Spin dependent fragmentation function analysis at Belle

DIS 2007

München, April 17th

M. Grosse Perdekamp (University of Illinois and RBRC) A. Ogawa (BNL/RBRC) R. Seidl (University of Illinois and RBRC)

KEKB: L>1.6x10³⁴cm⁻²s⁻¹ !!

- Asymmetric collider
- 8GeV e⁻ + 3.5GeV e⁺
- \sqrt{s} = 10.58GeV (Y(4S))
- $e^+e^- \rightarrow Y(4S) \rightarrow B \overline{B}$
- Off-resonance: 10.52 GeV
- e⁺e⁻→q q (u,d,s,c)
- Integrated Luminosity: >700 fb⁻¹
- >60fb⁻¹ => off-resonance

Belle Detector

Collins effect in quark fragmentation

J.C. Collins, Nucl. Phys. B396, 161(1993)

Collins fragmentation in e^+e^- : Angles and Cross section $cos(\phi_1 + \phi_2)$ method

Collins fragmentation in e^+e^- : Angles and Cross section $cos(2\phi_0)$ method

•Independent of thrust-axis

•Convolution integral I over transverse momenta involved

[Boer,Jakob,Mulders: NPB504(1997)345]

6

2-hadron inclusive transverse momentum dependent cross section:

$$\frac{d\sigma(e^+e^- \to h_1h_2X)}{d\Omega dz_1 dz_2 d^2 q_T} = \cdots B(\Theta) \cos(2\varphi_0) I \left[\left(2\hat{\mathbf{h}} \cdot \mathbf{k}_T \hat{\mathbf{h}} \cdot \mathbf{p}_T - \mathbf{k}_T \cdot \mathbf{p}_T \right) \frac{H_1^{\perp} \overline{H}_1^{\perp}}{M_1 M_2} \right]$$

$$B(\Theta)^{cm} \frac{1}{4} \sin^2 \Theta$$
Net (anti-)alignment of transverse quark spins

BELLE

Applied cuts, binning

- Originally off_resonance data, now also on_resonance data (29.1 → 547 fb⁻¹)
- Track selection:
 - pT > 0.1GeV
 - vertex cut: dr<2cm, |dz|<4cm
- Acceptance cut
 - $-0.6 < \cos \theta_i < 0.9$
- Event selection:
 - Ntrack \geq 3
 - Thrust > 0.8
 - Z₁, Z₂>0.2

Hemisphere cut

$$(P_{h2} \cdot \hat{n})\hat{n} \cdot (P_{h1} \cdot \hat{n})\hat{n} < 0$$

- Q_T < 3.5 GeV
- Pion PID selection

Examples of fits to azimuthal asymmetries

- D_1 : spin averaged fragmentation function,
- H₁: Collins fragmentation function

No change in cosine moments when including sine and higher harmonics

Methods to eliminate gluon contributions: Double ratios and subtractions

Double ratio method:

Subtraction method:

 $S \coloneqq \frac{N^{Unlike}(\phi)}{N_0^{Unlike}} - \frac{N^{Like}(\phi)}{N_0^{Like}} \approx F(H_1^{\perp, favored}(z), H_1^{\perp, disfavored}(z))$

Pros: Acceptance cancels out

Cons: Works only if effects are small (both gluon radiation and signal)

Pros: Gluon radiation cancels out exactly

Cons: Acceptance effects remain

2 methods give very small difference in the result

$$A \coloneqq F = \frac{\sin^2(\theta)}{1 + \cos^2(\theta)} \left[\frac{\sum_q e^2 (H^{Fav} \cdot \overline{H}^{Fav} + H^{Unf} \cdot \overline{H}^{Unf})}{\sum_q e^2 (D^{Fav} \cdot \overline{D}^{Fav} + D^{Unf} \cdot \overline{D}^{Unf})} - \frac{\sum_q e^2 (H^{Fav} \cdot \overline{H}^{Unf} + H^{Unf} \cdot \overline{H}^{Fav})}{\sum_q e^2 (D^{Fav} \cdot \overline{D}^{Vnf} + D^{Unf} \cdot \overline{D}^{Fav})} \right]$$

Other Favored/Unfavored Combinations \rightarrow charged pions or π^0

Challenge: current double ratios not very sensitive to favored to disfavored Collins function ratio → Examine other combinations:

Unlike-sign pion pairs (U): (favored x favored + unfavored x unfavored) Like-sign pion pairs (L): (favored x unfavored + unfavored x favored) $\pi^{\pm}\pi^{0}$ pairs (favored + unfavored) x (favored + unfavored) P.Schweitzer([hep-ph/0603054]): ANY charged $\pi\pi$ pairs are similar (and easier to handle) (C): UC (favored + unfavored) x (favored + unfavored) \rightarrow Build new double ratios: Favored = $u \rightarrow \pi^+, d \rightarrow \pi^-, cc$. \rightarrow Unlike-sign/ charged $\pi\pi$ pairs Unfavored $= d \rightarrow \pi^+, u \rightarrow \pi^-, cc.$ (UC)

Why is it possible to include on_resonance data? Different Thrust distributions

DIS 2007, April 17th

• small B contribution (<1%) in high thrust sample

>75% of X-section continuum under

Y (4S) resonance

•29 fb⁻¹ → 547 fb⁻¹

•many systematic errors reduce with more statistics

• Charm-tagged Data sample also increases

Improved Systematic errors (UC)

Final charm corrected results for e⁺ e⁻ $\rightarrow \pi \pi X$ (29fb⁻¹ of off-resonance data)

