations (RREE)
 - reduces complexity by (at leat) one order of magnitude
 - improves perturbative series (less singular, better "converging")
 - lacktriangle links interesting phenomena in the DIS and e^+e^- annihilation channels
- ▶ The Low theorem should be part of theor.phys. curriculum, worldwide
- ▶ Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us a one-line-all-orders description of the major part of QCD parton dynamics
- ► Long live perturbative QCD!

Extras

$$A = \sum_{1}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^n A_n, \quad \frac{A^{(g)}}{C_A} = \frac{A^{(q)}}{C_F} \quad P_{a \to a[x]+g}(x) = \frac{A(\alpha_s)}{1-x}$$

$$\frac{A_1}{C} = 4$$

$$\frac{A_2}{C} = 8 \left[\left(\frac{67}{18} - \zeta_2 \right) C_A - \frac{5}{9} n_f \right]$$

$$\frac{A_3}{C} = 16 C_A^2 \left(\frac{245}{24} - \frac{67}{9} \zeta_2 + \frac{11}{6} \zeta_3 + \frac{11}{5} \zeta_2^2 \right)$$

$$+16 C_F n_f \left(-\frac{55}{24} + 2 \zeta_3 \right)$$

$$+16 C_A n_f \left(-\frac{209}{108} + \frac{10}{9} \zeta_2 - \frac{7}{3} \zeta_3 \right) + 16 n_f^2 \left(-\frac{1}{27} \right).$$

$$A = \sum_{1}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^n A_n, \quad \frac{A^{(g)}}{C_A} = \frac{A^{(q)}}{C_F} \quad P_{a \to a[x] + g}(x) = \frac{A(\alpha_s)}{1 - x}$$

$$\frac{A_1}{C} = 4$$

$$\frac{A_2}{C} = 8 \left[\left(\frac{67}{18} - \zeta_2 \right) C_A - \frac{5}{9} n_f \right]$$

$$\frac{A_3}{C} = 16 C_A^2 \left(\frac{245}{24} - \frac{67}{9} \zeta_2 + \frac{11}{6} \zeta_3 + \frac{11}{5} \zeta_2^2 \right)$$

$$+16 C_F n_f \left(-\frac{55}{24} + 2 \zeta_3 \right)$$

$$+16 C_A n_f \left(-\frac{209}{108} + \frac{10}{9} \zeta_2 - \frac{7}{3} \zeta_3 \right) + 16 n_f^2 \left(-\frac{1}{27} \right).$$

$$A = \sum_{1}^{\infty} \left(\frac{\alpha_{s}}{4\pi}\right)^{n} A_{n}, \quad \frac{A^{(g)}}{C_{A}} = \frac{A^{(q)}}{C_{F}} \quad P_{a \to a[x] + g}(x) = \frac{A(\alpha_{s})}{1 - x} x + \mathcal{O}(1 - x)$$

$$\frac{A_{1}}{C} = 4$$

$$\frac{A_{2}}{C} = 8 \left[\left(\frac{67}{18} - \zeta_{2}\right) C_{A} - \frac{5}{9} n_{f} \right]$$

$$\frac{A_{3}}{C} = 16 C_{A}^{2} \left(\frac{245}{24} - \frac{67}{9} \zeta_{2} + \frac{11}{6} \zeta_{3} + \frac{11}{5} \zeta_{2}^{2} \right)$$

$$+16C_{A}n_{f}\left(-\frac{209}{108}+\frac{10}{9}\zeta_{2}-\frac{7}{3}\zeta_{3}\right)+16n_{f}^{2}\left(-\frac{1}{27}\right).$$

 $+16C_F n_f \left(-\frac{55}{24}+2\zeta_3\right)$

Enters in

large-*N* asymptotics of anomalous dimensions *and* coefficient functions, Sudakov quark and gluon form factors,

- threshold resummation,
- singular $(x \to 1)$ part of the Drell-Yan K-factor,
- distributions of jet event shapes in the near-to-two-jet kinematics,
- heavy quark fragmentation functions,
- non-perturbative power suppressed effects in jet shapes and elsewhere,

Enters in:

large-*N* asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories,

threshold resummation, singular $(x \to 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,

Enters in:

large-*N* asymptotics of anomalous dimensions *and* coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories,

threshold resummation, singular $(x \to 1)$ part of the Drell–Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions,

non-perturbative power suppressed effects in jet shapes and elsewhere,

└─Physical coupling

= universal magnitude of double-log enhanced contributions.

