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§0. Setting

• Start with singularly perturbed linear ODE in a domain X ⊂ Cx:

(ℏ∂x)nψ + p1(ℏ∂x)n−1ψ + . . . =

(
n∑

k=0

pn−kℏk∂kx
)
ψ(x, ℏ) = 0 (⋆)

where pk(x, ℏ) ∈ OX[ℏ] or OX(D)[ℏ]

• Examples: (1)
(
ℏ2∂2x + q(x, ℏ)

)
ψ = 0 Schrödinger equation

(2)
(
ℏ3∂3x + 3ℏ∂x + 2ix

)
ψ = 0 Berk-Nevins-Roberts equation

• More generally: ℏ-differential operator on a line bundle L over a curve (X,D):

P : L → L ⊗ SymnΩ1
X,D[ℏ] such that P

∣∣
ℏ=0

(fe) = fP
∣∣
ℏ=0

(e)

• Even more generally: ℏ-connection on a vector bundle E over a curve (X,D):

∇ : E → E ⊗ Ω1
X,D[ℏ] such that ∇(fe) = f∇e+ ℏ df ⊗ e

• WKB method: solve (⋆) using the WKB ansatz ψ(x, ℏ) = exp

(
1

ℏ

∫ x

x0

s(x, ℏ) dx
)

Two Questions Addressed Today

1 When does the WKB method lead to solutions of (⋆) with good asymptotics as ℏ → 0?

2 What is the WKB method for P and ∇?
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§1.1. Formal WKB Method (Quick Reminder)

• Plug the WKB ansatz into (⋆) to get a nonlinear ODE of order n− 1:

(ℏ∂x)n−1s+ sn + . . . = 0 ; explicitly:
n∑

k=1

pk(ℏ∂x + s)k−1s = 0 (♦)

• Examples: (1) ℏ∂xs+ s2 + q = 0 // (ℏ∂x + s)s+ q = 0
(2) ℏ2∂2xs+ 3sℏ∂xs+ s3 + 3s+ 2ix = 0 // (ℏ∂x + s)2s+ 3s+ 2ix = 0

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x0 is chosen generically, there are n formal solutions

ŝi(x, ℏ) =
∞∑
k=0

s(k)i (x)ℏk ∈ OX,x0JℏK i = 1, . . . , n

uniquely and recursively determined by leading-orders s(0)i = λi(x) that are roots of

λn + a1λ
n−1 + . . .+ an = 0 where ak(x) := pk(x, 0) (♠)

and therefore n unique formal WKB solutions normalised at x0:

ψ̂i(x, ℏ) = exp

(
1

ℏ

∫ x

x0

ŝi(x, ℏ) dx
)

= e
∫ x
x0

λi/ℏ
∞∑
k=0

ψ(k)

i ℏk

• “Generically” := away from turning points := zeros of the discriminant of (♠)

• ψ̂k is very computable but almost always divergent!
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ŝi(x, ℏ) dx
)

= e
∫ x
x0

λi/ℏ
∞∑
k=0

ψ(k)

i ℏk

• “Generically” := away from turning points := zeros of the discriminant of (♠)

• ψ̂k is very computable but almost always divergent!



§1.1. Formal WKB Method (Quick Reminder)

• Plug the WKB ansatz into (⋆) to get a nonlinear ODE of order n− 1:

(ℏ∂x)n−1s+ sn + . . . = 0 ; explicitly:
n∑

k=1

pk(ℏ∂x + s)k−1s = 0 (♦)

• Examples: (1) ℏ∂xs+ s2 + q = 0 // (ℏ∂x + s)s+ q = 0
(2) ℏ2∂2xs+ 3sℏ∂xs+ s3 + 3s+ 2ix = 0 // (ℏ∂x + s)2s+ 3s+ 2ix = 0

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x0 is chosen generically, there are n formal solutions
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§1.2. Exact WKB Method (Quick Reminder and Main Results)

Q: Can ψ̂i be upgraded to a holomorphic solution ψi?

i.e.: is ψ̂i the asymptotic/perturbative expansion as ℏ → 0 of a holomorphic ψi?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψi is highly non-unique and not constructive

BETTER Q: Can ψ̂i be upgraded to a holomorphic solution ψi in a canonical way?

i.e.: is ψ̂i Borel-summable to a holomorphic solution ψi?

