

I EVERHIJI ME TRUST_{_____}___

Exact WKB Solutions: Their Borel Summability and Relationship to Abelianisation of ℏ**-Connections**

Nikita Nikolaev

School of Mathematics University of Birmingham

30 January 2023 *Workshop on Quantization and Resurgence* **SwissMAP Research Station Les Diablerets, Switzerland**

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$
(\hbar \partial_x)^n \psi + p_1 (\hbar \partial_x)^{n-1} \psi + \ldots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k \right) \psi(x, \hbar) = 0 \tag{\bigstar}
$$

where $p_k(x, \hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$
(\hbar \partial_x)^n \psi + p_1 (\hbar \partial_x)^{n-1} \psi + \ldots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k\right) \psi(x,\hbar) = 0 \tag{\bigstar}
$$

where $p_k(x, \hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

• **Examples: (1)** $(h^2 \partial_x^2 + q(x, \hbar))$ **(2)** $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)$ Schrödinger equation Berk-Nevins-Roberts equation

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_r$:

$$
(\hbar \partial_x)^n \psi + p_1 (\hbar \partial_x)^{n-1} \psi + \ldots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k\right) \psi(x,\hbar) = 0 \tag{\bigstar}
$$

where $p_k(x, \hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

• **Examples: (1)** $(h^2 \partial_x^2 + q(x, \hbar))$ **(2)** $(h^3 \partial_x^3 + 3h \partial_x + 2ix) \psi = 0$ Berk-Nevins-Roberts equation

Schrödinger equation

• More generally: \hbar -differential operator on a line bundle $\mathcal L$ over a curve (X, D) :

 $P: \mathcal{L} \to \mathcal{L} \otimes \text{Sym}^n \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar]$ such that $P|_{\hbar=0}(fe) = fP|_{\hbar=0}(e)$

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_r$:

$$
(\hbar \partial_x)^n \psi + p_1 (\hbar \partial_x)^{n-1} \psi + \ldots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k \right) \psi(x, \hbar) = 0 \tag{\bigstar}
$$

where $p_k(x, \hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

• **Examples: (1)** $(h^2 \partial_x^2 + q(x, \hbar))$ **(2)** $(h^3 \partial_x^3 + 3h \partial_x + 2ix) \psi = 0$ Berk-Nevins-Roberts equation

Schrödinger equation

• More generally: \hbar -differential operator on a line bundle $\mathcal L$ over a curve (X, D) : $P: \mathcal{L} \to \mathcal{L} \otimes \text{Sym}^n \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar]$ such that $P|_{\hbar=0}(fe) = fP|_{\hbar=0}(e)$

Even more generally: \hbar -connection on a vector bundle $\mathcal E$ over a curve (X, D) :

 $\nabla : \mathcal{E} \to \mathcal{E} \otimes \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar]$ such that $\nabla (f e) = f \nabla e + \hbar \, \mathrm{d} f \otimes e$

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_r$:

$$
(\hbar \partial_x)^n \psi + p_1 (\hbar \partial_x)^{n-1} \psi + \ldots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k\right) \psi(x,\hbar) = 0 \tag{\bigstar}
$$

where $p_k(x, \hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

• **Examples: (1)** $(h^2 \partial_x^2 + q(x, \hbar))$ **(2)** $(h^3 \partial_x^3 + 3h \partial_x + 2ix) \psi = 0$ Berk-Nevins-Roberts equation

Schrödinger equation

- More generally: \hbar -differential operator on a line bundle $\mathcal L$ over a curve (X, D) : $P: \mathcal{L} \to \mathcal{L} \otimes \text{Sym}^n \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar]$ such that $P|_{\hbar=0}(fe) = fP|_{\hbar=0}(e)$
- Even more generally: \hbar -connection on a vector bundle $\mathcal E$ over a curve (X, D) : $\nabla : \mathcal{E} \to \mathcal{E} \otimes \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar]$ such that $\nabla (f e) = f \nabla e + \hbar \, \mathrm{d} f \otimes e$
- *WKB method*: solve (\star) using the *WKB ansatz* $\psi(x,\hbar) = \exp\left(\frac{1}{\tau}\right)$

 $\overline{\hbar}$ \int_0^x \bar{x}_0 $s(x, \hbar) dx$

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_r$:

$$
(\hbar \partial_x)^n \psi + p_1 (\hbar \partial_x)^{n-1} \psi + \ldots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k \right) \psi(x, \hbar) = 0 \tag{\bigstar}
$$

where $p_k(x, \hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

• **Examples:** (1) $(\hbar^2 \partial_x^2 + q(x, \hbar))$ $(2\partial_x^2 + q(x,\hbar))\psi = 0$ Schrödinger equation **(2)** $(h^3 \partial_x^3 + 3h \partial_x + 2ix) \psi = 0$ Berk-Nevins-Roberts equation

• More generally: \hbar -differential operator on a line bundle $\mathcal L$ over a curve (X, D) : $P: \mathcal{L} \to \mathcal{L} \otimes \text{Sym}^n \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar]$ such that $P|_{\hbar=0}(fe) = fP|_{\hbar=0}(e)$

• Even more generally: \hbar -connection on a vector bundle $\mathcal E$ over a curve (X, D) : $\nabla : \mathcal{E} \to \mathcal{E} \otimes \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar]$ such that $\nabla (f e) = f \nabla e + \hbar \, \mathrm{d} f \otimes e$

• *WKB method:* solve \star using the *WKB ansatz*

$$
\psi(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x s(x,\hbar) \,dx\right)
$$

Two Questions Addressed Today

1 When does the WKB method lead to solutions of (\star) with good asymptotics as $\hbar \to 0$? • What is the WKB method for P and ∇ ?