Enters in:

large-N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors,

quark and gluon Regge trajectories,

threshold resummation,

singular $(x \rightarrow 1)$ part of the Drell–Yan K-factor,

distributions of jet event shapes in the near-to-two-jet kinematics,

heavy quark fragmentation functions,

non-perturbative power suppressed effects in jet shapes and elsewhere,

Enters in:

large-*N* asymptotics of anomalous dimensions *and* coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories,

threshold resummation, singular $(x \to 1)$ part of the Drell–Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,

Enters in:

large-*N* asymptotics of anomalous dimensions *and* coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories,

```
threshold resummation, singular (x \to 1) part of the Drell–Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions,
```

non-perturbative power suppressed effects in jet shapes and elsewhere,

off-diagonal GLRR

 $(n_f T_R C_F)$

Second loop
$$G \rightarrow G$$
 [quark box]

$$P_G^{(S)} = 8x - 16 + \frac{20}{3}x^2 + \frac{4}{3}x^{-1} - (6+10x)\ln x - 2(1+x)\ln^2 x,$$

$$P_G^{(T)} = 12x - 4 - \frac{164}{9}x^2 + \frac{92}{9}x^{-1} + (10 + 14x + \frac{16}{3}[x^2 + x^{-1}]) \ln x + 2(1+x) \ln^2 x;$$

Non-singlet
$$F \to F$$
 [via 2 gluons]

 $(n_f T_R C_F)$

$$P_F^{(5)} = 12x - 4 - \frac{112}{9}x^2 + \frac{40}{9}x^{-1} + (2 + 10x + \frac{16}{3}x^2)\ln x - 2(1+x)\ln^2 x,$$

$$P_F^{(T)} = 8x - 16 + \frac{112}{9}x^2 - \frac{40}{9}x^{-1} - \left(10 + 18x + \frac{16}{3}x^2\right) \ln x + 2(1+x)\ln^2 x$$

 $(n_f T_R C_F)$

$$P_G^{(S)} = 8x - 16 + \frac{20}{3}x^2 + \frac{4}{3}x^{-1} - (6+10x)\ln x - 2(1+x)\ln^2 x,$$

$$P_G^{(T)} = 12x - 4 - \frac{164}{9}x^2 + \frac{92}{9}x^{-1} + (10 + 14x + \frac{16}{3}[x^2 + x^{-1}]) \ln x + 2(1+x) \ln^2 x;$$

Non-singlet
$$F \to F$$
 [via 2 gluons]

 $(n_f T_R C_F)$

$$P_F^{(S)} = 12x - 4 - \frac{112}{9}x^2 + \frac{40}{9}x^{-1} + (2 + 10x + \frac{16}{3}x^2)\ln x - 2(1+x)\ln^2 x,$$

$$P_F^{(T)} = 8x - 16 + \frac{112}{9}x^2 - \frac{40}{9}x^{-1} - (10 + 18x + \frac{16}{3}x^2) \ln x + 2(1+x) \ln^2 x$$

Cross-differences:

$$\frac{1}{2}[P_F^{(T)} - P_G^{(S)}] = P_F^G \dot{P}_G^F, \qquad \frac{1}{2}[P_G^{(T)} - P_F^{(S)}] = P_G^F \dot{P}_F^G$$

Second loop $G \rightarrow G$ [quark box]

 $(n_f T_R C_F)$

$$P_G^{(S)} = 8x - 16 + \frac{20}{3}x^2 + \frac{4}{3}x^{-1} - (6+10x)\ln x - 2(1+x)\ln^2 x,$$

$$P_G^{(T)} = 12x - 4 - \frac{164}{9}x^2 + \frac{92}{9}x^{-1} + (10 + 14x + \frac{16}{3}[x^2 + x^{-1}]) \ln x + 2(1+x) \ln^2 x;$$

Non-singlet
$$F \to F$$
 [via 2 gluons]