A: Yes! But highly sensitive to the semi-global geometry determined by λ1, . . . , λn

Main Results [N] (rough statement)

1 Formal WKB solutions ψ̂1, . . . , ψ̂n are Borel-summable away from relevant Stokes lines.

2 Their Borel resummations ψ1, . . . , ψn are uniquely determined by an asymptotic
condition, and therefore have an invariant geometric meaning for a differential
operator P on a line bundle L over (X,D).

3 Geometrically, the WKB method is a method to search for an invariant splitting of an
oper structure on (E ,∇), so exact WKB solutions make sense for connections.
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A: Yes! [Asymptotic Existence Theorem]

BUT: such ψi is highly non-unique and not constructive

BETTER Q: Can ψ̂i be upgraded to a holomorphic solution ψi in a canonical way?

i.e.: is ψ̂i Borel-summable to a holomorphic solution ψi?

A: Yes! But highly sensitive to the semi-global geometry determined by λ1, . . . , λn

Main Results [N] (rough statement)

1 Formal WKB solutions ψ̂1, . . . , ψ̂n are Borel-summable away from relevant Stokes lines.

2 Their Borel resummations ψ1, . . . , ψn are uniquely determined by an asymptotic
condition, and therefore have an invariant geometric meaning for a differential
operator P on a line bundle L over (X,D).

3 Geometrically, the WKB method is a method to search for an invariant splitting of an
oper structure on (E ,∇), so exact WKB solutions make sense for connections.



§2.1. WKB Trajectories and Stokes Lines

• WKB trajectory of type ij emanating from x0 is locally given by

Γij(x0) : Im

(∫ x

x0

(λi − λj) dx

)
= 0 and Re

(∫ x

x0

(λi − λj) dx

)
⩾ 0

• Natural flow time parameter: t(x) :=
∫ x(t)

x0

(λi − λj) dx

• Γij(x0) is nonsingular if it is infinitely long and encounters no turning points
• Γij(x0) is singular if it flows into a turning point
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§2.1. WKB Trajectories and Stokes Lines

• A Stokes line of type ij on X is a maximal singular WKB trajectory of type ij
• Stokes ‘graph’ or network := collection of all Stokes lines on X
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§2.2. WKB Trajectories and Stokes Lines: Invariant Description

• WKB trajectories of type ij are leaves of R+-foliation of the differential (λi − λj) dx

• The characteristic equation λn + a1λ
n−1 + · · ·+ an = 0 (♠) is a spectral curve:

Σ T∗
X,D = tot

(
Ω1
X,D

)
X

π

equipped with canonical differential
λ ∈ H0

Σ(Ω
1
Σ,D̃

)

• λi dx is the local expression for λ on sheet i of Σ
• Lemma: (λi − λj) dx are local expressions for adjoint canonical differential adλ on

adΣ := Σ×
X
Σ Σ

Σ X

π2

π1
⌜ π

π

adλ := π∗1λ− π∗2λ
adjoint
spectral
curve

• turning points := ramification locus of adπ : adΣ −→ X

• WKB trajectories := leaves of R+-foliation of adλ on adΣ

• Stokes lines := maximal singular WKB trajectories on adΣ

• Stokes graph := collection of all Stokes lines on adΣ

• Stokes network on X is the projection of the Stokes graph under adπ : adΣ −→ X



§2.2. WKB Trajectories and Stokes Lines: Invariant Description

• WKB trajectories of type ij are leaves of R+-foliation of the differential (λi − λj) dx

• The characteristic equation λn + a1λ
n−1 + · · ·+ an = 0 (♠) is a spectral curve:

Σ T∗
X,D = tot

(
Ω1
X,D

)
X

π

equipped with canonical differential
λ ∈ H0

Σ(Ω
1
Σ,D̃

)