• Plug the WKB ansatz into (\star) to get a nonlinear ODE of order $n - 1$:

$$
(\hbar \partial_x)^{n-1} s + s^n + \dots = 0; \qquad \text{explicitly:} \quad \sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0 \qquad (*)
$$

• Plug the WKB ansatz into (\star) to get a nonlinear ODE of order $n - 1$:

$$
(\hbar \partial_x)^{n-1} s + s^n + \dots = 0; \qquad \text{explicitly:} \quad \sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0 \qquad (*)
$$

• **Examples**: **(1)** ℏ∂xs + s ² + q = 0 **//** (ℏ∂^x + s)s + q = 0 **(2)** $\hbar^2 \partial_x^2 s + 3s \hbar \partial_x s + s^3 + 3s + 2ix = 0$ // $(\hbar \partial_x + s)^2 s + 3s + 2ix = 0$

• Plug the WKB ansatz into (\star) to get a nonlinear ODE of order $n - 1$:

$$
(\hbar \partial_x)^{n-1} s + s^n + \dots = 0; \qquad \text{explicitly:} \quad \sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0 \qquad (*)
$$

• **Examples**: **(1)** ℏ∂xs + s ² + q = 0 **//** (ℏ∂^x + s)s + q = 0 **(2)** $\hbar^2 \partial_x^2 s + 3s \hbar \partial_x s + s^3 + 3s + 2ix = 0$ // $(\hbar \partial_x + s)^2 s + 3s + 2ix = 0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen *generically*, there are n formal solutions

$$
\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}[\![\hbar]\!]
$$
 $i = 1,\ldots,n$

uniquely and recursively determined by leading-orders $s_i^{(0)} = \lambda_i(x)$ that are roots of

$$
\lambda^{n} + a_{1}\lambda^{n-1} + \ldots + a_{n} = 0 \quad \text{where} \quad a_{k}(x) := p_{k}(x, 0) \tag{\spadesuit}
$$

• Plug the WKB ansatz into (\star) to get a nonlinear ODE of order $n - 1$:

$$
(\hbar \partial_x)^{n-1} s + s^n + \dots = 0; \qquad \text{explicitly:} \quad \sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0 \qquad (*)
$$

• **Examples**: **(1)** ℏ∂xs + s ² + q = 0 **//** (ℏ∂^x + s)s + q = 0 **(2)** $\hbar^2 \partial_x^2 s + 3s \hbar \partial_x s + s^3 + 3s + 2ix = 0$ // $(\hbar \partial_x + s)^2 s + 3s + 2ix = 0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen *generically*, there are n formal solutions

$$
\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}[\![\hbar]\!]
$$
 $i = 1,\ldots,n$

uniquely and recursively determined by leading-orders $s_i^{(0)} = \lambda_i(x)$ that are roots of

$$
\lambda^{n} + a_{1}\lambda^{n-1} + \ldots + a_{n} = 0 \quad \text{where} \quad a_{k}(x) := p_{k}(x, 0) \tag{\spadesuit}
$$

and therefore *n* unique *formal WKB solutions* normalised at x_0 :

$$
\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \,dx\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)} \hbar^k
$$

• Plug the WKB ansatz into (\star) to get a nonlinear ODE of order $n - 1$:

$$
(\hbar \partial_x)^{n-1} s + s^n + \dots = 0; \qquad \text{explicitly:} \quad \sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0 \qquad (*)
$$

• **Examples**: **(1)** ℏ∂xs + s ² + q = 0 **//** (ℏ∂^x + s)s + q = 0 **(2)** $\hbar^2 \partial_x^2 s + 3s \hbar \partial_x s + s^3 + 3s + 2ix = 0$ // $(\hbar \partial_x + s)^2 s + 3s + 2ix = 0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen *generically*, there are n formal solutions

$$
\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}[\![\hbar]\!]
$$
 $i = 1,\ldots,n$

uniquely and recursively determined by leading-orders $s_i^{(0)} = \lambda_i(x)$ that are roots of

$$
\lambda^{n} + a_{1}\lambda^{n-1} + \ldots + a_{n} = 0 \quad \text{where} \quad a_{k}(x) := p_{k}(x, 0) \tag{\spadesuit}
$$

and therefore *n* unique *formal WKB solutions* normalised at x_0 :

$$
\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) dx\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)} \hbar^k
$$

• "Generically" := away from *turning points* := zeros of the discriminant of (♠)

• Plug the WKB ansatz into (\star) to get a nonlinear ODE of order $n - 1$:

$$
(\hbar \partial_x)^{n-1} s + s^n + \dots = 0; \qquad \text{explicitly:} \quad \sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0 \qquad (*)
$$

• **Examples:** (1)
$$
\hbar \partial_x s + s^2 + q = 0
$$

\n(2) $\hbar^2 \partial_x^2 s + 3s \hbar \partial_x s + s^3 + 3s + 2ix = 0$ // $(\hbar \partial_x + s)s + q = 0$
\n $(\hbar \partial_x + s)s + q = 0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen *generically*, there are n formal solutions

$$
\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}[\![\hbar]\!]
$$
 $i = 1,\ldots,n$

uniquely and recursively determined by leading-orders $s_i^{(0)} = \lambda_i(x)$ that are roots of

$$
\lambda^{n} + a_{1}\lambda^{n-1} + \ldots + a_{n} = 0 \quad \text{where} \quad a_{k}(x) := p_{k}(x, 0) \tag{\spadesuit}
$$

and therefore *n* unique *formal WKB solutions* normalised at x_0 :

$$
\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) dx\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)} \hbar^k
$$

• "Generically" := away from *turning points* := zeros of the discriminant of (♠) • $\hat{\psi}_k$ is very computable but almost always **divergent!**

Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\hat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\hat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\hat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\hat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can ψ_i be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\hat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\hat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can ψ_i be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\hat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\hat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can ψ_i be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\hat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Main Results [N] (rough statement)

I Formal WKB solutions $\widehat{\psi}_1, \ldots, \widehat{\psi}_n$ are Borel-summable away from relevant Stokes lines.

Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\hat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can ψ_i be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\hat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Main Results [N] (rough statement)

- **1** Formal WKB solutions $\hat{\psi}_1, \dots, \hat{\psi}_n$ are Borel-summable away from relevant Stokes lines.
- **2** Their Borel resummations ψ_1, \ldots, ψ_n are uniquely determined by an asymptotic condition, and therefore have an invariant geometric meaning for a differential operator P on a line bundle $\mathcal L$ over (X, D) .

Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\hat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can ψ_i be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\hat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Main Results [N] (rough statement)

- **1** Formal WKB solutions $\hat{\psi}_1, \dots, \hat{\psi}_n$ are Borel-summable away from relevant Stokes lines.
- **2** Their Borel resummations ψ_1, \ldots, ψ_n are uniquely determined by an asymptotic condition, and therefore have an invariant geometric meaning for a differential operator P on a line bundle $\mathcal L$ over (X, D) .
- 3 Geometrically, the WKB method is a method to search for an invariant splitting of an oper structure on (\mathcal{E}, ∇) , so exact WKB solutions make sense for connections.

• *WKB trajectory of type ij* emanating from x_0 is locally given by

$$
\Gamma_{ij}(x_0) : \operatorname{Im} \left(\int_{x_0}^x (\lambda_i - \lambda_j) dx \right) = 0 \quad \text{and} \quad \operatorname{Re} \left(\int_{x_0}^x (\lambda_i - \lambda_j) dx \right) \ge 0
$$

• *WKB trajectory of type ij* emanating from x_0 is locally given by

$$
\Gamma_{ij}(x_0) : \operatorname{Im} \left(\int_{x_0}^x (\lambda_i - \lambda_j) dx \right) = 0 \quad \text{and} \quad \operatorname{Re} \left(\int_{x_0}^x (\lambda_i - \lambda_j) dx \right) \ge 0
$$
\nNatural flow time parameter:

\n
$$
t(x) := \int_{x_0}^{x(t)} (\lambda_i - \lambda_j) dx
$$
\nLet

\n
$$
t
$$
\n

• *WKB trajectory of type ij* emanating from x_0 is locally given by

$$
\Gamma_{ij}(x_0) : \operatorname{Im} \left(\int_{x_0}^x (\lambda_i - \lambda_j) dx \right) = 0 \quad \text{and} \quad \operatorname{Re} \left(\int_{x_0}^x (\lambda_i - \lambda_j) dx \right) \ge 0
$$
\nNatural flow time parameter:

\n
$$
t(x) := \int_{x_0}^{x(t)} (\lambda_i - \lambda_j) dx
$$
\nLet

\n
$$
t
$$
\n

- $\Gamma_{ij}(x_0)$ is *nonsingular* if it is infinitely long and encounters no turning points
- $\Gamma_{ij}(x_0)$ is *singular* if it flows into a turning point

- A *Stokes line of type ij* on X is a maximal singular WKB trajectory of type ij
- *Stokes 'graph'* or *network* := collection of all Stokes lines on X

- A *Stokes line of type ij* on X is a maximal singular WKB trajectory of type ij
- *Stokes 'graph'* or *network* := collection of all Stokes lines on X

- A *Stokes line of type ij* on X is a maximal singular WKB trajectory of type ij
- *Stokes 'graph'* or *network* := collection of all Stokes lines on X

• WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i - \lambda_j) dx$

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$ (\spadesuit) is a *spectral curve*:

equipped with canonical differential $\lambda \in \mathsf{H}^0_{\boldsymbol{\Sigma}}(\Omega^1_{\boldsymbol{\Sigma}, \tilde{\mathsf{D}}})$

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$ (\spadesuit) is a *spectral curve*:

• λ_i dx is the local expression for λ on sheet i of Σ

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$ (\spadesuit) is a *spectral curve*:

- λ_i dx is the local expression for λ on sheet i of Σ
- **Lemma:** $(\lambda_i \lambda_j) dx$ are local expressions for *adjoint canonical differential* ad λ on

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$ (\spadesuit) is a *spectral curve*:

- λ_i dx is the local expression for λ on sheet i of Σ
- **Lemma:** $(\lambda_i \lambda_j) dx$ are local expressions for *adjoint canonical differential* ad λ on

$$
\begin{array}{|c|c|c|}\n\hline\n\text{adjoint} & \text{ad } \Sigma := \Sigma \times \Sigma \xrightarrow{\pi_2} \Sigma \\
\downarrow^{\text{w}} & \text{d} \Sigma \xrightarrow{\pi_1} \text{d} \Sigma \xrightarrow{\pi_2} \text{d} \Sigma\n\end{array}\n\quad\n\begin{array}{|c|c|c|}\n\hline\n\text{adjoint} & \text{adjoint} \\
\downarrow^{\text{w}} & \text{d} \lambda := \pi_1^* \lambda - \pi_2^* \lambda\n\end{array}\n\quad\n\begin{array}{|c|c|c|}\n\hline\n\text{adjoint} & \text{adjoint} \\
\downarrow^{\text{curve}} & \text{curve} \\
\hline\n\end{array}
$$

- *turning points* := ramification locus of $ad \pi : ad \Sigma \longrightarrow X$
- *WKB trajectories* := leaves of \mathbb{R}_+ -foliation of ad λ on ad Σ
- *Stokes lines* := maximal singular WKB trajectories on ad Σ
- *Stokes graph* := collection of all Stokes lines on ad Σ

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$ (\spadesuit) is a *spectral curve*:

- λ_i dx is the local expression for λ on sheet i of Σ
- **Lemma:** $(\lambda_i \lambda_j) dx$ are local expressions for *adjoint canonical differential* ad λ on

$$
\begin{array}{|c|c|c|}\n\hline\n\text{adjoint} & \text{ad } \Sigma := \Sigma \times \Sigma \xrightarrow{\pi_2} \Sigma \\
\downarrow^{\text{w}} & \text{d} \Sigma \xrightarrow{\pi_1} \text{d} \Sigma \xrightarrow{\pi_2} \text{d} \Sigma\n\end{array}\n\quad\n\begin{array}{|c|c|c|}\n\hline\n\text{adjoint} & \text{adjoint} \\
\downarrow^{\text{w}} & \text{d} \lambda := \pi_1^* \lambda - \pi_2^* \lambda\n\end{array}\n\quad\n\begin{array}{|c|c|c|}\n\hline\n\text{adjoint} & \text{adjoint} \\
\downarrow^{\text{curve}} & \text{curve} \\
\hline\n\end{array}
$$

- *turning points* := ramification locus of $ad \pi : ad \Sigma \longrightarrow X$
- *WKB trajectories* := leaves of \mathbb{R}_+ -foliation of ad λ on ad Σ
- *Stokes lines* := maximal singular WKB trajectories on ad Σ
- *Stokes graph* := collection of all Stokes lines on ad Σ
- Stokes network on X is the projection of the Stokes graph under ad π : ad $\Sigma \longrightarrow X$

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Fix $x_0 \in X$ *ordinary point* := neither a turning point nor a pole

Definition $(n = 2)$

The *WKB flow of* x_0 *of type i is nonsingular* if the WKB trajectory $\Gamma_{ij}(x_0)$ is nonsingular.