 $(n_f T_R C_F)$

$$P_F^{(S)} = 12x - 4 - \frac{112}{9}x^2 + \frac{40}{9}x^{-1} + (2 + 10x + \frac{16}{3}x^2)\ln x - 2(1+x)\ln^2 x,$$

$$P_F^{(T)} = 8x - 16 + \frac{112}{9}x^2 - \frac{40}{9}x^{-1} - \left(\frac{10}{9} + 18x + \frac{16}{3}x^2\right) \ln x + 2(1+x)\ln^2 x$$

Cross-differences:

$$\frac{1}{2}[P_F^{(T)} - P_G^{(S)}] = \frac{P_F^G \dot{P}_G^F}{P_G^F}, \qquad \frac{1}{2}[P_G^{(T)} - P_F^{(S)}] = \frac{P_G^F \dot{P}_G^G}{P_F^F}$$

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it *changes* with the resolution of the DIS process – momentum transfer Q^2 .

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it *changes* with the resolution of the DIS process – momentum transfer Q^2 . Evolution of parton distribution reminds the Schrödinger equation:

$$\frac{d}{d \ln Q^2} D_h^B(x, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \sum_{A=q,\bar{q},g} \int_{x}^{1} \frac{dz}{z} P_A^B(z) \cdot D_h^A(\frac{x}{z}, Q^2)$$

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it *changes* with the resolution of the DIS process – momentum transfer Q^2 . Evolution of parton distribution reminds the Schrödinger equation:

$$\frac{d}{d \ln Q^2} D_h^B(x, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \sum_{A=q,\bar{q},g} \int_{x}^{1} \frac{dz}{z} P_A^B(z) \cdot D_h^A(\frac{x}{z}, Q^2)$$

"wave function"

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process – momentum transfer Q^2 . Evolution of parton distribution reminds the Schrödinger equation:

$$\frac{d}{d \ln Q^2} D_h^B(x, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \sum_{A=q,\bar{q},g} \int_x^1 \frac{dz}{z} P_A^B(z) \cdot D_h^A(\frac{x}{z}, Q^2)$$

"time derivative"

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it *changes* with the resolution of the DIS process – momentum transfer Q^2 . Evolution of parton distribution reminds the Schrödinger equation:

$$\frac{d}{d \ln Q^2} D_h^B(x, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \sum_{A=q,\bar{q},g} \int_{x}^{1} \frac{dz}{z} P_A^B(z) \cdot D_h^A(\frac{x}{z}, Q^2)$$

"Hamiltonian"

We cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it *changes* with the resolution of the DIS process – momentum transfer Q^2 . Evolution of parton distribution reminds the Schrödinger equation:

$$\frac{d}{d \ln Q^2} D_h^B(x, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \sum_{A=q,\bar{q},g} \int_{x}^{1} \frac{dz}{z} P_A^B(z) \cdot D_h^A(\frac{x}{z}, Q^2)$$

Parton Dynamics turned out to be extremely simple.

Have a deeper look at parton splitting probabilities

– our evolution Hamiltonian –

to fully appreciate the power of the probabilistic interpretation of parton cascades

So long as probability of one extra parton emission is large, one has to consider and treat *arbitrary number* of parton splittings

