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Spin-dependent part of W is parameterized by two structure functions:

spin m .
%4 [fv :p—qzé‘wﬂpq,1 Spgl(x,Q2)+ S,

where m, p and S are the hadron mass, momentum and spin;
q is the virtual photon momentum (Q2 = - g2> 0). Again both functions
depend on Q2 and x = Q2/2pq, 0< x < 1. They measure asymmetries

g, measures the longitudinal spin flip gl < O-LTT — O-LTi

g, +£, measures the transverse spin flip gl -4 g2 ocC O-TTT — O-T'N,



FACTORISATON: W, isa convolution of the
the partonic tensor and probabilities to find a polarized parton
(quark or gluon) in the hadron :

’’ DIS off
gluon

DIS off
quark

W= - )

pv ®

[Probablllty to fmdj/ [Probabi”ty to
quark

find gluon




DIS off quark and gluon can be studied with perturbative QCD, with
calculating involved Feynman graphs.

Probabilities, ®,,,, and @

gluon involve non-perturbaive QCD. There is no a

regular analytic way to calculate them. Usually they are defined from
experimental data at large x and small Q2 , they are called the initial quark

and gluon densities and are denoted 6q and 4dg .

So, the conventional form of the hadronic tensor is:

W,

DIS off the quark,

= W 1 @ §g + W " @ Jg

Initial quark density ﬁltlal gluoné'n:@

DIS off the gluon

are calculated with Pert QCD




Standard Approach
includes the DGLAP Evolution Equations and the Standard Fits for initial
parton densities

DGLAP Evolution Equations

Altarelli-Parisi,Gribov-Lipatov,
Dokshitzer

g (x,0%) = q(x/y)®Aq(y,Q2)+Cg(x/y)®A(y,Qz)

Evolved gluon
distribution

Evolved quark
distribution

Coefficient
function

Coefficient
function



DGLAP evolution equations

dAqg )
d1nQ’ 271' e 27T

dag__ P ®Ag
d1nQ’ o 27T

qu, qu, qu, P are splitting functions

Mellin transformation of the splitting functions
= anomalous dimensions



The Standard Approach includes the DGLAP Evolution Equations and the
Standard Fits for initial parton densities. One can say that SA combines
Science and Art

SCIENCE
LO splitting : . . :
functions Ahmed-Ross, Altarelli-Parisi, Sasaki,
NLO sblitti Floratos, Ross, Sachradja, Gonzale- Arroyo,
¢ t§p| 'ng Lopes, Yandurain, Kounnas, Lacaze, Curci,

unctions Furmanski, Petronzio, Zijlstra, Mertig,

van Neerven, Vogelsang
Coefficient Bardeen, Buras, Muta, Duke, Altarelli, Kodaira,
functions Efremov, Anselmino, Leader, Zijlstra,

ct), , C@, van Neerven



ART

= the art of composing the fits for initial parton densities

Altarelli-Ball-Forte-Ridolfi, Blumlein- Botcher, Leader- Sidorov-
Stamenov, Hirai et al

There are different fits for initial parton densities. For example,

0q
oq

Nx ““[(1-=x)" 1+ yx?)]

Nn “(1/x)+ yxln # (17 x) Atareli-Ball

Forte-Ridolfi,

Parameters N, o, ,B » Vs ) should be fixed from experiment

This combination of Science and Art works well at large and small x, though
strictly speaking, DGLAP is not supposed to work at the small- x region:



For example, for the simplest case: the non-singlet g4

Initial quark density

" (0 =(e,/2)

dw
Lw 270

(1j C(w)og(w)exp

dk2

e —L y(w,a,(k)))

D

Coefficient function

Anomalous dimension

Non-Pert QCD

Pert QCD




In DGLAP, coefficient functions and anomalous dimensions are known
with LO and NLO accuracy, often at integer w =n

L LO

C (0)=1+(.(Q)/271)C" (w)+...
¥ (@)=@,(0)/4m)y” (0)+(0,(Q)/27) )" (@)+...




x-evolution of Aq witﬂ

1/X
4 F,, g, at x<<1
and Q2>> y? O
coefficient function

Eﬁ -evolution of 6q with
anomalous dimension ;{Aq at x~1 andj
Q2.>> y?
O O
N ,

12

Q2

defined from fitting exp

2
éqatx ~1and Q?~ u j evolved quark density

data

Starting point oi
Q2 -evolution




No In(Q?)