- Significant non-zero asymmetries
- Rising behavior vs. z
- UC asymmetries about 40-50% of UL asymmetries
- First direct measurements of the Collins function
- UL/L data published

z-Integrated results:							
A ₀ (UL)	(3.06 ± 0.57 ± 0.55)%						
A ₁₂ (UL)	(4.26 ± 0.68 ± 0.68)%						
A ₀ (UC)	(1.27 ± 0.49 ± 0.35)%						
A ₁₂ (UC)	(1.75 ± 0.59 ± 0.41)%						

Charm corrected results for e⁺ e⁻ $\rightarrow \pi \pi X$ (547 fb⁻¹)

- Significance largely increased
- Behavior unchanged
- Reduced systematic errors
 due to statistics
- Precise measurements of the Collins function

ď			cos	(2¢ ₀) me	thod	-				_	:	
	0.2	F				Y	REI	_IIM	INA	R		
	0.1	-										
	0								•	•	•	
A 12		-	cos	ا (م, +م_) ا	nethod							-
	0.2	-										
	0.1	ŀ										1
	0					1			•	•	•	
				1		1			1		1	-
		0	í.	2		4		1	6	7	8	nin-id
										, î	1,-2	
1						1						
		0.2	0.3	0.5	0.7	1/0.3	0.5	0.7	1/0.5	0.7	1/0.7	/ 1.0
2												
		0.2				0.3			0.5		0.7	1.0
												()

Integrated results:					
A ₀ (UL)	(2.67 ± 0.10 ± 0.26)%				
A ₁₂ (UL)	(3.55 ± 0.08 ± 0.15)%				
A ₀ (UC)	(1.11 ± 0.11 ± 0.22)%				
A ₁₂ (UC)	(1.46 ± 0.09 ± 0.13)%				

Collins asymmetries I: 4x4 z₁, z₂ binning

Collins asymmetries II: $sin^2 \theta/(1+cos^2 \theta)$ binning (UL)

- Nonzero quark polarization ~ $sin^2 \theta$
- Unpolarized denominator ~ 1+cos² θ
- Clear linear behavior
 seen when using either
 thrustz or 2nd hadron as
 polar angle
- Better agreement for thrust axis (~approximate quark axis)
- UC plots similar

BELLE

Interference Fragmentation – thrust method

- $e^+e^- \rightarrow (\pi^+\pi^-)_{jet1}(\pi^-\pi^+)_{jet2}X$
- Stay in the mass region around ρ -mass
- Find pion pairs in opposite hemispheres
- Observe angles φ₁+φ₂
 between the event-plane (beam, jet-axis) and the two two-pion planes.
- Transverse momentum is integrated (universal function, evolution easy
 → directly applicable to semi-inclusive DIS and pp)
- Theoretical guidance by papers of Boer, Jakob, Radici[PRD 67, (2003)] and Artru, Collins[ZPhysC69(1996)]
- Early work by Collins, Heppelmann, Ladinsky [NPB420(1994)]

Model predictions by:

•Jaffe et al. [PRL 80,(1998)]

•Radici et al. [PRD 65,(2002)]

 $A \propto H_1^{2}(z_1, m_1)\overline{H}_1^{2}(z_2, m_2)cos(\varphi_1 + \varphi_2)$

Unpo

Unpolarized FFs

- Performed Systematic studies:
 - Smearing

BELLE

- Tracking efficiency
- Acceptance
- Energy scale
- Particle ID study yet finished
- AKK: Try flavor tagged/enhanced analysis?
- How about 2 hadron analysis
- → favored,disfavored FF

Summary and outlook

- Double ratios:
 double ratios from data
 most systematic errors cancel
- Analysis procedure passes all null tests
- Systematic uncertainties understood
- Statistics increased from 29 \rightarrow 547 fb⁻¹
- Significant nonzero asymmetry with double ratios are observed
- UL/C about half as large UL/L double ratios
- Data can be used for more sophisticated analysis
- Paper with 29 fb⁻¹ U/L double ratios published (PRL96:232002,2006)

- Analysis almost finalized, smalller additions planned (k_t dependence of Collins effect, parameterizations)
- Interference fragmentation function analysis started
- Many more QCD/Spin related studies possible (unpol FFs, timelike DVCS, Λ Polarimetry)

Backup Slides

Measurement of the Collins fragmentation function at BELLE

Why correction factors of 1.2 and 0.55?

- Charged pion pairs are the sum of U and L
- Errors are correlated when building double ratios UC or LC
- Division of histograms takes correlation not into account
- Proper error calculation confirms correction factors found in correlation studies and χ^2 distributions

Collins asymmetries IIa: sin² θ/(1+cos² θ) binning (UC)

- Nozeron quark
 polarization ~ sin² θ
- Unpolarized denominator ~ 1+cos² θ
- Clear linear behavior seen when using either thrustz or 2nd hadron as polar angle
- Better agreement for thrust axis (~approximate quark axis)
- Similar behavior, smaller magnitude as UL asymmetries

BELLE

- (

Collins asymmetries III: Q_T binning (UL)

- Reduced asymmetries in low thrust sample
- At low thrust significant B contribution
 - (for t<0.8 ~20 % B
 - for t>0.8 < 1 % B)
 - A₁₂ thrust axis dependent
 - High Q_T (>3.5 GeV) asymmetries from beam related BG

23

UC plots similar

Thrust<0.8 (not corrected for heavy

quark contributions)

BELLE

Collins asymmetries IIIa: Q_T binning (UC)

- Reduced asymmetries in low thrust sample
- At low thrust significant heavy quark contribution
- High Q_⊤ (>3.5 GeV) asymmetries from beam related BG
- similar behavior, but smaller magnitude as UL asymmetries

Thrust<0.8 (not corrected for heavy

DIS 2007, April 17th

BELLE

B, charm and uds contributions in the data

uds quarks charm quarks Charged B-mesons Netral B-mesons Open symbols: charm enhanced data sample used for charm correction Full symbols: main data sample