• λi dx is the local expression for λ on sheet i of Σ
• Lemma: (λi − λj) dx are local expressions for adjoint canonical differential adλ on

adΣ := Σ×
X
Σ Σ

Σ X

π2

π1
⌜ π

π

adλ := π∗1λ− π∗2λ
adjoint
spectral
curve

• turning points := ramification locus of adπ : adΣ −→ X

• WKB trajectories := leaves of R+-foliation of adλ on adΣ

• Stokes lines := maximal singular WKB trajectories on adΣ

• Stokes graph := collection of all Stokes lines on adΣ

• Stokes network on X is the projection of the Stokes graph under adπ : adΣ −→ X



§2.2. WKB Trajectories and Stokes Lines: Invariant Description

• WKB trajectories of type ij are leaves of R+-foliation of the differential (λi − λj) dx

• The characteristic equation λn + a1λ
n−1 + · · ·+ an = 0 (♠) is a spectral curve:

Σ T∗
X,D = tot

(
Ω1
X,D

)
X

π

equipped with canonical differential
λ ∈ H0

Σ(Ω
1
Σ,D̃

)

• λi dx is the local expression for λ on sheet i of Σ

• Lemma: (λi − λj) dx are local expressions for adjoint canonical differential adλ on

adΣ := Σ×
X
Σ Σ

Σ X

π2

π1
⌜ π

π

adλ := π∗1λ− π∗2λ
adjoint
spectral
curve

• turning points := ramification locus of adπ : adΣ −→ X

• WKB trajectories := leaves of R+-foliation of adλ on adΣ

• Stokes lines := maximal singular WKB trajectories on adΣ

• Stokes graph := collection of all Stokes lines on adΣ

• Stokes network on X is the projection of the Stokes graph under adπ : adΣ −→ X



§2.2. WKB Trajectories and Stokes Lines: Invariant Description

• WKB trajectories of type ij are leaves of R+-foliation of the differential (λi − λj) dx

• The characteristic equation λn + a1λ
n−1 + · · ·+ an = 0 (♠) is a spectral curve:

Σ T∗
X,D = tot

(
Ω1
X,D

)
X

π

equipped with canonical differential
λ ∈ H0

Σ(Ω
1
Σ,D̃

)

• λi dx is the local expression for λ on sheet i of Σ
• Lemma: (λi − λj) dx are local expressions for adjoint canonical differential adλ on

adΣ := Σ×
X
Σ Σ

Σ X

π2

π1
⌜ π

π

adλ := π∗1λ− π∗2λ
adjoint
spectral
curve

• turning points := ramification locus of adπ : adΣ −→ X

• WKB trajectories := leaves of R+-foliation of adλ on adΣ

• Stokes lines := maximal singular WKB trajectories on adΣ

• Stokes graph := collection of all Stokes lines on adΣ

• Stokes network on X is the projection of the Stokes graph under adπ : adΣ −→ X



§2.2. WKB Trajectories and Stokes Lines: Invariant Description

• WKB trajectories of type ij are leaves of R+-foliation of the differential (λi − λj) dx

• The characteristic equation λn + a1λ
n−1 + · · ·+ an = 0 (♠) is a spectral curve:

Σ T∗
X,D = tot

(
Ω1
X,D

)
X

π

equipped with canonical differential
λ ∈ H0

Σ(Ω
1
Σ,D̃

)

• λi dx is the local expression for λ on sheet i of Σ
• Lemma: (λi − λj) dx are local expressions for adjoint canonical differential adλ on

adΣ := Σ×
X
Σ Σ

Σ X

π2

π1
⌜ π

π

adλ := π∗1λ− π∗2λ
adjoint
spectral
curve

• turning points := ramification locus of adπ : adΣ −→ X

• WKB trajectories := leaves of R+-foliation of adλ on adΣ

• Stokes lines := maximal singular WKB trajectories on adΣ

• Stokes graph := collection of all Stokes lines on adΣ

• Stokes network on X is the projection of the Stokes graph under adπ : adΣ −→ X



§2.2. WKB Trajectories and Stokes Lines: Invariant Description

• WKB trajectories of type ij are leaves of R+-foliation of the differential (λi − λj) dx

• The characteristic equation λn + a1λ
n−1 + · · ·+ an = 0 (♠) is a spectral curve:

Σ T∗
X,D = tot

(
Ω1
X,D

)
X

π

equipped with canonical differential
λ ∈ H0

Σ(Ω
1
Σ,D̃

)

