

LEVERHULME TRUST

Exact WKB Solutions: Their Borel Summability and Relationship to Abelianisation of *ħ*-Connections

Nikita Nikolaev

School of Mathematics University of Birmingham

30 January 2023 Workshop on Quantization and Resurgence SwissMAP Research Station Les Diablerets, Switzerland

$\S 0.$ Setting

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar\partial_x)^n\psi + p_1(\hbar\partial_x)^{n-1}\psi + \ldots = \left(\sum_{k=0}^n p_{n-k}\hbar^k\partial_x^k\right)\psi(x,\hbar) = 0 \qquad (\bigstar)$$

where $p_k(x,\hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(\mathsf{D})[\hbar]$

$\S 0.$ Setting

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar\partial_x)^n\psi + p_1(\hbar\partial_x)^{n-1}\psi + \ldots = \left(\sum_{k=0}^n p_{n-k}\hbar^k\partial_x^k\right)\psi(x,\hbar) = 0$$
 (\bigstar)

where $p_k(x,\hbar) \in \mathcal{O}_{\mathsf{X}}[\hbar]$ or $\mathcal{O}_{\mathsf{X}}(\mathsf{D})[\hbar]$

• Examples: (1) $(\hbar^2 \partial_x^2 + q(x, \hbar))\psi = 0$ (2) $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$ Schrödinger equation Berk-Nevins-Roberts equation

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar\partial_x)^n\psi + p_1(\hbar\partial_x)^{n-1}\psi + \ldots = \left(\sum_{k=0}^n p_{n-k}\hbar^k\partial_x^k\right)\psi(x,\hbar) = 0$$
 (\bigstar)

where $p_k(x, \hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

• Examples: (1) $(\hbar^2 \partial_x^2 + q(x, \hbar))\psi = 0$ (2) $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$ Berk-Nevins-Roberts equation

Schrödinger equation

More generally: ħ-differential operator on a line bundle L over a curve (X, D):

 $P: \mathcal{L} \to \mathcal{L} \otimes \operatorname{Sym}^n \Omega^1_{X, \mathbb{D}}[\hbar]$ such that $P|_{\hbar=0}(fe) = fP|_{\hbar=0}(e)$

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar\partial_x)^n\psi + p_1(\hbar\partial_x)^{n-1}\psi + \ldots = \left(\sum_{k=0}^n p_{n-k}\hbar^k\partial_x^k\right)\psi(x,\hbar) = 0$$
 (\bigstar)

where $p_k(x,\hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(\mathsf{D})[\hbar]$

• Examples: (1) $(\hbar^2 \partial_x^2 + q(x, \hbar))\psi = 0$ (2) $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$ Berk-Nevins-Roberts equation

Schrödinger equation

• More generally: \hbar -differential operator on a line bundle \mathcal{L} over a curve (X, D): $P: \mathcal{L} \to \mathcal{L} \otimes \operatorname{Sym}^n \Omega^1_{X, \mathbb{D}}[\hbar]$ such that $P|_{\hbar=0}(fe) = fP|_{\hbar=0}(e)$

Even more generally: \hbar -connection on a vector bundle \mathcal{E} over a curve (X, D):

 $\nabla: \mathcal{E} \to \mathcal{E} \otimes \Omega^1_{\mathsf{X} \mathsf{D}}[\hbar]$ such that $\nabla(fe) = f \nabla e + \hbar \, \mathrm{d} f \otimes e$

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar\partial_x)^n\psi + p_1(\hbar\partial_x)^{n-1}\psi + \ldots = \left(\sum_{k=0}^n p_{n-k}\hbar^k\partial_x^k\right)\psi(x,\hbar) = 0$$
 (\bigstar)

where $p_k(x,\hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

• Examples: (1) $(\hbar^2 \partial_x^2 + q(x, \hbar))\psi = 0$ (2) $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$ Berk-Nevins-Roberts equation

Schrödinger equation

- More generally: \hbar -differential operator on a line bundle \mathcal{L} over a curve (X, D): $P: \mathcal{L} \to \mathcal{L} \otimes \operatorname{Sym}^n \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar]$ such that $P|_{\mathfrak{h}=0}(fe) = fP|_{\mathfrak{h}=0}(e)$
- Even more generally: \hbar -connection on a vector bundle \mathcal{E} over a curve (X, D): $\nabla: \mathcal{E} \to \mathcal{E} \otimes \Omega^1_{\mathbf{X} \mathbf{D}}[\hbar]$ such that $\nabla(fe) = f \nabla e + \hbar \, \mathrm{d} f \otimes e$

WKB method: solve (\bigstar) using the *WKB ansatz* $\psi(x,\hbar) = \exp\left(\frac{1}{\hbar}\int_{-\pi}^{x} s(x,\hbar) dx\right)$

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar\partial_x)^n\psi + p_1(\hbar\partial_x)^{n-1}\psi + \ldots = \left(\sum_{k=0}^n p_{n-k}\hbar^k\partial_x^k\right)\psi(x,\hbar) = 0$$
 (\bigstar)

where $p_k(x, \hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

(1) $(\hbar^2 \partial_x^2 + q(x, \hbar))\psi = 0$ Schrödinger equation (2) $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$ Berk-Nevins-Roberts equation • Examples: (1) $(\hbar^2 \partial_x^2 + q(x, \hbar))\psi = 0$

• More generally: \hbar -differential operator on a line bundle \mathcal{L} over a curve (X, D): $P: \mathcal{L} \to \mathcal{L} \otimes \operatorname{Sym}^n \Omega^1_{X, \mathbb{D}}[\hbar]$ such that $P|_{\hbar=0}(fe) = fP|_{\hbar=0}(e)$

Even more generally: \hbar -connection on a vector bundle \mathcal{E} over a curve (X, D): $\nabla: \mathcal{E} \to \mathcal{E} \otimes \Omega^1_{\mathsf{X} \mathsf{D}}[\hbar]$ such that $\nabla(fe) = f \nabla e + \hbar \, \mathrm{d} f \otimes e$

• WKB method: solve (★) using the WKB ansatz

$$\psi(x,\hbar) = \exp\left(\frac{1}{\hbar}\int_{x_0}^x s(x,\hbar)\,\mathrm{d}x\right)$$

Two Questions Addressed Today

1 When does the WKB method lead to solutions of (\bigstar) with *good* asymptotics as $\hbar \to 0$? **2** What is the WKB method for *P* and ∇ ?