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Fix $x_0 \in X$ *ordinary point* := neither a turning point nor a pole

Definition $(n = 2)$

The *WKB flow of* x_0 *of type i is nonsingular* if the WKB trajectory $\Gamma_{ij}(x_0)$ is nonsingular.

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Definition ($n \geqslant 3$)

The *WKB flow of* x_0 *of type i is nonsingular* if

• each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \ldots, \Gamma_{in}(x_0)$ is nonsingular
Definition ($n \ge 3$)

The *WKB flow of* x_0 *of type i is nonsingular* if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \ldots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{ik}(x_1)$ encounters no turning points

Definition ($n \ge 3$)

The *WKB flow of* x_0 *of type i is nonsingular* if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \ldots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{ik}(x_1)$ encounters no turning points
- Repeat for $\Gamma_{ki}(x_1)$

Definition ($n \ge 3$)

The *WKB flow of* x_0 *of type i is nonsingular* if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \ldots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{ik}(x_1)$ encounters no turning points
- Repeat for $\Gamma_{ki}(x_1)$
- This process terminates at a finite number of iterations

Definition ($n \ge 3$)

The *WKB flow of* x_0 *of type i is nonsingular* if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \ldots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{ik}(x_1)$ encounters no turning points
- Repeat for $\Gamma_{ki}(x_1)$
- This process terminates at a finite number of iterations

• **Complete Stokes network** := locus of all points on X with singular WKB flow

Example (BNR): $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$

Example (BNR): $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in \mathsf{X}$ ordinary point and λ_i leading-order characteristic root near x_0 .

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in \mathsf{X}$ ordinary point and λ_i leading-order characteristic root near x_0 . Assume that the WKB flow of x_0 of type *i* is nonsingular.

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in \mathsf{X}$ ordinary point and λ_i leading-order characteristic root near x_0 . Assume that the WKB flow of x_0 of type *i* is nonsingular. Then the formal WKB solution

$$
\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \,dx\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k
$$

is uniformly Borel summable near x_0 :

$$
\psi_i(x,\hbar) := \mathcal{S}\big[\widehat{\psi}_i\big](x,\hbar) = e^{\int_{x_0}^x \lambda_i/\hbar} \mathcal{S}\left(\sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k\right)
$$

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in \mathsf{X}$ ordinary point and λ_i leading-order characteristic root near x_0 . Assume that the WKB flow of x_0 of type *i* is nonsingular. Then the formal WKB solution

$$
\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) dx\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)}(x) \hbar^k
$$

is uniformly Borel summable near x_0 :

$$
\psi_i(x,\hbar) := \mathcal{S}\big[\widehat{\psi}_i\big](x,\hbar) = e^{\int_{x_0}^x \lambda_i/\hbar} \mathcal{S}\left(\sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k\right)
$$

In fact, ψ_i is the unique solution for x near x_0 which satisfies

 $\psi_i(x_0, \hbar) = 1$ and $\psi_i(x, \hbar) \simeq \hat{\psi}_i(x, \hbar)$ as $\hbar \to 0$ with $\text{Re}(\hbar) > 0$ uniformly in x and $arg(\hbar)$.

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in \mathsf{X}$ ordinary point and λ_i leading-order characteristic root near x_0 . Assume that the WKB flow of x_0 of type *i* is nonsingular. Then the formal WKB solution

$$
\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) dx\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)}(x) \hbar^k
$$

is uniformly Borel summable near x_0 :

$$
\psi_i(x,\hbar) := \mathcal{S}\big[\widehat{\psi}_i\big](x,\hbar) = e^{\int_{x_0}^x \lambda_i/\hbar} \mathcal{S}\left(\sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k\right)
$$

In fact, ψ_i is the unique solution for x near x_0 which satisfies

 $\psi_i(x_0, \hbar) = 1$ and $\psi_i(x, \hbar) \simeq \hat{\psi}_i(x, \hbar)$ as $\hbar \to 0$ with $\text{Re}(\hbar) > 0$

uniformly in x and $arg(h)$.

Corollary

Uniqueness yields a notion of *exact WKB flat sections* of $\mathcal L$ for P on (X, D) .

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Lemma

The Borel transform of \hat{s}_i *is uniformly convergent near* x_0 *:*

$$
\widehat{\sigma}_{\bm i}(x,\bm \xi) \mathrel{\mathop:}= \mathfrak{B}\big[\widehat{s}_i\big] = \mathfrak{B}\bigg[\lambda_i + \sum_{k=1}^\infty s_i^{(k)}(x)\hbar^k\bigg] = \sum_{k=0}^\infty \tfrac{1}{k!} s_i^{(k+1)}(x) \xi^k \in \mathcal{O}_{\mathsf{X},x_0}\{\xi\}
$$

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Lemma

The Borel transform of \hat{s}_i *is uniformly convergent near* x_0 *:*

$$
\widehat{\sigma}_{\bm i}(x,\bm \xi) \mathrel{\mathop:}= \mathfrak{B}\big[\widehat{s}_i\big] = \mathfrak{B}\bigg[\lambda_i + \sum_{k=1}^\infty s_i^{(k)}(x)\hbar^k\bigg] = \sum_{k=0}^\infty \tfrac{1}{k!} s_i^{(k+1)}(x) \xi^k \in \mathcal{O}_{\mathsf{X},x_0}\{\xi\}
$$