• λi dx is the local expression for λ on sheet i of Σ
• Lemma: (λi − λj) dx are local expressions for adjoint canonical differential adλ on

adΣ := Σ×
X
Σ Σ

Σ X

π2

π1
⌜ π

π

adλ := π∗1λ− π∗2λ
adjoint
spectral
curve

• turning points := ramification locus of adπ : adΣ −→ X

• WKB trajectories := leaves of R+-foliation of adλ on adΣ

• Stokes lines := maximal singular WKB trajectories on adΣ

• Stokes graph := collection of all Stokes lines on adΣ

• Stokes network on X is the projection of the Stokes graph under adπ : adΣ −→ X



§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Fix x0 ∈ X ordinary point := neither a turning point nor a pole

Definition (n = 2)

The WKB flow of x0 of type i is nonsingular if the WKB trajectory Γij(x0) is nonsingular.

⇡
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§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Definition (n ⩾ 3)

The WKB flow of x0 of type i is nonsingular if
• each WKB trajectory Γi1(x0),Γi2(x0), . . . ,Γin(x0) is nonsingular

• Whenever Γij(x0) intersects a singular trajectory of type ik, let x1 ∈ X be an
intersection point, and assume Γjk(x1) encounters no turning points

• Repeat for Γkj(x1)

• This process terminates at a finite number of iterations

• Complete Stokes network := locus of all points on X with singular WKB flow
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§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Example (BNR):
(
ℏ3∂3x + 3ℏ∂x + 2ix

)
ψ = 0
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§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Example (BNR):
(
ℏ3∂3x + 3ℏ∂x + 2ix

)
ψ = 0
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§3. Borel Summability of WKB Solutions

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix x0 ∈ X ordinary point and λi leading-order characteristic root near x0.

Assume that the WKB flow of x0 of type i is nonsingular.
Then the formal WKB solution

ψ̂i(x, ℏ) = exp

(
1

ℏ

∫ x

x0

ŝi(x, ℏ) dx
)

= e
∫ x
x0

λi/ℏ
∞∑
k=0

ψ(k)

i (x)ℏk

is uniformly Borel summable near x0:

ψi(x, ℏ) := S
[
ψ̂i

]
(x, ℏ) = e

∫ x
x0

λi/ℏS

( ∞∑
k=0

ψ(k)

i (x)ℏk
)

In fact, ψi is the unique solution for x near x0 which satisfies

ψi(x0, ℏ) = 1 and ψi(x, ℏ) ≃ ψ̂i(x, ℏ) as ℏ → 0 with Re(ℏ) > 0

uniformly in x and arg(ℏ).

Corollary

Uniqueness yields a notion of exact WKB flat sections of L for P on (X,D).
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§3.1. Proof Outline (n = 2)

Focus on the Riccati equation ℏ∂xs+ s2 + p1s+ p2 = 0

Lemma
The Borel transform of ŝi is uniformly convergent near x0:

σ̂i(x, ξ) := B
[
ŝi
]
= B

[
λi +

∞∑
k=1

s(k)i (x)ℏk
]
=

∞∑
k=0

1
k!s

(k+1)

i (x)ξk ∈ OX,x0{ξ}

Goal
Construct the analytic continuation σi of σ̂i for all ξ ∈ R+ and define

si(x, ℏℏℏ) := λi + L
[
σi
]
= λi(x) +

∫ +∞

0
e−ξ/ℏσi(x, ξ) dξ

ψi(x, ℏℏℏ):= exp

(
1
ℏ

∫ x

x0

si(x
′, ℏ) dx′

)

Recall: uniform summability =⇒ S
[
exp

(
1
ℏ

∫ x

x0

ŝ dx /ℏ
)]

= exp

(
1
ℏ

∫ x

x0

S
[
ŝ
]
dx

)
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ŝ
]
dx

)



§3.1. Proof Outline (n = 2)

Focus on the Riccati equation ℏ∂xs+ s2 + p1s+ p2 = 0

Lemma
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ŝi
]
= B

[
λi +

∞∑
k=1

s(k)i (x)ℏk
]
=

∞∑
k=0

1
k!s

(k+1)

i (x)ξk ∈ OX,x0{ξ}

Goal
Construct the analytic continuation σi of σ̂i for all ξ ∈ R+ and define

si(x, ℏℏℏ) := λi + L
[
σi
]
= λi(x) +

∫ +∞

0
e−ξ/ℏσi(x, ξ) dξ

ψi(x, ℏℏℏ):= exp

(
1
ℏ

∫ x

x0

si(x
′, ℏ) dx′

)

Recall: uniform summability =⇒ S
[
exp

(
1
ℏ

∫ x

x0
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§3.1. Proof Outline (n = 2)

To construct the analytic continuation σi, argue as follows.