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar\partial_x)^{n-1}s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar\partial_x + s)^{k-1}s = 0$ (\blacklozenge

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar\partial_x)^{n-1}s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar\partial_x + s)^{k-1}s = 0$ (\blacklozenge)

• Examples: (1) $\hbar \partial_x s + s^2 + q = 0$ // $(\hbar \partial_x + s)s + q = 0$ (2) $\hbar^2 \partial_x^2 s + 3s \hbar \partial_x s + s^3 + 3s + 2ix = 0$ // $(\hbar \partial_x + s)^2 s + 3s + 2ix = 0$

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar\partial_x)^{n-1}s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar\partial_x + s)^{k-1}s = 0$ (\blacklozenge)

• Examples: (1)
$$\hbar \partial_x s + s^2 + q = 0$$
 // $(\hbar \partial_x + s)s + q = 0$
(2) $\hbar^2 \partial_x^2 s + 3s \hbar \partial_x s + s^3 + 3s + 2ix = 0$ // $(\hbar \partial_x + s)^2 s + 3s + 2ix = 0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen generically, there are n formal solutions

$$\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}\llbracket\hbar\rrbracket \qquad i = 1,\dots,n$$

uniquely and recursively determined by leading-orders $s_i^{(0)} = \lambda_i(x)$ that are roots of

$$\lambda^n + a_1 \lambda^{n-1} + \ldots + a_n = 0 \qquad \text{where} \qquad a_k(x) := p_k(x, 0) \tag{(4)}$$

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar\partial_x)^{n-1}s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar\partial_x + s)^{k-1}s = 0$ (\blacklozenge)

• Examples: (1)
$$\hbar \partial_x s + s^2 + q = 0$$
 // $(\hbar \partial_x + s)s + q = 0$
(2) $\hbar^2 \partial_x^2 s + 3s \hbar \partial_x s + s^3 + 3s + 2ix = 0$ // $(\hbar \partial_x + s)^2 s + 3s + 2ix = 0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen generically, there are n formal solutions

$$\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}\llbracket\hbar\rrbracket \qquad i = 1,\dots,n$$

uniquely and recursively determined by leading-orders $s_i^{(0)} = \lambda_i(x)$ that are roots of

$$\lambda^n + a_1 \lambda^{n-1} + \ldots + a_n = 0 \qquad \text{where} \qquad a_k(x) := p_k(x, 0) \qquad (\bigstar)$$

and therefore n unique *formal WKB solutions* normalised at x_0 :

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \,\mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)} \hbar^k$$

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar\partial_x)^{n-1}s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar\partial_x + s)^{k-1}s = 0$ (\blacklozenge)

• Examples: (1)
$$\hbar \partial_x s + s^2 + q = 0$$
 // $(\hbar \partial_x + s)s + q = 0$
(2) $\hbar^2 \partial_x^2 s + 3s \hbar \partial_x s + s^3 + 3s + 2ix = 0$ // $(\hbar \partial_x + s)^2 s + 3s + 2ix = 0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen generically, there are n formal solutions

$$\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}\llbracket\hbar\rrbracket \qquad i = 1,\dots,n$$

uniquely and recursively determined by leading-orders $s_i^{(0)} = \lambda_i(x)$ that are roots of

$$\lambda^n + a_1 \lambda^{n-1} + \ldots + a_n = 0 \qquad \text{where} \qquad a_k(x) \coloneqq p_k(x, 0) \tag{}$$

and therefore n unique *formal WKB solutions* normalised at x_0 :

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \,\mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)} \hbar^k$$

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar\partial_x)^{n-1}s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar\partial_x + s)^{k-1}s = 0$ (\blacklozenge)

• Examples: (1)
$$\hbar \partial_x s + s^2 + q = 0$$
 // $(\hbar \partial_x + s)s + q = 0$
(2) $\hbar^2 \partial_x^2 s + 3s \hbar \partial_x s + s^3 + 3s + 2ix = 0$ // $(\hbar \partial_x + s)^2 s + 3s + 2ix = 0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen generically, there are n formal solutions

$$\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}[\![\hbar]\!] \qquad i = 1,\dots,n$$

uniquely and recursively determined by leading-orders $s_i^{(0)} = \lambda_i(x)$ that are roots of

$$\lambda^n + a_1 \lambda^{n-1} + \ldots + a_n = 0$$
 where $a_k(x) := p_k(x, 0)$ (

and therefore n unique *formal WKB solutions* normalised at x_0 :

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \,\mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)} \hbar^k$$

"Generically" := away from *turning points* := zeros of the discriminant of (♠)
\$\hat{\psi_k}\$ is very computable but almost always divergent!

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\hat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\hat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\hat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Main Results [N] (rough statement)

1 Formal WKB solutions $\widehat{\psi}_1, \ldots, \widehat{\psi}_n$ are Borel-summable away from relevant Stokes lines.

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\hat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Main Results [N] (rough statement)

- **1** Formal WKB solutions $\hat{\psi}_1, \dots, \hat{\psi}_n$ are Borel-summable away from relevant Stokes lines.
- 2 Their Borel resummations ψ₁,..., ψ_n are uniquely determined by an asymptotic condition, and therefore have an invariant geometric meaning for a differential operator P on a line bundle L over (X, D).

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can $\hat{\psi}_i$ be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\hat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Main Results [N] (rough statement)

- **1** Formal WKB solutions $\hat{\psi}_1, \ldots, \hat{\psi}_n$ are Borel-summable away from relevant Stokes lines.
- 2 Their Borel resummations ψ₁,..., ψ_n are uniquely determined by an asymptotic condition, and therefore have an invariant geometric meaning for a differential operator P on a line bundle L over (X, D).
- Geometrically, the WKB method is a method to search for an invariant splitting of an oper structure on (*E*, ∇), so exact WKB solutions make sense for connections.