$$\frac{P}{\mu^2} \gg t_1 \gg t_2 \gg t_3 \gg t_4 \gg t_5 \gg \frac{P}{Q^2}$$

$$\frac{P}{\mu^2} \gg t_1 \gg t_2 \gg t_3 \gg t_4 \gg t_5 \gg \frac{P}{Q^2}$$

$$\frac{P}{\mu^2} \gg t_1 \gg t_2 \gg t_3 \gg t_4 \gg t_5 \gg \frac{P}{Q^2}$$

$$q \rightarrow q(z) + g$$

$$z=k_5/k_4$$

$$P_q^q(z) = C_F \cdot \frac{1+z^2}{1-z},$$

$$\frac{P}{\mu^2} \gg t_1 \gg t_2 \gg t_3 \gg t_4 \gg t_5 \gg \frac{P}{Q^2}$$

$$q \rightarrow g(z) + q$$

$$z=k_2/k_1$$

$$P_q^q(z) = C_F \cdot \frac{1+z^2}{1-z},$$

 $P_q^g(z) = C_F \cdot \frac{1+(1-z)^2}{1-z},$

$$\frac{P}{\mu^2} \gg t_1 \gg t_2 \gg t_3 \gg t_4 \gg t_5 \gg \frac{P}{Q^2}$$

$$g \rightarrow q(z) + \bar{q}$$
 $z = k_4/k_3$

$$P_q^q(z) = C_F \cdot \frac{1+z^2}{1-z},$$

$$P_q^g(z) = C_F \cdot \frac{1+(1-z)^2}{1-z},$$

$$P_g^q(z) = T_R \cdot \left[z^2 + (1-z)^2\right],$$

$$\frac{P}{\mu^2} \gg t_1 \gg t_2 \gg t_3 \gg t_4 \gg t_5 \gg \frac{P}{Q^2}$$

$$g \rightarrow g(z) + g$$
 $z = k_3/k_2$

$$P_q^q(z) = C_F \cdot \frac{1+z^2}{1-z},$$

$$P_q^g(z) = C_F \cdot \frac{1+(1-z)^2}{1-z},$$

$$P_g^q(z) = T_R \cdot \left[z^2 + (1-z)^2\right],$$

$$P_g^g(z) = N_c \cdot \frac{1+z^4 + (1-z)^4}{z(1-z)}$$

$$\mu^2 \ll k_{1\perp}^2 \ll k_{2\perp}^2 \ll k_{3\perp}^2 \ll k_{4\perp}^2 \ll k_{5\perp}^2 \ll Q^2$$

"Hamiltonian" for parton cascades

$$P_q^q(z) = C_F \cdot \frac{1+z^2}{1-z},$$

$$P_q^g(z) = C_F \cdot \frac{1+(1-z)^2}{z},$$

$$P_g^q(z) = T_R \cdot \left[z^2 + (1-z)^2\right],$$

$$P_g^g(z) = N_c \cdot \frac{1+z^4 + (1-z)^4}{z(1-z)}$$

Logarithmic "evolution time" $d\xi = \frac{\alpha_s}{2\pi} \frac{dk_\perp^2}{k_\perp^2}$

- 1. anomalous dimensions \Rightarrow eigenvalues of the dilatation operator
- 2. subset of composite operators su(2) = trace(XXXYYXYXXXYYY) can be mapped onto a spin 1/2 system (X = spin up, Y = spin down)
- 3. At one loop, it is the Hamiltonian of the integrable XXX spin 1/2 chain
- 4. At higher loops, a more complicated spin chain, but with spins interacting at neighbouring sites (up to a certain distance)
- 5. At all loops, there are conjectures for the all loop spin Hamiltonian, exploiting the string results, assuming AdS/CFT duality.
- 6. Integrability = an infinite number of invariants (conserved quantities).

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

Here one encounters 6 (5 for SU(3)) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators.

Recent (fall 2005) addition to the problem (G.Marchesini & YLE

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

Here one encounters 6 (5 for SU(3)) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators.

Recent (fall 2005) addition to the problem (G.Marchesini &

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering. Here one encounters 6 (5 for SU(3)) colour channels that mix with each other under soft gluon radiation.

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators.

Recent (fall 2005) addition to the problem (G.Marchesini & YLD

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

Here one encounters 6 (5 for SU(3)) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators.

Recent (fall 2005) addition to the problem (G.I

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

Here one encounters 6 (5 for SU(3)) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators.

Recent (fall 2005) addition to the problem

The case of $2 \to 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

Here one encounters 6 (5 for SU(3)) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators.

Recent (fall 2005) addition to the problem

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

Here one encounters 6 (5 for SU(3)) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators.

Recent (fall 2005) addition to the problem

$$\frac{\partial}{\partial \ln Q} M \propto \left\{ -N_c \ln \left(\frac{t \, u}{s^2} \right) \cdot \hat{\Gamma} \right\} \cdot M, \qquad \hat{\Gamma} V_i = E_i V_i.$$

6=3+3. Three eigenvalues are "simple".

Soft anomalous dimension,

$$\frac{\partial}{\partial \ln Q} M \propto \left\{ -N_c \ln \left(\frac{t \, u}{s^2} \right) \cdot \hat{\Gamma} \right\} \cdot M, \qquad \hat{\Gamma} V_i = E_i V_i.$$

6=3+3. Three eigenvalues are "simple".