Goal

Construct the analytic continuation σ_i of $\hat{\sigma}_i$ for all $\xi \in \mathbb{R}_+$ and define

$$
s_i(x,\hbar) := \lambda_i + \mathfrak{L}[\sigma_i] = \lambda_i(x) + \int_0^{+\infty} e^{-\xi/\hbar} \sigma_i(x,\xi) d\xi
$$

$$
\psi_i(x,\hbar) := \exp\left(\frac{1}{\hbar} \int_{x_0}^x s_i(x',\hbar) dx'\right)
$$

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Lemma

The Borel transform of \hat{s}_i *is uniformly convergent near* x_0 *:*

$$
\widehat{\sigma}_{\bm i}(x,\bm \xi) \mathrel{\mathop:}= \mathfrak{B}\big[\widehat{s}_i\big] = \mathfrak{B}\bigg[\lambda_i + \sum_{k=1}^\infty s_i^{(k)}(x)\hbar^k\bigg] = \sum_{k=0}^\infty \tfrac{1}{k!} s_i^{(k+1)}(x) \xi^k \in \mathcal{O}_{\mathsf{X},x_0}\{\xi\}
$$

Goal

Construct the analytic continuation σ_i of $\hat{\sigma}_i$ for all $\xi \in \mathbb{R}_+$ and define

$$
s_i(x,\hbar) := \lambda_i + \mathfrak{L}[\sigma_i] = \lambda_i(x) + \int_0^{+\infty} e^{-\xi/\hbar} \sigma_i(x,\xi) d\xi
$$

$$
\psi_i(x,\hbar) := \exp\left(\frac{1}{\hbar} \int_{x_0}^x s_i(x',\hbar) dx'\right)
$$

Recall: uniform summability \implies $\mathcal{S} \left[\exp \left(\frac{1}{\hbar} \right) \right]$ \int_0^x $\begin{pmatrix} x \ \widehat{s} \, \mathrm{d}x / \hbar \end{pmatrix} = \exp \left(\frac{1}{\hbar} \right)$ \int_0^x x_0 $\mathcal{S}\big[\widehat{s}\big] \, \mathrm{d} x \bigg)$

To construct the analytic continuation σ_i , argue as follows.

To construct the analytic continuation σ_i , argue as follows. **1** Simplify by linearising the Riccati equation around λ_i :

Let $s = \lambda_i + S$ \implies $\hbar \partial_x S + (\lambda_i - \lambda_j)S = \hbar A_0 + \hbar A_1 S - S^2$

To construct the analytic continuation σ_i , argue as follows. **1** Simplify by linearising the Riccati equation around λ_i :

Let
$$
s = \lambda_i + S
$$
 \implies $\hbar \partial_x S + (\lambda_i - \lambda_j) S = \hbar A_0 + \hbar A_1 S - S^2$

2 Apply the Borel transform:

Let $\sigma = \mathfrak{B}[S] \quad \implies \quad \partial_x \sigma + (\lambda_i - \lambda_j) \partial_{\xi} \sigma = \alpha_0 + a_1 \sigma + \alpha_1 * \sigma - \partial_{\xi} \sigma^{*2}$

To construct the analytic continuation σ_i , argue as follows. **•** Simplify by linearising the Riccati equation around λ_i :

Let
$$
s = \lambda_i + S
$$
 \implies $\hbar \partial_x S + (\lambda_i - \lambda_j) S = \hbar A_0 + \hbar A_1 S - S^2$

2 Apply the Borel transform:

To construct the analytic continuation σ_i , argue as follows. **1** Simplify by linearising the Riccati equation around λ_i :

Let
$$
s = \lambda_i + S
$$
 \implies $\hbar \partial_x S + (\lambda_i - \lambda_j) S = \hbar A_0 + \hbar A_1 S - S^2$

2 Apply the Borel transform:

Let
$$
\sigma = \mathfrak{B}[S] \implies \partial_x \sigma + (\lambda_i - \lambda_j)\partial_{\xi}\sigma = \alpha_0 + a_1\sigma + \alpha_1 * \sigma - \partial_{\xi}\sigma^{*2}
$$

\nB Rewrite as an integral equation:
\n
$$
\sigma(x,\xi) = a_0 - \int_0^{\xi} (\text{righthand side}) \begin{vmatrix} x_0 \\ x_1 \\ x_2 \end{vmatrix} dx \text{ where } t = \int_{x_0}^{x(t)} \lambda_{ij} dx
$$

4 Construct σ_i using the method of successive approximations: define $\{\tau_k(x,\xi)\}$ by

$$
\tau_0 := a_0 , \qquad \tau_1 := - \int_0^{\xi} \left(\alpha_0 + a_1 \tau_0 \right) dt , \qquad \tau_2 := - \int_0^{\xi} \left(a_1 \tau_1 + \alpha_1 * \tau_0 \right) dt , \qquad \cdots
$$

To construct the analytic continuation σ_i , argue as follows. **1** Simplify by linearising the Riccati equation around λ_i :

Let
$$
s = \lambda_i + S
$$
 \implies $\hbar \partial_x S + (\lambda_i - \lambda_j) S = \hbar A_0 + \hbar A_1 S - S^2$

2 Apply the Borel transform:

Let
$$
\sigma = \mathfrak{B}[S] \implies \partial_x \sigma + (\lambda_i - \lambda_j)\partial_{\xi}\sigma = \alpha_0 + a_1\sigma + \alpha_1 * \sigma - \partial_{\xi}\sigma^{*2}
$$

\nB Rewrite as an integral equation:
\n
$$
\sigma(x,\xi) = a_0 - \int_0^{\xi} (\text{righthand side}) \begin{vmatrix} x_0 \\ x_1 \\ x_2 \end{vmatrix} dx \text{ where } t = \int_{x_0}^{x(t)} \lambda_{ij} dx
$$

4 Construct σ_i using the method of successive approximations: define $\{\tau_k(x,\xi)\}$ by

$$
\tau_0 := a_0 , \qquad \tau_1 := - \int_0^{\xi} \left(\alpha_0 + a_1 \tau_0 \right) dt , \qquad \tau_2 := - \int_0^{\xi} \left(a_1 \tau_1 + \alpha_1 * \tau_0 \right) dt , \qquad \cdots
$$

5 Lemma: $\sigma_i(x,\xi) \coloneqq \sum^\infty$ $_{k=0}$ $\tau_k(x,\xi)$ is uniformly convergent for all $\xi \in \mathbb{R}_+$, of exponential type, and $\widehat{\sigma}_i$ is its Taylor series at $\xi = 0$

§3.2. Proof Outline $(n \ge 3)$ | skip!