§2.1. WKB Trajectories and Stokes Lines

• *WKB trajectory of type ij* emanating from x_0 is locally given by

$$\Gamma_{ij}(x_0) : \operatorname{Im}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) = 0 \quad \text{and} \quad \operatorname{Re}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) \ge 0$$

§2.1. WKB Trajectories and Stokes Lines

• *WKB trajectory of type ij* emanating from x_0 is locally given by

$$\Gamma_{ij}(x_0) : \operatorname{Im}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) = 0 \quad \text{and} \quad \operatorname{Re}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) \ge 0$$
• Natural flow time parameter: $t(x) := \int_{x_0}^{x(t)} (\lambda_i - \lambda_j) \, \mathrm{d}x$
• Natural flow time parameter: $t(x) := \int_{x_0}^{x(t)} (\lambda_i - \lambda_j) \, \mathrm{d}x$

§2.1. WKB Trajectories and Stokes Lines

• WKB trajectory of type ij emanating from x_0 is locally given by

$$\Gamma_{ij}(x_0) : \operatorname{Im}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) = 0 \quad \text{and} \quad \operatorname{Re}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) \ge 0$$

• Natural flow time parameter: $t(x) := \int_{x_0}^{x(t)} (\lambda_i - \lambda_j) \, \mathrm{d}x$
• Natural flow time parameter: $t(x) := \int_{x_0}^{x(t)} (\lambda_i - \lambda_j) \, \mathrm{d}x$

- $\Gamma_{ij}(x_0)$ is *nonsingular* if it is infinitely long and encounters no turning points
- $\Gamma_{ij}(x_0)$ is *singular* if it flows into a turning point

$\S 2.1.$ WKB Trajectories and Stokes Lines

- A Stokes line of type ij on X is a maximal singular WKB trajectory of type ij
- *Stokes 'graph'* or *network* := collection of all Stokes lines on X

$\S 2.1.$ WKB Trajectories and Stokes Lines

- A Stokes line of type ij on X is a maximal singular WKB trajectory of type ij
- *Stokes 'graph'* or *network* := collection of all Stokes lines on X

$\S 2.1.$ WKB Trajectories and Stokes Lines

- A Stokes line of type ij on X is a maximal singular WKB trajectory of type ij
- *Stokes 'graph'* or *network* := collection of all Stokes lines on X

• WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i - \lambda_j) dx$

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$ (\blacklozenge) is a *spectral curve*:

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$ (\blacklozenge) is a *spectral curve*:

- $\lambda_i \, \mathrm{d}x$ is the local expression for λ on sheet *i* of Σ

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$ (\blacklozenge) is a *spectral curve*:

- λ_i dx is the local expression for λ on sheet i of Σ
- Lemma: $(\lambda_i \lambda_j) dx$ are local expressions for *adjoint canonical differential* $ad \lambda$ on

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$ (\blacklozenge) is a *spectral curve*:

- λ_i dx is the local expression for λ on sheet i of Σ
- Lemma: $(\lambda_i \lambda_j) dx$ are local expressions for *adjoint canonical differential* $ad \lambda$ on

- *turning points* := ramification locus of $\operatorname{ad} \pi : \operatorname{ad} \Sigma \longrightarrow X$
- *WKB trajectories* := leaves of \mathbb{R}_+ -foliation of $\operatorname{ad} \lambda$ on $\operatorname{ad} \Sigma$
- Stokes lines := maximal singular WKB trajectories on $\operatorname{ad}\Sigma$
- Stokes graph := collection of all Stokes lines on $\operatorname{ad} \Sigma$

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$ (\blacklozenge) is a *spectral curve*:

- λ_i dx is the local expression for λ on sheet i of Σ
- Lemma: $(\lambda_i \lambda_j) dx$ are local expressions for *adjoint canonical differential* $ad \lambda$ on

- *turning points* := ramification locus of $\operatorname{ad} \pi : \operatorname{ad} \Sigma \longrightarrow X$
- *WKB trajectories* := leaves of \mathbb{R}_+ -foliation of $\operatorname{ad} \lambda$ on $\operatorname{ad} \Sigma$
- Stokes lines := maximal singular WKB trajectories on $\operatorname{ad} \Sigma$
- Stokes graph := collection of all Stokes lines on $\operatorname{ad} \Sigma$
- Stokes network on X is the projection of the Stokes graph under $\operatorname{ad} \pi : \operatorname{ad} \Sigma \longrightarrow X$

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Fix $x_0 \in X$ ordinary point := neither a turning point nor a pole

Definition (n = 2**)**

The *WKB flow of* x_0 *of type i is nonsingular* if the WKB trajectory $\Gamma_{ij}(x_0)$ is nonsingular.

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Fix $x_0 \in X$ ordinary point := neither a turning point nor a pole

Definition (n = 2**)**

The *WKB flow of* x_0 *of type i is nonsingular* if the WKB trajectory $\Gamma_{ij}(x_0)$ is nonsingular.

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Definition ($n \ge 3$ **)**

The WKB flow of x_0 of type *i* is nonsingular if

• each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \ldots, \Gamma_{in}(x_0)$ is nonsingular
Definition ($n \ge 3$ **)**

The WKB flow of x_0 of type *i* is nonsingular if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \ldots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{jk}(x_1)$ encounters no turning points

Definition ($n \ge 3$ **)**

The WKB flow of x_0 of type *i* is nonsingular if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \ldots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{jk}(x_1)$ encounters no turning points
- Repeat for $\Gamma_{kj}(x_1)$

Definition ($n \ge 3$ **)**

The WKB flow of x_0 of type *i* is nonsingular if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \ldots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{jk}(x_1)$ encounters no turning points
- Repeat for $\Gamma_{kj}(x_1)$
- This process terminates at a finite number of iterations

Definition ($n \ge 3$ **)**

The WKB flow of x_0 of type *i* is nonsingular if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \ldots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{jk}(x_1)$ encounters no turning points
- Repeat for $\Gamma_{kj}(x_1)$
- This process terminates at a finite number of iterations

• *Complete Stokes network* := locus of all points on X with singular WKB flow

Example (BNR): $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$

Example (BNR): $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$

$\S 3.$ Borel Summability of WKB Solutions

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in X$ ordinary point and λ_i leading-order characteristic root near x_0 .

$\S 3.$ Borel Summability of WKB Solutions

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in X$ ordinary point and λ_i leading-order characteristic root near x_0 . Assume that the WKB flow of x_0 of type *i* is nonsingular.