Soft anomalous dimension,

$$\frac{\partial}{\partial \ln Q} M \propto \left\{ -N_c \ln \left(\frac{t \, u}{s^2} \right) \cdot \hat{\Gamma} \right\} \cdot M, \qquad \hat{\Gamma} V_i = E_i V_i.$$

6=3+3. Three eigenvalues are "simple".

Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$\left[E_i - \frac{4}{3}\right]^3 - \frac{(1+3b^2)(1+3x^2)}{3} \left[E_i - \frac{4}{3}\right] - \frac{2(1-9b^2)(1-9x^2)}{27} = 0,$$

where

$$x = \frac{1}{N}, \qquad b \equiv \frac{\ln(t/s) - \ln(u/s)}{\ln(t/s) + \ln(u/s)}$$

Soft anomalous dimension,

$$\frac{\partial}{\partial \ln Q} M \propto \left\{ -N_c \ln \left(\frac{t \, u}{s^2} \right) \cdot \hat{\Gamma} \right\} \cdot M, \qquad \hat{\Gamma} V_i = E_i V_i.$$

6=3+3. Three eigenvalues are "simple".

Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$\left[E_i - \frac{4}{3}\right]^3 - \frac{(1+3b^2)(1+3x^2)}{3} \left[E_i - \frac{4}{3}\right] - \frac{2(1-9b^2)(1-9x^2)}{27} = 0,$$

where

$$x = \frac{1}{N}, \qquad b \equiv \frac{\ln(t/s) - \ln(u/s)}{\ln(t/s) + \ln(u/s)}$$

Mark the *mysterious symmetry* w.r.t. to $x \rightarrow b$: interchanging internal (group rank) and external (scattering angle) variables of the problem . . .

Ratio of parton multiplicities in gluon and quark jets in three loops:

$$R\frac{\mathcal{N}_g}{\mathcal{N}_q} = 1 - \frac{\gamma_0}{6} \left\{ 1 + T(1 - 2R) \right\} + \left(\frac{\gamma_0}{6}\right)^2 \frac{(6 - 4R - 16R^2)T^2 + (58R - 19)T - 25}{8}$$

where

(J.B. Gaffney and A.H. Mueller, 1985)

$$\gamma_0 = \sqrt{2N_c \frac{\alpha_s}{\pi}}; \qquad R \equiv \frac{C_F}{N_c}, \quad T \equiv \frac{2n_f T_R}{N_c}.$$

Ratio of parton multiplicities in gluon and quark jets in three loops:

$$R\frac{\mathcal{N}_g}{\mathcal{N}_q} = 1 - \frac{\gamma_0}{6} \left\{ 1 + T(1 - 2R) \right\} + \left(\frac{\gamma_0}{6}\right)^2 \frac{(6 - 4R - 16R^2)T^2 + (58R - 19)T - 25}{8}$$

where

(J.B. Gaffney and A.H. Mueller, 1985)

$$\gamma_0 = \sqrt{2N_c \frac{\alpha_s}{\pi}}; \qquad R \equiv \frac{C_F}{N_c}, \quad T \equiv \frac{2n_f T_R}{N_c}.$$

Follows "algebraically" from the one-loop Evolution Equations with Exact Angular Ordering imposed !?

Ratio of parton multiplicities in gluon and quark jets in three loops :

$$R\frac{\mathcal{N}_g}{\mathcal{N}_q} = 1 - \frac{\gamma_0}{6} \left\{ 1 + T(1 - 2R) \right\} + \left(\frac{\gamma_0}{6}\right)^2 \frac{(6 - 4R - 16R^2)T^2 + (58R - 19)T - 25}{8}$$

where

(J.B. Gaffney and A.H. Mueller, 1985)

$$\gamma_0 = \sqrt{2N_c \frac{\alpha_s}{\pi}}; \qquad R \equiv \frac{C_F}{N_c}, \quad T \equiv \frac{2n_f T_R}{N_c}.$$

Follows "algebraically" from the one-loop Evolution Equations with Exact Angular Ordering imposed !?