From theoretical grounds:

DGLAP should not be
applied to all these regions

1/X

x<<l,
Q° <u’

x<<l,

0> >> ﬂz

x<1,

0> >> ﬂz

~few GeV~ \

DGLAP proper

applicability region: large x and

large Q2

Total

\

resummation

of In(1/x)
needed

J




1/x

In practice:

x<<1, x<<1,

Q" <y’ Q> >> u’
<1 x<1,

0% < u? Q> >> 1’

Extrapolation of DGLAP\
with using singular fits
for initial parton
densities, however
without theoretical

grounds
/

12 =few GeV”

Small Q2 region is
absolutely beyond the

reach of DGLAP

DGLAP proper
applicability region
>

Q2



q ’ DGLAP -ordering:

\, »/
A
K 2 2 2 2 2
: M <ku<k2¢<k3¢<Q
K. |
o good approximation for large x when logs of x can
Kl be neglected. At x << 1 the ordering has to be lifted.
b It makes possible to account for leading logs of x
DL contributions SL contributions

\ 4
(o, In*(1/x))",

(. In (1/x)In(Q°/u*)* (a, In(1/x))",
k=120

NB: Liffing DGLAP -ordering = infrared divergences in gluon
ladders and non-ladder quark and gluon graphs



NEXT IMPORTANT STEP:

What is appropriate parameterizationof o atsmall x?

S

Standard parameterization O = (¥, (Qz)

DGLAP-
parameterization

Arguments in favor of the

Q2- parameterization: Amati-Bassetto-Ciafaloni-Marchesini

- Veneziano; Dokshitzer-Shirkov



Origin: in each ladder rung a =o (ki)

T S S

K&

Il |

DGLAP-parameterization

However, such a parameterization is Ermolaev-Greco-Troyan
good for large x only. At small x :

o, =0 ((k—k' )= (k] +k})/ )= (k)

When DGLAP-
ordering is used and
X ~1

—

time-like argument

Participates in the
Mellin transform

DGLAP -parametrization o, =0 (Qz)




Example: quark ladder in the Born approximation No Q2 at all

S . Alw)
s—ul+ie | o

M, =ca.(s)

The coupling participates in the Mellin transform

> — h
a'S(S)%A(a)):l{ 277 Z_J‘O dp exp( 2a)p)z} where
n o+ (p+m) +7 772111(#2//\2(2@)

b

_ 2
instead of DGLAP-parameterization as — as (Q )

2 2
It is valid when i > AQCD

This restriction guarantees the applicability of Pert QCD



Expression for the non-singlet g, at large Q2: Q2 >> 1 GeV?

ilnitial quark density

Q

do( 1 0,
271\ x ) \ w- H(w)

2 joo

gfvs—e—"f

—Jo0

Coefficient T Al:lomalf)us
function dimension

New coefficient function and anomalous dimension sum up leading logarithms
to all orders in &/



Compare our non-singlet anomalous dimension to the LO DGLAP one:

expand C and H into seriesin 1/ @

|

coincide, save the

H = A(@)C { ! +L}+... [ treatment of ¢

2
%LV? DGLAP_ 94 (Q )C 1 +§—S (n) a's(Q )Cr |:l_|_ 1 +O(n)
27T nn+l) 2 27T n 2

where

whenn< 1
S, (n)= Zik
j=1 .]