§3. Borel Summability of WKB Solutions

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in X$ ordinary point and λ_i leading-order characteristic root near x_0 . Assume that the WKB flow of x_0 of type i is nonsingular. Then the formal WKB solution

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \,\mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k$$

is uniformly Borel summable near x_0 :

$$\psi_i(x,\hbar) := \mathcal{S}\big[\widehat{\psi}_i\big](x,\hbar) = e^{\int_{x_0}^x \lambda_i/\hbar} \mathcal{S}\left(\sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k\right)$$

§3. Borel Summability of WKB Solutions

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in X$ ordinary point and λ_i leading-order characteristic root near x_0 . Assume that the WKB flow of x_0 of type i is nonsingular. Then the formal WKB solution

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \,\mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k$$

is uniformly Borel summable near x_0 :

$$\psi_i(x,\hbar) := \mathcal{S}\big[\widehat{\psi}_i\big](x,\hbar) = e^{\int_{x_0}^x \lambda_i/\hbar} \mathcal{S}\left(\sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k\right)$$

In fact, ψ_i is the unique solution for x near x_0 which satisfies

 $\psi_i(x_0,\hbar) = 1$ and $\psi_i(x,\hbar) \simeq \widehat{\psi}_i(x,\hbar)$ as $\hbar \to 0$ with $\operatorname{Re}(\hbar) > 0$ uniformly in x and $\operatorname{arg}(\hbar)$.

§3. Borel Summability of WKB Solutions

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in X$ ordinary point and λ_i leading-order characteristic root near x_0 . Assume that the WKB flow of x_0 of type *i* is nonsingular. Then the formal WKB solution

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \,\mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k$$

is uniformly Borel summable near x_0 :

$$\psi_i(x,\hbar) := \mathcal{S}\big[\widehat{\psi}_i\big](x,\hbar) = e^{\int_{x_0}^x \lambda_i/\hbar} \mathcal{S}\left(\sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k\right)$$

In fact, ψ_i is the unique solution for x near x_0 which satisfies

 $\psi_i(x_0,\hbar) = 1$ and $\psi_i(x,\hbar) \simeq \widehat{\psi}_i(x,\hbar)$ as $\hbar \to 0$ with $\operatorname{Re}(\hbar) > 0$

uniformly in x and $\arg(\hbar)$.

Corollary

Uniqueness yields a notion of *exact WKB flat sections* of \mathcal{L} for P on (X, D).

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Lemma

The Borel transform of \hat{s}_i is uniformly convergent near x_0 :

$$\widehat{\boldsymbol{\sigma}}_{\boldsymbol{i}}(\boldsymbol{x},\boldsymbol{\xi}) \coloneqq \mathfrak{B}\left[\widehat{s}_{\boldsymbol{i}}\right] = \mathfrak{B}\left[\lambda_{\boldsymbol{i}} + \sum_{k=1}^{\infty} s_{\boldsymbol{i}}^{(k)}(\boldsymbol{x})\hbar^{k}\right] = \sum_{k=0}^{\infty} \frac{1}{k!} s_{\boldsymbol{i}}^{(k+1)}(\boldsymbol{x})\xi^{k} \in \mathcal{O}_{\mathsf{X},x_{0}}\{\xi\}$$

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Lemma

The Borel transform of \hat{s}_i is uniformly convergent near x_0 :

$$\widehat{\boldsymbol{\sigma}}_{\boldsymbol{i}}(\boldsymbol{x},\boldsymbol{\xi}) \coloneqq \mathfrak{B}\left[\widehat{s}_{\boldsymbol{i}}\right] = \mathfrak{B}\left[\lambda_{\boldsymbol{i}} + \sum_{k=1}^{\infty} s_{\boldsymbol{i}}^{(k)}(\boldsymbol{x})\hbar^{k}\right] = \sum_{k=0}^{\infty} \frac{1}{k!} s_{\boldsymbol{i}}^{(k+1)}(\boldsymbol{x})\xi^{k} \in \mathcal{O}_{\mathsf{X},x_{0}}\{\xi\}$$

Goal

Construct the analytic continuation σ_i of $\widehat{\sigma}_i$ for all $\xi \in \mathbb{R}_+$ and define

$$s_i(x,\hbar) := \lambda_i + \mathfrak{L}[\sigma_i] = \lambda_i(x) + \int_0^{+\infty} e^{-\xi/\hbar} \sigma_i(x,\xi) \,\mathrm{d}\xi$$
$$\psi_i(x,\hbar) := \exp\left(\frac{1}{\hbar} \int_{x_0}^x s_i(x',\hbar) \,\mathrm{d}x'\right)$$

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Lemma

The Borel transform of \hat{s}_i is uniformly convergent near x_0 :

$$\widehat{\boldsymbol{\sigma}}_{\boldsymbol{i}}(\boldsymbol{x},\boldsymbol{\xi}) \coloneqq \mathfrak{B}\left[\widehat{s}_{\boldsymbol{i}}\right] = \mathfrak{B}\left[\lambda_{\boldsymbol{i}} + \sum_{k=1}^{\infty} s_{\boldsymbol{i}}^{(k)}(\boldsymbol{x})\hbar^{k}\right] = \sum_{k=0}^{\infty} \frac{1}{k!} s_{\boldsymbol{i}}^{(k+1)}(\boldsymbol{x})\xi^{k} \in \mathcal{O}_{\mathsf{X},x_{0}}\{\xi\}$$

Goal

Construct the analytic continuation σ_i of $\hat{\sigma}_i$ for all $\xi \in \mathbb{R}_+$ and define

$$s_i(x,\hbar) := \lambda_i + \mathfrak{L}[\sigma_i] = \lambda_i(x) + \int_0^{+\infty} e^{-\xi/\hbar} \sigma_i(x,\xi) \,\mathrm{d}\xi$$
$$\psi_i(x,\hbar) := \exp\left(\frac{1}{\hbar} \int_{x_0}^x s_i(x',\hbar) \,\mathrm{d}x'\right)$$

Recall: uniform summability $\implies \mathcal{S}\left[\exp\left(\frac{1}{\hbar}\int_{x_0}^x \widehat{s} \, \mathrm{d}x / \hbar\right)\right] = \exp\left(\frac{1}{\hbar}\int_{x_0}^x \mathcal{S}[\widehat{s}] \, \mathrm{d}x\right)$

To construct the analytic continuation σ_i , argue as follows.