Focus on the equation $(\hbar \partial_x)^{n-1} s + s^n + \ldots = 0$ (♦) and argue as follows. **1** Rewrite as a nonlinear system: put $y_1 = s$, $y_2 = \hbar \partial_x y$, ..., and consider

$$
\hbar\partial_xy=F(x,\hbar,y\,)
$$

Example (BNR): $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$ \rightarrow $\hbar^2 \partial_x^2 s + 3s \hbar \partial_x s + s^3 + 3s + 2ix = 0$ \rightarrow $\hbar \partial_x \left[\begin{matrix} y_1 \\ y_2 \end{matrix} \right]$ y_2 $\left]$ = $F(x, y) = -\left[\begin{matrix} y_1^2 - y_2 \\ y_1y_2 + 3y_1 + 2ix \end{matrix}\right]$ \rightsquigarrow leading-order solution $y_i^{(0)} = \begin{bmatrix} \lambda_i \\ \lambda_i^2 \end{bmatrix}$ λ_i^2 1 → leading-order Jacobian at $y_i^{(0)}$ is $J_i = -\frac{\partial F}{\partial y_i}$ ∂y $\bigg|_{y=y_i^{(0)}} = \begin{bmatrix} 2\lambda_i & -1 \\ \lambda_i^2 + 3 & \lambda_i \end{bmatrix}$ i $\lambda_i^2 + 3 \lambda_i$ 1 \rightarrow J_i is diagonalisable to $\Lambda_i := \begin{bmatrix} \lambda_i - \lambda_j \end{bmatrix}$ $\lambda_i - \lambda_k$ 1

 $\boldsymbol{2}$ Linearise around the leading-order solution $y_i^{(0)}$ and apply a gauge transformation G to diagonalise the Jacobian J_i :

Let
$$
y = y_i^{(0)} + GS \implies \hbar \partial_x S + \Lambda_i S = \hbar A_0 + \hbar A_1 S + \dots
$$

at least quadratic
in \hbar or S

§3.2. Proof Outline $(n \ge 3)$ | skip!

3 Apply the Borel transform:

Let
$$
\sigma = \mathfrak{B}[S] \implies \partial_x \sigma + \Lambda_i \partial_{\xi} \sigma = \alpha_0 + a_1 \sigma + \alpha_1 * \sigma + \cdots
$$

 \bullet Rewrite as a system of integral equations: $j = 1, \ldots, n - 1$

$$
\sigma^{j}(x,\xi) = a_0^{j} - \int_0^{\xi} \text{(righthand side)} \Big|_{\substack{(x^{j}(t), \xi - t) \text{ if } t \in \mathbb{R}^3 \\ \text{with } t \neq 0}} \text{ where } t = \int_{x_0}^{x^{j}(t)} \lambda_{ij} \, dx
$$

G Construct σ_i using the method of successive approximations: define $\{\tau_k(x,\xi)\}$ by

$$
\tau_0 := a_0 , \qquad \tau_1 := - \int_0^{\xi} \left(\alpha_0 + a_1 \tau_0 \right) dt , \qquad \tau_2 := - \int_0^{\xi} \left(a_1 \tau_1 + \alpha_1 * \tau_0 \right) dt , \qquad \cdots
$$

6 Lemma 1: $\sigma_i(x,\xi) := \sum^{\infty}$ $\sum\limits_{k=0} \tau_k(x,\xi)$ is uniformly convergent near $\xi = 0$, and $\widehat{\sigma}_i$ is its Taylor series at $\xi = 0$

§3.2. Proof Outline $(n \ge 3)$ | skip!

6 To analytically continue σ to all $\xi \in \mathbb{R}_+$, carefully examine cross-terms starting in τ_2 :

7 **Lemma 2**: thanks to the assumption that the (complete) WKB flow is nonsingular, $\sigma(x,\xi)$ admits analytic continuation to $\xi \in \mathbb{R}_+$ of exponential type

The Geometric WKB Problem

The Geometric WKB Problem

0 GIVEN: $({\mathcal E}, \nabla)$ an oper: $0 \longrightarrow {\mathcal E}' \longrightarrow {\mathcal E} \longrightarrow {\mathcal E}'' \longrightarrow 0$

The Geometric WKB Problem

0 GIVEN: $({\mathcal E}, \nabla)$ an oper: $0 \longrightarrow {\mathcal E}' \longrightarrow {\mathcal E} \longrightarrow {\mathcal E}'' \longrightarrow 0$ FIND: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}.$

The Geometric WKB Problem

0 GIVEN: $({\mathcal E}, \nabla)$ an oper: $0 \longrightarrow {\mathcal E}' \longrightarrow {\mathcal E} \longrightarrow {\mathcal E}'' \longrightarrow 0$ FIND: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}.$

The Geometric WKB Method

- \bullet Fix a reference pair (W_0, ∇_0) where
	- $W_0: \mathcal{E}'' \to \mathcal{E}$ any **reference splitting**, so $\mathcal{E} \longrightarrow \mathcal{E}' \oplus \mathcal{E}''$;
	- $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.