NB: a SUSY check

Ratio of parton multiplicities in gluon and quark jets in three loops:

$$R\frac{\mathcal{N}_g}{\mathcal{N}_q} = 1 - \frac{\gamma_0}{6} \left\{ 1 + T(1 - 2R) \right\} + \left(\frac{\gamma_0}{6}\right)^2 \frac{(6 - 4R - 16R^2)T^2 + (58R - 19)T - 25}{8}$$

where

(J.B. Gaffney and A.H. Mueller, 1985)

$$\gamma_0 = \sqrt{2N_c \frac{\alpha_s}{\pi}}; \qquad R \equiv \frac{C_F}{N_c}, \quad T \equiv \frac{2n_f T_R}{N_c}.$$

Follows "algebraically" from the one-loop Evolution Equations with Exact Angular Ordering imposed !?

NB: a SUSY check

$$R = T = 1 \implies \frac{\mathcal{N}_g}{\mathcal{N}_g} = 1$$

$$\sqrt{\alpha_s} \implies \frac{\alpha_s}{N} + \frac{\alpha_s^2}{N^3} + \frac{\alpha_s^3}{N^5} + \frac{\alpha_s^4}{N^7} + \dots$$

$$\alpha_s \implies \alpha_s + \frac{\alpha_s^2}{N^2} + \frac{\alpha_s^3}{N^4} + \frac{\alpha_s^4}{N^6} + \dots$$

$$\alpha_s^{3/2} \implies 0 + \frac{\alpha_s^2}{N} + \frac{\alpha_s^3}{N^3} + \frac{\alpha_s^4}{N^5} + \frac{\alpha_s^5}{N^7} + \dots$$

$$\alpha_s^2 \implies 0 + \alpha_s^2 + \frac{\alpha_s^3}{N^2} + \frac{\alpha_s^4}{N^4} + \frac{\alpha_s^5}{N^6} + \dots$$

$$\alpha_s^{5/2} \implies 0 + 0 + \frac{\alpha_s^3}{N} + \frac{\alpha_s^4}{N^3} + \frac{\alpha_s^5}{N^5} + \dots$$

$$\alpha_s^3 \implies 0 + 0 + \alpha_s^3 + \frac{\alpha_s^4}{N^2} + \frac{\alpha_s^5}{N^4} + \frac{\alpha_s^6}{N^6} + \dots$$

$$\sqrt{\alpha_s} \implies \frac{\alpha_s}{N} + \frac{\alpha_s^2}{N^3} + \frac{\alpha_s^3}{N^5} + \frac{\alpha_s^4}{N^7} + \dots$$

$$\sqrt{\alpha_s} \implies \frac{\alpha_s}{N} + \frac{\alpha_s^2}{N^3} + \frac{\alpha_s^3}{N^5} + \frac{\alpha_s^4}{N^7} + \dots$$

$$\alpha_s \implies \alpha_s + \frac{\alpha_s^2}{N^2} + \frac{\alpha_s^3}{N^4} + \frac{\alpha_s^4}{N^6} + \dots$$

$$\sqrt{\alpha_s} \implies \frac{\alpha_s}{N} + \frac{\alpha_s^2}{N^3} + \frac{\alpha_s^3}{N^5} + \frac{\alpha_s^4}{N^7} + \dots$$

$$\alpha_s \implies \alpha_s + \left[\frac{\alpha_s^2}{N^2}\right] + \frac{\alpha_s^3}{N^4} + \frac{\alpha_s^4}{N^6} + \dots$$

$$\alpha_s^{3/2} \implies 0 + \frac{\alpha_s^2}{N} + \left[\frac{\alpha_s^3}{N^3}\right] + \frac{\alpha_s^4}{N^5} + \frac{\alpha_s^5}{N^7} + \dots$$

$$\alpha_s^2 \implies 0 + \alpha_s^2 + \frac{\alpha_s^3}{N^2} + \frac{\alpha_s^4}{N^4} + \frac{\alpha_s^5}{N^6} + \dots$$

$$\alpha_s^{5/2} \implies 0 + 0 + \frac{\alpha_s^3}{N} + \frac{\alpha_s^4}{N^3} + \frac{\alpha_s^5}{N^5} + \dots$$

$$\alpha_s^3 \implies 0 + 0 + \alpha_s^3 + \frac{\alpha_s^4}{N^2} + \frac{\alpha_s^5}{N^4} + \frac{\alpha_s^6}{N^6} + \dots$$