small/large x H small/large n



Compare our coefficient function and the NLO DGLAP one

9
I

L =1+ A(a))CFI: I ! }+

w - H (o) 2T

coincide, save the treatment of ¢




Expression for the singlet g, atlarge Q2

S_<85>de(ljw
7 gl

(C;+)§]+ Cj)&g{Qij + (Cf]_)§]+ C;)Jg{gz
U

Large Q2 means Q(+) > Q(_)
O°>u’; u=5sGeV




Small —x asymptotics of g,: when x > 0, the saddle-point method leads to

2
g ~ %q (1/x) (0% 1 u* )™ " 5

Nonsinglet intercept ANS — 042

At large x, g, and g,S are positive

5q >0 —» glNS > (0 Inthe whole range of x at any Q2



Asymptotics of the singlet g, are more involved

g <€(21> Ag /2

8 ~— S(Ag) (17 x) (@27 u?)

With intercept AS — O 86

and  G(A,)=-dq-0.064 Je

[ ]

Interplay between the quark and gluon densities can lead to different
sign of g, singlet at x<<1



Values of the _ Soffer-Teryaev, Kataev-Sidorov-
intercepts non-singlet Parente, Kotikov-Lipatov-Parente-
perfectly agree Intercept Peshekhonov-Krivokhijine-Zotov,
with results of

several groups

who fitted singlet Kochelev-Lipka-Vento-Novak-
experimental data. intercept Vinnikov

Anatomy of the singlet intercept

A. Graphs with A = 1.1 -] [ violates unitarity }
gluons only:

{ similar to LO BFKL }

B. All graphs AS —0.86 ’ { No violation of unitarity }




However, using the asymptotics is not reliable at available x:

2
A g /2

C
AS A 2 2
g = (A S-(1/2) (071 12*)
Let us compare g, to its small-x asymptotics:

R™ = g™ /g, without II

Q2 = 20 GeV?2 at the plots,
though no big difference at

|
|

other Q2 0.6f
0.4t
0.2+
ml-l 15-2 ml-? 1(:;-4 ml-‘-" T
45 1 o including IT
81 18> g 11lys

Conclusion: using asymptotics is reliable for x<10-°



Now:
Compare our results with DGLAP without using asymptotic formulae

Comparison depends on the assumed shape of initial parton densities.

The simplest option: use the bare quark input

d(x)=0(x) == sw)=1

in x- space j E\/M\ellin spaci

Numerical comparison shows that the impact of the total resummation of
logs of x becomes quite sizable at x = 0.05 approx.

Hence, DGLAP cannot work well at x < 0.05. Puzzle
However, in practice DGLAP works at x < 0.05




Solution to the puzzle

In order to understand the reason for success of DGLAP at small x, let us
consider in more detail

standard fits for initial parton densities.

8(x)=N x“[(1+ x°)A=2)"]  Anareti-Bail-Forte-

Ridolfi

regular factors j

parameters ¢ = 0.58, f=2.7,y=34.3, 0 =0.75

normalization

singular
factor

are fixed from fitting experimental data at large x



In the Mellin space this fit is

&(w)=N[(w-a)” +ick((a)+k—05)‘1 +y(@+k+1-a)™)]

k=1

Non-leading poles

Leadlng pole

@=0.58 >0 K +a<0

So, acfuqlly the small-x DGLAP asymptotics of g, is

ngGLAP ~ (I/X)a(hl QZ)}/(a) { Regge behavior j

Instead of the well-known DGLAP asymptotics

g " ~exp[In(1/x)In1n ((22/A2QCD )]




Comparison it to our asymptotics: both asymptotics are of the Regge type

gl ~ (UX)EMI O o <1704 (021 1)

Phenomenological intercept calculations j

CONCLUSION: the singular factors in the DGLAP fits mimic the total
resummation of In(1/x) .