To construct the analytic continuation σ_i , argue as follows. Simplify by linearising the Riccati equation around λ_i :

Let $s = \lambda_i + S \implies \hbar \partial_x S + (\lambda_i - \lambda_i)S = \hbar A_0 + \hbar A_1 S - S^2$

To construct the analytic continuation σ_i , argue as follows. Simplify by linearising the Riccati equation around λ_i :

Let
$$s = \lambda_i + S \implies \hbar \partial_x S + (\lambda_i - \lambda_j)S = \hbar A_0 + \hbar A_1 S - S^2$$

2 Apply the Borel transform:

Let $\sigma = \mathfrak{B}[S] \implies \partial_x \sigma + (\lambda_i - \lambda_j)\partial_\xi \sigma = \alpha_0 + a_1 \sigma + \alpha_1 * \sigma - \partial_\xi \sigma^{*2}$

To construct the analytic continuation σ_i , argue as follows. Simplify by linearising the Riccati equation around λ_i :

Let
$$s = \lambda_i + S \implies \hbar \partial_x S + (\lambda_i - \lambda_j) S = \hbar A_0 + \hbar A_1 S - S^2$$

2 Apply the Borel transform:

To construct the analytic continuation σ_i , argue as follows. Simplify by linearising the Riccati equation around λ_i :

Let
$$s = \lambda_i + S \implies \hbar \partial_x S + (\lambda_i - \lambda_j) S = \hbar A_0 + \hbar A_1 S - S^2$$

2 Apply the Borel transform:

Let
$$\sigma = \mathfrak{B}[S] \implies \partial_x \sigma + (\lambda_i - \lambda_j) \partial_\xi \sigma = \alpha_0 + a_1 \sigma + \alpha_1 * \sigma - \partial_\xi \sigma^{*2}$$

3 Rewrite as an integral equation:
 $\sigma(x,\xi) = a_0 - \int_0^{\xi} (\text{righthand side}) \begin{vmatrix} \mathbf{x}_i - \mathbf{x}_j \\ \mathbf{x}_0 \\ \mathbf{x}_0 \end{vmatrix} dt \quad \text{where} \quad t = \int_{x_0}^{\mathbf{x}(t)} \lambda_{ij} dx$

4 Construct σ_i using the method of successive approximations: define $\{\tau_k(x,\xi)\}$ by

$$\tau_0 := a_0 , \qquad \tau_1 := -\int_0^{\xi} \left(\alpha_0 + a_1 \tau_0 \right) \mathrm{d}t , \qquad \tau_2 := -\int_0^{\xi} \left(a_1 \tau_1 + \alpha_1 * \tau_0 \right) \mathrm{d}t , \qquad \cdots$$

To construct the analytic continuation σ_i , argue as follows. Simplify by linearising the Riccati equation around λ_i :

Let
$$s = \lambda_i + S \implies \hbar \partial_x S + (\lambda_i - \lambda_j) S = \hbar A_0 + \hbar A_1 S - S^2$$

2 Apply the Borel transform:

Let
$$\sigma = \mathfrak{B}[S] \implies \partial_x \sigma + (\lambda_i - \lambda_j) \partial_\xi \sigma = \alpha_0 + a_1 \sigma + \alpha_1 * \sigma - \partial_\xi \sigma^{*2}$$

3 Rewrite as an integral equation:
 $\sigma(x,\xi) = a_0 - \int_0^{\xi} (\text{righthand side}) \begin{vmatrix} \mathbf{x}_i - \mathbf{x}_j \\ \mathbf{x}_0 \\ \mathbf{x}_0 \end{vmatrix} dt \quad \text{where} \quad t = \int_{x_0}^{\mathbf{x}(t)} \lambda_{ij} dx$

4 Construct σ_i using the method of successive approximations: define $\{\tau_k(x,\xi)\}$ by

$$\tau_0 := a_0 , \qquad \tau_1 := -\int_0^{\xi} (\alpha_0 + a_1 \tau_0) \, \mathrm{d}t , \qquad \tau_2 := -\int_0^{\xi} (a_1 \tau_1 + \alpha_1 * \tau_0) \, \mathrm{d}t , \qquad \cdots$$

6 Lemma: $\sigma_i(x, \xi) := \sum_{k=0}^{\infty} \tau_k(x, \xi)$ is uniformly convergent for all $\xi \in \mathbb{R}_+$, of exponential type, and $\hat{\sigma}_i$ is its Taylor series at $\xi = 0$

§3.2. Proof Outline $(n \ge 3)$ | skip!

Focus on the equation $(\hbar \partial_x)^{n-1}s + s^n + \ldots = 0$ (\blacklozenge) and argue as follows. **1** Rewrite as a nonlinear system: put $y_1 = s$, $y_2 = \hbar \partial_x y$, ..., and consider

$$\hbar \partial_x y = F(x, \hbar, y)$$

Example (BNR): $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$ $\Rightarrow \quad \hbar^2 \partial_x^2 s + 3s\hbar \partial_x s + s^3 + 3s + 2ix = 0$ $\Rightarrow \quad \hbar \partial_x \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = F(x, y) = -\begin{bmatrix} y_1^2 - y_2 \\ y_1 y_2 + 3y_1 + 2ix \end{bmatrix}$ $\Rightarrow \quad \text{leading-order solution } y_i^{(0)} = \begin{bmatrix} \lambda_i \\ \lambda_i^2 \end{bmatrix}$ $\Rightarrow \quad \text{leading-order Jacobian at } y_i^{(0)} \text{ is } J_i = -\frac{\partial F}{\partial y}\Big|_{y=y_i^{(0)}} = \begin{bmatrix} 2\lambda_i & -1 \\ \lambda_i^2 + 3 & \lambda_i \end{bmatrix}$ $\Rightarrow \quad J_i \text{ is diagonalisable to } \Lambda_i := \begin{bmatrix} \lambda_i - \lambda_j \\ \lambda_i - \lambda_k \end{bmatrix}$

2 Linearise around the leading-order solution $y_i^{(0)}$ and apply a gauge transformation G to diagonalise the Jacobian J_i :

Let
$$y = y_i^{(0)} + GS \implies \hbar \partial_x S + \Lambda_i S = \hbar A_0 + \hbar A_1 S + \underbrace{\cdots}_{\text{at least quadratic in } \hbar \text{ or } S}$$

§3.2. Proof Outline $(n \ge 3)$ | skip!