The Geometric WKB Problem

0 GIVEN: $({\mathcal E}, \nabla)$ an oper: $0 \longrightarrow {\mathcal E}' \longrightarrow {\mathcal E} \longrightarrow {\mathcal E}'' \longrightarrow 0$ FIND: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}.$

The Geometric WKB Method

- \bullet Fix a reference pair (W_0, ∇_0) where
	- $W_0: \mathcal{E}'' \to \mathcal{E}$ any **reference splitting**, so $\mathcal{E} \longrightarrow \mathcal{E}' \oplus \mathcal{E}''$;
	- $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- $\bm{2}$ Write $W:\mathcal{E}''\to\mathcal{E}'\oplus\mathcal{E}''$ as $S\oplus\mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$
\begin{bmatrix} \mathrm{id} & w \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' \longrightarrow \mathcal{E}' \\ \oplus \\ \mathcal{E}'' \longrightarrow \mathcal{E}'' \end{array}
$$

The Geometric WKB Problem

0 GIVEN: $({\mathcal E}, \nabla)$ an oper: $0 \longrightarrow {\mathcal E}' \longrightarrow {\mathcal E} \longrightarrow {\mathcal E}'' \longrightarrow 0$ FIND: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}.$

The Geometric WKB Method

- \bullet Fix a reference pair (W_0, ∇_0) where
	- $W_0: \mathcal{E}'' \to \mathcal{E}$ any **reference splitting**, so $\mathcal{E} \longrightarrow \mathcal{E}' \oplus \mathcal{E}''$;
	- $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- $\bm{2}$ Write $W:\mathcal{E}''\to\mathcal{E}'\oplus\mathcal{E}''$ as $S\oplus\mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$
\begin{bmatrix} \mathrm{id} & w \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' & \overline{\mathcal{E}'} \\ \mathcal{E}'' & \overline{\mathcal{E}''} \end{array}
$$

3 Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

The Geometric WKB Problem

0 GIVEN: $({\mathcal E}, \nabla)$ an oper: $0 \longrightarrow {\mathcal E}' \longrightarrow {\mathcal E} \longrightarrow {\mathcal E}'' \longrightarrow 0$ FIND: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}.$

The Geometric WKB Method

- \bullet Fix a reference pair (W_0, ∇_0) where
	- $W_0: \mathcal{E}'' \to \mathcal{E}$ any **reference splitting**, so $\mathcal{E} \longrightarrow \mathcal{E}' \oplus \mathcal{E}''$;
	- $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- $\bm{2}$ Write $W:\mathcal{E}''\to\mathcal{E}'\oplus\mathcal{E}''$ as $S\oplus\mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$
\begin{bmatrix} \mathrm{id} & w \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' \longrightarrow \mathcal{E}' \\ \oplus \\ \mathcal{E}'' \longrightarrow \mathcal{E}'' \end{array}
$$

3 Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

⁴ Then W is a ∇-invariant splitting ⇔ S satisfies the **geometric Riccati equation**:

$$
ad_{\nabla_0} S - \phi_{11} S + S\phi_{21} S - \phi_{12} + S\phi_{22} = 0
$$

Its exact solutions yield *exact WKB flat sections* for (\mathcal{E}, ∇)

The Geometric WKB Problem

0 GIVEN: $({\mathcal E}, \nabla)$ an oper: $0 \longrightarrow {\mathcal E}' \longrightarrow {\mathcal E} \longrightarrow {\mathcal E}'' \longrightarrow 0$ FIND: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}.$

The Geometric WKB Method

- \bullet Fix a reference pair (W_0, ∇_0) where
	- $W_0: \mathcal{E}'' \to \mathcal{E}$ any **reference splitting**, so $\mathcal{E} \longrightarrow \mathcal{E}' \oplus \mathcal{E}''$;
	- $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- $\bm{2}$ Write $W:\mathcal{E}''\to\mathcal{E}'\oplus\mathcal{E}''$ as $S\oplus\mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$
\begin{bmatrix} \mathrm{id} & w \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' \longrightarrow \mathcal{E}' \\ \oplus \\ \mathcal{E}'' \longrightarrow \mathcal{E}'' \end{array}
$$

3 Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

⁴ Then W is a ∇-invariant splitting ⇔ S satisfies the **geometric Riccati equation**:

$$
ad_{\nabla_0} S - \phi_{11} S + S\phi_{21} S - \phi_{12} + S\phi_{22} = 0
$$

Its exact solutions yield *exact WKB flat sections* for (\mathcal{E}, ∇)

Remark: \Longrightarrow $S \in \mathcal{E}xt^1_X(\mathcal{E}'', \mathcal{E}') \Longrightarrow$ cohomological WKB method?

Traditional Point of View:

 $\int \hbar^2 \partial_x^2 \psi + q \psi = 0$ $\mathbf{D} \psi = \exp\left(\int s \, dx / \hbar\right)$ 2 $\hbar \partial_x s + s^2 + q = 0$

Geometric Point of View:

- **O** GIVEN: (\mathcal{E}, ∇) oper: $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ FIND: ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$
- **1** Fix reference pair (W_0, ∇_0)

2 Search for
$$
\begin{bmatrix} \text{id} & W \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' \implies \mathcal{E}' \\ \oplus \mathcal{E}'' \implies \mathcal{E}'' \end{array}
$$

\n**3** Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

\n**4** $\text{ad}_{\nabla_0} S - \phi_{11} S + S \phi_{21} S - \phi_{12} + S \phi_{22} = 0$

Traditional Point of View:

 $\int \hbar^2 \partial_x^2 \psi + q \psi = 0$ $\mathbf{D} \psi = \exp\left(\int s \, dx / \hbar\right)$ 2 $\hbar \partial_x s + s^2 + q = 0$

Geometric Point of View:

- **O** GIVEN: (\mathcal{E}, ∇) oper: $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ FIND: ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$
- **1** Fix reference pair (W_0, ∇_0)

2 Search for
$$
\begin{bmatrix} \text{id} & W \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' \implies \mathcal{E}' \\ \oplus \mathcal{E}'' \implies \mathcal{E}'' \end{array}
$$

\n**3** Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

\n**4** ad $\nabla_0 S - \phi_{11} S + S \phi_{21} S - \phi_{12} + S \phi_{22} = 0$

• Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathbf{X}}^{-1/2}$ X

Traditional Point of View:

 $\int \hbar^2 \partial_x^2 \psi + q \psi = 0$ $\mathbf{D} \psi = \exp\left(\int s \, dx / \hbar\right)$ 2 $\hbar \partial_x s + s^2 + q = 0$