MISCONCEPTION: the total resummation is not relevant at available x
ACTUALLY: the resummation has always been accounted for through the
standard fits, however without realizing it

MISCONCEPTION: fits for 6q are singular but defined and large x,
then convoluting them with coefficient functions weakens the singularity

C(x,y)®oq(y) =Agq(x)

ACTUALLY: The both distributions are singular equally



Structure of DGLAP fit once again:

oq(x)=N x’

Can be dropped when
In(x) are resummed

Therefore at x << 1

I+ & )(1—x)"]

x-dependence is weak at x<<1 and can be
dropped

og(x) = N(1+ ax)

MISCONCEPTON: fits are complicated because they mimic unknown

phenomena from Non-Pert QCD

ACTUALLY: they mostly mimic Pert QCD; not much of Non-Pert QCD

is at small x




Numerical comparison of DGLAP with our approach at small but
finite x, using the same DGLAP fit for initial quark density.

R=g9g, Our/g1 DGLAP

Regular term in g, °V' vs
regular + singular in g, DGT
0.25¢

Whole fit in g, °“" and g, DGLAP:
regular + singular




Comparison between DGLAP and our approach at large x

DGLAP our approach

Good at large x because
includes exact two-loop
calculations but bad at small x
as lacks the total resummaion
of In(x)

Good at small x , includes the total
resummaion of In(x) but bad at large x
because neglects some contributions
essential in this region

WAY OUT - synthesis of our approach and DGLAP

1. Expand our formulae for coefficient functions and anomalous
dimensions into series in the QCD coupling

2. Replace the first- and second- loop terms of the expansion by
corresponding DGLAP —expressions

New formulae are equally good at large and small x,
singular fits are not exploited



Our expressions

H(w)=(1/2)[o-(®’-Bw)]"” C(w) =w/(w-H®))

anomalous dimension ’ _ :
‘ coefficient function

First tems of their expansions into the perturbation series

leA(a))CF[lJrl} CIZA(a))CF{l . 1}

or o 2 or | w* 2w

New, “synthetic” formulae:

h=H-H +H,p54p ¢=C—C+Crpypeup

New, “synthetic” formulae accumulate all advantages of the both
approaches and should equally be good at large and small x.

New fits should not involve singular factors



Taken from wwwcompass.cern.ch

COMPASS is a high-energy physics experiment at the Super Proton
Synchrotron (SPS) at in Geneva, Switzerland. The purpose of
this experiment is the study of hadron structure and hadron
spectroscopy with high intensity muon and hadron beams.

On February 1997 the experiment was approved conditionally

by CERN and the final Memorandum of Understanding was signed in
September 1998. The spectrometer was installed in 1999 - 2000 and
was commissioned during a technical run in 2001. Data taking started
in summer 2002 and continued until fall 2004. After one year shutdown
in 2005, COMPASS will resume data taking in 2006.

Nearly 240 physicists from 11 countries and 28 institutions work in
COMPASS



COMPASS operates with small Q2 (Q2 < 3 GeV?) and small x ~10-3
DGLAP cannot be applied here: no logs of Q2 in this region

To generalize our results to the region of small Q2, it is enough to make
the shift in our previous formmulae: , , ,
Q —=Q +u

Infrared cut-off

Q—->Q+yx’ mmp x>x=(Q*+u*)2pq=x+7

Similar to the Nachtmann
variable

With the shift, our results describe g, at arbitrary Q2




g,=

Proof of the shift

Obviously, g, obeys the Bete-Salpeter equation:

Lhe only source of Q- dependenceJ

0

g,Bom L is the result of evolving ih\

initial parton density with
respect to 2pk at fixed k2.
It accumulates the total
resummation of leading logs of
the invariant energy 2pk/

Born d4kk2
gi=g"" +| L_S(k” +2gk —Q* —m)L(2pk.k*)



In order to regulate IR singularities in L we intfroduce the IR cut-off u
Into all diverging (vertical gluon ) propagators. We choose H>m,

then drop m, and insert u into all vertical propagators.
Sudakov vquables

k=aqg+ (f +xa)p+k, =aqg+ Bp + k|

| integrated out, using 6-function

The leading contribution comes from the region w>ki >Q2,W6L’>ki
therefore

Born r dki Bom
§1 = 81 +J L(Wk+,U)— +

4
ﬁes the shift ]




It leads to new expressions: non-singlet g, at small Q2

2 2
7 = ,Ll_ >> X = Q— weak x -dependencej
2pq 2pq
2 0]
NS __ eq dw 1 Anomalous j
81 — 7_[ T dimension
2 2 e
@ u-+ 0
oq( @) :
w - H o) U

weak Q2 -dependenca

Coeffic::ieni T Initial quark density
function




Singlet g,
at small Q2
2
M
2pq
2
=2
2pq

when Q 2 << U 2 both x- and Q2- dependences are flat, even for x<<1.