3 Apply the Borel transform:

Let
$$\sigma = \mathfrak{B}[S] \implies \partial_x \sigma + \Lambda_i \partial_\xi \sigma = \alpha_0 + a_1 \sigma + \alpha_1 * \sigma + \cdots$$

4 Rewrite as a system of integral equations: $j = 1, \ldots, n-1$

$$\sigma^{j}(x,\xi) = a_{0}^{j} - \int_{0}^{\xi} (\text{righthand side}) \Big|_{\left(x^{j}(t),\xi-t\right)} dt \quad \text{where} \quad t = \int_{x_{0}}^{x^{j}(t)} \lambda_{ij} dx$$

6 Construct σ_i using the method of successive approximations: define $\{\tau_k(x,\xi)\}$ by

$$\tau_0 := a_0 , \qquad \tau_1 := -\int_0^{\xi} \left(\alpha_0 + a_1 \tau_0 \right) \mathrm{d}t , \qquad \tau_2 := -\int_0^{\xi} \left(a_1 \tau_1 + \alpha_1 * \tau_0 \right) \mathrm{d}t ,$$

6 Lemma 1: $\sigma_i(x,\xi) := \sum_{k=0}^{\infty} \tau_k(x,\xi)$ is uniformly convergent near $\xi = 0$, and $\hat{\sigma}_i$ is its Taylor series at $\xi = 0$

§3.2. Proof Outline $(n \ge 3)$ | skip!

6 To analytically continue σ to all $\xi \in \mathbb{R}_+$, carefully examine cross-terms starting in τ_2 :

? Lemma 2: thanks to the assumption that the (complete) WKB flow is nonsingular, $\sigma(x,\xi)$ admits analytic continuation to $\xi \in \mathbb{R}_+$ of exponential type

The Geometric WKB Problem

The Geometric WKB Problem

() <u>GIVEN</u>: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}'' \longrightarrow 0$

The Geometric WKB Problem

0 <u>GIVEN</u>: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}' \longrightarrow 0$ <u>FIND</u>: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$.

The Geometric WKB Problem

O <u>GIVEN</u>: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}' \longrightarrow 0$ <u>FIND</u>: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$.

The Geometric WKB Method

- **1** Fix a reference pair (W_0, ∇_0) where
 - $W_0: \mathcal{E}'' \to \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}' \oplus \mathcal{E}''$;
 - $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.

The Geometric WKB Problem

O <u>GIVEN</u>: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}'' \longrightarrow 0$ <u>FIND</u>: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$.

The Geometric WKB Method

- **1** Fix a reference pair (W_0, ∇_0) where
 - $W_0: \mathcal{E}'' \to \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}' \oplus \mathcal{E}''$;
 - $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- **2** Write $W : \mathcal{E}'' \to \mathcal{E}' \oplus \mathcal{E}''$ as $S \oplus id$ and solve for S by searching for a unipotent gauge transformation

$$\begin{bmatrix} \mathrm{id} & W \\ 0 & W \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' = \mathcal{E}' \\ \oplus \\ \mathcal{E}'' = \mathcal{E}'' \\ \mathcal{E}'' = \mathcal{E}'' \\ \end{array}$$

The Geometric WKB Problem

O <u>GIVEN</u>: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}'' \longrightarrow 0$ <u>FIND</u>: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$.

The Geometric WKB Method

- **1** Fix a reference pair (W_0, ∇_0) where
 - $W_0: \mathcal{E}'' \to \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}' \oplus \mathcal{E}''$;
 - $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- **2** Write $W : \mathcal{E}'' \to \mathcal{E}' \oplus \mathcal{E}''$ as $S \oplus id$ and solve for S by searching for a unipotent gauge transformation

$$\begin{bmatrix} \mathrm{id} & W \\ 0 & W \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' & \overset{}{\longrightarrow} & \mathcal{E}' \\ \mathcal{E}'' & \overset{}{\longrightarrow} & \mathcal{E}'' \\ \end{array}$$

3 Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

The Geometric WKB Problem

O <u>GIVEN</u>: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}' \longrightarrow 0$ <u>FIND</u>: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$.

The Geometric WKB Method

- **1** Fix a reference pair (W_0, ∇_0) where
 - $W_0: \mathcal{E}'' \to \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}' \oplus \mathcal{E}''$;
 - $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- **2** Write $W : \mathcal{E}'' \to \mathcal{E}' \oplus \mathcal{E}''$ as $S \oplus id$ and solve for S by searching for a unipotent gauge transformation

$$\begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' = \mathcal{E}' \oplus \\ \mathcal{E}'' = \mathcal{E}'' \oplus \\ \mathcal{E}'' = \mathcal{E}'' \end{array}$$

3 Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

4 Then W is a ∇ -invariant splitting $\Leftrightarrow S$ satisfies the **geometric Riccati equation**:

$$\operatorname{ad}_{\nabla_0} S - \phi_{11}S + S\phi_{21}S - \phi_{12} + S\phi_{22} = 0$$

Its exact solutions yield *exact WKB flat sections* for (\mathcal{E}, ∇)

The Geometric WKB Problem

O <u>GIVEN</u>: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}' \longrightarrow 0$ <u>FIND</u>: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$.

The Geometric WKB Method

- **1** Fix a reference pair (W_0, ∇_0) where
 - $W_0: \mathcal{E}'' \to \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}' \oplus \mathcal{E}''$;
 - $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- **2** Write $W : \mathcal{E}'' \to \mathcal{E}' \oplus \mathcal{E}''$ as $S \oplus id$ and solve for S by searching for a unipotent gauge transformation

$$\begin{bmatrix} \mathrm{id} & S \\ 0 & W \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' = \mathcal{E}' \oplus \mathcal{E$$

3 Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

4 Then W is a ∇ -invariant splitting $\Leftrightarrow S$ satisfies the **geometric Riccati equation**:

$$\operatorname{ad}_{\nabla_0} S - \phi_{11}S + S\phi_{21}S - \phi_{12} + S\phi_{22} = 0$$

Its exact solutions yield *exact WKB flat sections* for (\mathcal{E}, ∇)

Remark: $\stackrel{?}{\Longrightarrow}$ $S \in \mathcal{E}xt^1_X(\mathcal{E}'', \mathcal{E}')$ $\stackrel{?}{\Longrightarrow}$ cohomological WKB method?