Geometric Point of View:

- **O** GIVEN: (\mathcal{E}, ∇) oper: $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ FIND: ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$
- **1** Fix reference pair (W_0, ∇_0)

Q Search for
$$
\begin{bmatrix} \text{id} & W \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' \implies \mathcal{E}' \\ \oplus \\ \mathcal{E}'' \implies \mathcal{E}'' \end{array}
$$

\n**Q** Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

\n**Q** $\text{ad}_{\nabla_0} S - \phi_{11} S + S \phi_{21} S - \phi_{12} + S \phi_{22} = 0$

- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathbf{X}}^{-1/2}$ X
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$

Traditional Point of View:

 $\int \hbar^2 \partial_x^2 \psi + q \psi = 0$ $\mathbf{D} \psi = \exp\left(\int s \, dx / \hbar\right)$ 2 $\hbar \partial_x s + s^2 + q = 0$

Geometric Point of View:

- **O** GIVEN: (\mathcal{E}, ∇) oper: $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ FIND: ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$
- **1** Fix reference pair (W_0, ∇_0)

Q Search for
$$
\begin{bmatrix} \text{id} & W \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' \implies \mathcal{E}' \\ \mathcal{E}'' \implies \mathcal{E}'' \end{array}
$$

\n**Q** Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

\n**Q** $\text{ad}_{\nabla_0} S - \phi_{11} S + S \phi_{21} S - \phi_{12} + S \phi_{22} = 0$

- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathbf{X}}^{-1/2}$ X
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
§4. The WKB Method: Invariant Formulation

Traditional Point of View:

 $\int \hbar^2 \partial_x^2 \psi + q \psi = 0$ $\mathbf{D} \psi = \exp\left(\int s \, dx / \hbar\right)$ 2 $\hbar \partial_x s + s^2 + q = 0$

Geometric Point of View:

- **O** GIVEN: (\mathcal{E}, ∇) oper: $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ FIND: ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$
- **1** Fix reference pair (W_0, ∇_0)

Q Search for
$$
\begin{bmatrix} \text{id} & W \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix} : \begin{array}{ccc} \mathcal{E}' & \longrightarrow & \mathcal{E}' \\ \mathcal{E}'' & \longrightarrow & \mathcal{E}'' \end{array}
$$

\n**Q** Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

\n**Q** $\text{ad}_{\nabla_0} S - \phi_{11} S + S \phi_{21} S - \phi_{12} + S \phi_{22} = 0$

- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathbf{X}}^{-1/2}$ X
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
- Reference splitting W_0 is given by choice of coordinate x because

$$
\mathcal{E} \xrightarrow[x]{} \left\langle dx \otimes dx^{-1/2} \right\rangle \oplus \left\langle dx^{-1/2} \right\rangle = \mathcal{E}' \oplus \mathcal{E}'' \qquad \text{and} \qquad S = s(x, \hbar) dx
$$

§4. The WKB Method: Invariant Formulation

Traditional Point of View:

 $\int \hbar^2 \partial_x^2 \psi + q \psi = 0$ $\mathbf{D} \psi = \exp\left(\int s \, dx / \hbar\right)$ 2 $\hbar \partial_x s + s^2 + q = 0$

Geometric Point of View:

- **O** GIVEN: (\mathcal{E}, ∇) oper: $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ FIND: ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$
- **1** Fix reference pair (W_0, ∇_0)

Q Search for
$$
\begin{bmatrix} \text{id} & W \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' \implies \mathcal{E}' \\ \mathcal{E}'' \implies \mathcal{E}'' \end{array}
$$

\n**Q** Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

\n**Q** $\text{ad}_{\nabla_0} S - \phi_{11} S + S \phi_{21} S - \phi_{12} + S \phi_{22} = 0$

- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathbf{X}}^{-1/2}$ X
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
- Reference splitting W_0 is given by choice of coordinate x because

$$
\mathcal{E} \xrightarrow[x]{} \langle dx \otimes dx^{-1/2} \rangle \oplus \langle dx^{-1/2} \rangle = \mathcal{E}' \oplus \mathcal{E}''
$$
 and $S = s(x, \hbar) dx$

• Reference connection $\nabla_0 = \hbar \mathrm{d}$, then $\nabla \equiv \hbar \mathrm{d} - \begin{bmatrix} 0 & -q \\ 1 & 0 \end{bmatrix} \mathrm{d}x = \nabla_0 - \phi$

§4. The WKB Method: Invariant Formulation

Traditional Point of View:

 $\int \hbar^2 \partial_x^2 \psi + q \psi = 0$ $\mathbf{D} \psi = \exp\left(\int s \, dx / \hbar\right)$ 2 $\hbar \partial_x s + s^2 + q = 0$

Geometric Point of View:

- **O** GIVEN: (\mathcal{E}, ∇) oper: $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ FIND: ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$
- **1** Fix reference pair (W_0, ∇_0)

Q Search for
$$
\begin{bmatrix} \text{id} & W \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' \implies \mathcal{E}' \\ \mathcal{E}'' \implies \mathcal{E}'' \end{array}
$$

\n**Q** Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

\n**Q** $\text{ad}_{\nabla_0} S - \phi_{11} S + S \phi_{21} S - \phi_{12} + S \phi_{22} = 0$

- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathbf{X}}^{-1/2}$ X
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
- Reference splitting W_0 is given by choice of coordinate x because

$$
\mathcal{E} \xrightarrow[x]{} \left\langle dx \otimes dx^{-1/2} \right\rangle \oplus \left\langle dx^{-1/2} \right\rangle = \mathcal{E}' \oplus \mathcal{E}'' \quad \text{and} \quad S = s(x, \hbar) dx
$$

• Reference connection $\nabla_0 = \hbar \mathrm{d}$, then $\nabla \equiv \hbar \mathrm{d} - \begin{bmatrix} 0 & -q \\ 1 & 0 \end{bmatrix} \mathrm{d}x = \nabla_0 - \phi$

• Riccati equation: $\hbar \partial_x s + s^2 + q = 0$

11 Thank you for your attention! 11