A

(o B

<e’>cdol 1 )\’
81 = 2q jzm(zﬂcj [ngquCgag]
o 1 +0° " o 2 +0°
Cg = Cg luz +Cg luz
,Uz +Q2 Qi ,Uz +Q2
(+) -)
Cq - Cq ,U2 +C; ,U2

1/x

Location of the line is
determined by the z-
dependence



Approximating

og=N_,,0g=N,,

perform numerical
calculations of G,

g, =(e2/2)N ,G,,

Position of the turnirig point is sensitive to N,/N, , so the experimental
detection of it will allow to estimate Ng/Nq



Leading twist mass scale: Q2> M2
contribution

gl(xan): 81LT (xan) 1"‘2 C,

PC are supposed to come from higher twists.
No satisfactory theory
is known for the higher twists

Power
corrections

Standard way of obtaining PC from experimental
data at small x: Leader-Stamenov- Sidorov

Compare experimental data to predictions of the Standard Approach
and assign the discrepancy to the impact of PC

DGLAP

LT
81 — 81



Counter-argument:

DGLAP is unreliable at small x, so confronting experiment to it is not

productive
Instead:
2 4]
NS € q d w \%Y%
1 = j :
2 2ri\ u’>+0Q°

H (w)

C(w)dq )| “ ;zQ

where w = 2pq and Q? can be large or small, u =1 GeV



As 1 =1 GeV, at Q2> 1 GeV? expansion into series is

81NS —
e_qj' d @ W
2 2xi | O°

1+ > T, (@)

E Power corrections

=

2

\»

2

C 5 u-
j (@) q(w)(sz

:

H (w)

Leading contributi
For g,Ns

.




When Q2 < 1 GeV?, PC are different:

2 )]
e d @ %
¢ =] = —5| Cw)dyw)
2 2mwi \ U
_ -
2
0
1+ ) T (@) =
k=1 M
. Leading contribution for g, NS
EPower corrections E doesgnot ek ng‘

These power corrections have perturbative origin and should
be accounted in the first place. Only after that one can estimate
a genvuine impact of higher twist contributions



CONCLUSION
DGLAP is theoretically based for describing DIS at large x and large Q2

Extrapolating DGLAP into the small-x region involves singular
fits for the initial parton densities. Discrepance between DGLAP
predictions and experiment is often interpreted as the

Power Corrections.

The most natural way to describe g, in the small-x region is
the total resummation of leading logs of x .

The DGLAP fits for initial parton densities are believed to mimic
Non-Pert QCD contributions.

Actually, the singular factors in the fits mimic the total resummation of
logs of x, ensuring the steep rise of g, at small x and lead to

the Regge asymptotics with the phenomenological intercepts.

They should be dropped when the resummation is taken

info account, which simpilifies the fits.



So in a sense, the resummation has always been used in DGLAP at
small x, though inexplicitly, through the fits, and without been aware
of it.

Combing the resummation with DGLAP provides the expressions for
g, good at large and small x and does not involve singular fits.

Expressions for g1 at small x and small Q2 can be obtained from our

results for g1 at large Q2 by the shift Q2 by Q2 + u?. We predict
that g, does not depend on x at small Q2 even at x<<1. Singlet g,
can be positive, negative or zero in this region, depending on the
ratio between the quark and gluon initial densities, g,

Extrapolating DGLAP into the small-x region leads to incorrect
estimates for the role of Higher Twists: a good deal of the Power
Corrections is actually of the perturbative origin