Traditional Point of View:

 $\begin{aligned} \bullet & \hbar^2 \partial_x^2 \psi + q \psi = 0 \\ \bullet & \psi = \exp\left(\int s \, \mathrm{d}x \, / \hbar\right) \\ \bullet & \hbar \partial_x s + s^2 + q = 0 \end{aligned}$

Geometric Point of View:

 $\begin{array}{l} \bullet \quad \underline{GIVEN}: \ (\mathcal{E}, \nabla) \text{ oper:} \\ 0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0 \\ \underline{FIND}: \ \nabla\text{-invariant splitting } W: \mathcal{E}'' \to \mathcal{E} \end{array}$ $\begin{array}{l} \bullet \quad \mathbf{Fix reference pair} \ (W_0, \nabla_0) \\ \bullet \quad \mathbf{Fix reference p$

Traditional Point of View:

0 $\hbar^2 \partial_x^2 \psi + q\psi = 0$ **1** $\psi = \exp\left(\int s \, \mathrm{d}x \, /\hbar\right)$ **2** $\hbar \partial_x s + s^2 + q = 0$

Geometric Point of View:

 $\begin{array}{cccc} & \underline{\operatorname{GIVEN}}: \ (\mathcal{E}, \nabla) \ \operatorname{oper}: \\ & 0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0 \\ & \underline{\operatorname{FIND}}: \ \nabla \operatorname{-invariant} \ \operatorname{splitting} W : \mathcal{E}'' \to \mathcal{E} \\ \hline & \mathbf{Fix} \ \operatorname{reference} \ \operatorname{pair} \ (W_0, \nabla_0) \\ \hline & \mathbf{Search} \ \operatorname{for} \ \begin{bmatrix} \operatorname{id} & W \\ 0 & W \end{bmatrix} = \begin{bmatrix} \operatorname{id} & S \\ 0 & \operatorname{id} \end{bmatrix}: \begin{array}{c} \mathcal{E}' & \underbrace{\oplus} & \mathcal{E}' \\ \mathcal{E}'' & \underbrace{\oplus} & \mathcal{E}'' \\ \mathcal{E}'' & \underbrace{\oplus} & \mathcal{E}'' \\ \hline & \mathcal{E}'' & \underbrace{\oplus} & \mathcal{E}'' \\ \hline & \mathcal{E}'' & \underbrace{\oplus} & \mathcal{E}'' \\ \end{array} \\ \hline & \mathbf{S} \ \operatorname{Write} \ \nabla = \nabla_0 - \phi \quad \text{where} \quad \phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \\ \hline & \mathbf{S} \ \operatorname{ad}_{\nabla_0} S - \phi_{11}S + S\phi_{21}S - \phi_{12} + S\phi_{22} = 0 \end{array}$

• Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_X^{-1/2}$

Traditional Point of View:

() $\hbar^2 \partial_x^2 \psi + q\psi = 0$ **()** $\psi = \exp(\int s \, \mathrm{d}x / \hbar)$ **()** $\hbar \partial_x s + s^2 + q = 0$

Geometric Point of View:

- $\begin{array}{l} \textcircled{0} \quad \underline{\text{GIVEN}}: \ (\mathcal{E}, \nabla) \text{ oper:} \\ 0 \rightarrow \mathcal{E}' \rightarrow \mathcal{E} \rightarrow \mathcal{E}'' \rightarrow 0 \\ \underline{\text{FIND}}: \ \nabla\text{-invariant splitting } W: \mathcal{E}'' \rightarrow \mathcal{E} \end{array}$ $\begin{array}{l} \textcircled{1} \quad \text{Fix reference pair } (W_0, \nabla_0) \\ \textcircled{2} \quad \text{Search for } \begin{bmatrix} \text{id} & W \\ 0 \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix}: \begin{array}{c} \mathcal{E}' & \underbrace{\oplus} & \\ \mathcal{E}'' & \underbrace{\oplus} & \\ \mathcal{E}'' & \underbrace{\oplus} & \\ \mathcal{E}'' & \\ \mathcal{E}'' \end{array}$ $\begin{array}{l} \textcircled{3} \quad \text{Write } \nabla = \nabla_0 \phi \quad \text{where} \quad \phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}. \\ \textcircled{4} \quad \text{ad}_{\nabla_0} S \phi_{11}S + S\phi_{21}S \phi_{12} + S\phi_{22} = 0 \end{array}$
- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathsf{X}}^{-1/2}$
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$

Traditional Point of View:

() $\hbar^2 \partial_x^2 \psi + q\psi = 0$ **()** $\psi = \exp(\int s \, \mathrm{d}x / \hbar)$ **()** $\hbar \partial_x s + s^2 + q = 0$

Geometric Point of View:

- $\begin{array}{l} \textcircled{0} \quad \underline{\text{GIVEN}}: \ (\mathcal{E}, \nabla) \text{ oper:} \\ 0 \rightarrow \mathcal{E}' \rightarrow \mathcal{E} \rightarrow \mathcal{E}'' \rightarrow 0 \\ \underline{\text{FIND}}: \ \nabla\text{-invariant splitting } W: \mathcal{E}'' \rightarrow \mathcal{E} \end{array}$ $\begin{array}{l} \textcircled{1} \quad \text{Fix reference pair } (W_0, \nabla_0) \\ \textcircled{2} \quad \text{Search for } \begin{bmatrix} \text{id} & W \\ 0 \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix}: \begin{array}{c} \mathcal{E}' & \underbrace{\oplus} & \mathcal{E}' \\ \mathcal{E}'' & \underbrace{\oplus} & \mathcal{E}'' \\ \mathcal{E}'' & \underbrace{\oplus} & \mathcal{E}'' \\ \end{array}$ $\begin{array}{c} \textcircled{3} \quad \text{Write } \nabla = \nabla_0 \phi \quad \text{where} \quad \phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}. \\ \textcircled{4} \quad \text{ad}_{\nabla_0} S \phi_{11}S + S\phi_{21}S \phi_{12} + S\phi_{22} = 0 \end{array}$
- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathsf{X}}^{-1/2}$
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
§4. The WKB Method: Invariant Formulation

Traditional Point of View:

() $\hbar^2 \partial_x^2 \psi + q\psi = 0$ **()** $\psi = \exp(\int s \, \mathrm{d}x / \hbar)$ **()** $\hbar \partial_x s + s^2 + q = 0$

Geometric Point of View:

- $\begin{array}{l} \textcircled{0} \quad \underline{\text{GIVEN}}: \ (\mathcal{E}, \nabla) \text{ oper:} \\ 0 \rightarrow \mathcal{E}' \rightarrow \mathcal{E} \rightarrow \mathcal{E}'' \rightarrow 0 \\ \underline{\text{FIND}}: \ \nabla\text{-invariant splitting } W: \mathcal{E}'' \rightarrow \mathcal{E} \end{array}$ $\begin{array}{l} \textcircled{1} \quad \text{Fix reference pair } (W_0, \nabla_0) \\ \textcircled{2} \quad \text{Search for } \begin{bmatrix} \text{id} & W \\ 0 \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix}: \begin{array}{c} \mathcal{E}' \underbrace{\longrightarrow} \mathcal{E}' \\ \mathcal{E}'' \underbrace{\longrightarrow} \mathcal{E}'' \\ \mathcal{E}'' \\ \mathcal{E}'' \\ \end{array}$ $\begin{array}{l} \textcircled{3} \quad \text{Write } \nabla = \nabla_0 \phi \quad \text{where} \quad \phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}. \\ \textcircled{4} \quad \text{ad}_{\nabla_0} S \phi_{11}S + S\phi_{21}S \phi_{12} + S\phi_{22} = 0 \end{array}$
- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathsf{X}}^{-1/2}$
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow 0$
- Reference splitting W_0 is given by choice of coordinate x because

$$\mathcal{E} \xrightarrow[x]{\longrightarrow} \left\langle \mathrm{d}x \otimes \mathrm{d}x^{-1/2} \right\rangle \oplus \left\langle \mathrm{d}x^{-1/2} \right\rangle = \mathcal{E}' \oplus \mathcal{E}'' \quad \text{and} \quad S = s(x, \hbar) \,\mathrm{d}x$$

§4. The WKB Method: Invariant Formulation

Traditional Point of View:

() $\hbar^2 \partial_x^2 \psi + q\psi = 0$ **()** $\psi = \exp(\int s \, \mathrm{d}x / \hbar)$ **()** $\hbar \partial_x s + s^2 + q = 0$ **Geometric Point of View:**

- $\begin{array}{l} \textcircled{O} \quad \underline{\text{GIVEN}}: \ (\mathcal{E}, \nabla) \text{ oper:} \\ 0 \rightarrow \mathcal{E}' \rightarrow \mathcal{E} \rightarrow \mathcal{E}'' \rightarrow 0 \\ \underline{\text{FIND}}: \ \nabla\text{-invariant splitting } W: \mathcal{E}'' \rightarrow \mathcal{E} \end{array}$ $\begin{array}{l} \textcircled{O} \quad \text{Fix reference pair } (W_0, \nabla_0) \\ \textcircled{O} \quad \text{search for } \begin{bmatrix} \text{id} & W \\ 0 \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix}: \begin{array}{c} \mathcal{E}' & \underbrace{\oplus} & \mathcal{E}' \\ \oplus & \mathcal{E}'' & \underbrace{\oplus} & \mathcal{E}'' \\ \end{array}$ $\begin{array}{l} \textcircled{O} \quad \text{Write } \nabla = \nabla_0 \phi \quad \text{where} \quad \phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}. \\ \textcircled{O} \quad \text{ad}_{\nabla_0} S \phi_{11}S + S\phi_{21}S \phi_{12} + S\phi_{22} = 0 \end{array}$
- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\chi}^{-1/2}$
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
- Reference splitting W_0 is given by choice of coordinate x because

$$\mathcal{E} \xrightarrow{x} \left\langle \mathrm{d}x \otimes \mathrm{d}x^{-1/2} \right\rangle \oplus \left\langle \mathrm{d}x^{-1/2} \right\rangle = \mathcal{E}' \oplus \mathcal{E}'' \quad \text{and} \quad S = s(x, \hbar) \,\mathrm{d}x$$

• Reference connection $\nabla_0 = \hbar d$, then $\nabla \equiv \hbar d - \begin{vmatrix} 0 & -q \\ 1 & 0 \end{vmatrix} dx = \nabla_0 - \phi$

§4. The WKB Method: Invariant Formulation

Traditional Point of View:

() $\hbar^2 \partial_x^2 \psi + q\psi = 0$ **()** $\psi = \exp(\int s \, dx / \hbar)$ **()** $\hbar \partial_x s + s^2 + q = 0$ **Geometric Point of View:**

- $\begin{array}{l} \textcircled{0} \quad \underline{\text{GIVEN}}: \ (\mathcal{E}, \nabla) \text{ oper:} \\ 0 \rightarrow \mathcal{E}' \rightarrow \mathcal{E} \rightarrow \mathcal{E}'' \rightarrow 0 \\ \underline{\text{FIND}}: \ \nabla\text{-invariant splitting } W: \mathcal{E}'' \rightarrow \mathcal{E} \end{array}$ $\begin{array}{l} \textcircled{1} \quad \text{Fix reference pair } (W_0, \nabla_0) \\ \textcircled{2} \quad \text{Search for } \begin{bmatrix} \text{id} & W \\ 0 \end{bmatrix} = \begin{bmatrix} \text{id} & S \\ 0 & \text{id} \end{bmatrix}: \begin{array}{c} \mathcal{E}' \underbrace{\longrightarrow} \mathcal{E}' \\ \mathcal{E}'' \underbrace{\longrightarrow} \mathcal{E}'' \\ \mathcal{E}'' \\ \end{array}$ $\begin{array}{l} \textcircled{3} \quad \text{Write } \nabla = \nabla_0 \phi \quad \text{where} \quad \phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}. \\ \textcircled{4} \quad \text{ad}_{\nabla_0} S \phi_{11}S + S\phi_{21}S \phi_{12} + S\phi_{22} = 0 \end{array}$
- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\chi}^{-1/2}$
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
- Reference splitting W_0 is given by choice of coordinate x because

$$\mathcal{E} \xrightarrow[x]{} \left\langle \mathrm{d}x \otimes \mathrm{d}x^{-1/2} \right\rangle \oplus \left\langle \mathrm{d}x^{-1/2} \right\rangle = \mathcal{E}' \oplus \mathcal{E}'' \quad \text{and} \quad S = s(x,\hbar) \,\mathrm{d}x$$

• Reference connection $\nabla_0 = \hbar d$, then $\nabla_{\overline{loc}} \hbar d - \begin{bmatrix} 0 & -q \\ 1 & 0 \end{bmatrix} dx = \nabla_0 - \phi$

• Riccati equation: $\hbar \partial_x s + s^2 + q = 0$

"I Thank you for your attention! "