1 Simplify by linearising the Riccati equation around λi:

Let s = λi + S =⇒ ℏ∂xS + (λi − λj)S = ℏA0 + ℏA1S − S2

2 Apply the Borel transform:

Let σ = B[S] =⇒ ∂xσ + (λi − λj)∂ξσ = α0 + a1σ + α1 ∗ σ − ∂ξσ
∗2

3 Rewrite as an integral equation:

σ(x, ξ) = a0 −
∫ ξ

0
(righthand side)

∣∣∣∣(
x(t), ξ − t
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§3.2. Proof Outline (n ⩾⩾⩾ 3) | skip!

Focus on the equation (ℏ∂x)n−1s+ sn + . . . = 0 (♦) and argue as follows.
1 Rewrite as a nonlinear system: put y1 = s, y2 = ℏ∂xy, . . ., and consider

ℏ∂xy = F (x, ℏ, y )

Example (BNR):
(
ℏ3∂3x + 3ℏ∂x + 2ix

)
ψ = 0

⇝ ℏ2∂2xs+ 3sℏ∂xs+ s3 + 3s+ 2ix = 0

⇝ ℏ∂x
[
y1
y2

]
= F (x, y) = −

[
y21 − y2

y1y2 + 3y1 + 2ix

]
⇝ leading-order solution y(0)

i =

[
λi
λ2i

]
⇝ leading-order Jacobian at y(0)

i is Ji = − ∂F

∂y

∣∣∣∣
y=y

(0)
i

=

[
2λi −1

λ2i + 3 λi

]
⇝ Ji is diagonalisable to Λi :=

[
λi − λj

λi − λk

]
2 Linearise around the leading-order solution y(0)

i and apply a gauge transformation G
to diagonalise the Jacobian Ji:

Let y = y(0)

i +GS =⇒ ℏ∂xS + ΛiS = ℏA0 + ℏA1S + · · ·︸︷︷︸
at least quadratic

in ℏ or S



§3.2. Proof Outline (n ⩾⩾⩾ 3) | skip!

3 Apply the Borel transform:

Let σ = B[S] =⇒ ∂xσ + Λi∂ξσ = α0 + a1σ + α1 ∗ σ + · · ·

4 Rewrite as a system of integral equations: j = 1, . . . , n− 1

σj(x, ξ) = aj0 −
∫ ξ

0
(righthand side)

∣∣∣(
xj(t), ξ − t

) dt where t =

∫ xj(t)

x0

λij dx

5 Construct σi using the method of successive approximations: define
{
τk(x, ξ)

}
by

τ0 := a0 , τ1 := −
∫ ξ

0

(
α0 + a1τ0

)
dt , τ2 := −

∫ ξ

0

(
a1τ1 + α1 ∗ τ0

)
dt , · · ·

6 Lemma 1: σi(x, ξ) :=
∞∑
k=0

τk(x, ξ) is uniformly convergent near ξ = 0, and σ̂i is its

Taylor series at ξ = 0



§3.2. Proof Outline (n ⩾⩾⩾ 3) | skip!

6 To analytically continue σ to all ξ ∈ R+, carefully examine cross-terms starting in τ2:

τ2 := −
∫ ξ

0

(
a1τ1︸ ︷︷ ︸

...
aj11τ

1
1 + . . .+ aj1nτ

n
1

...


+ α1 ∗ τ0

)
dt

⇝
∫ ξ

0

∫ ξ−t

0
τ
((
xj(t)

)k
(u), ξ − t− u

)
dudt

7 Lemma 2: thanks to the assumption that the (complete) WKB flow is nonsingular,
σ(x, ξ) admits analytic continuation to ξ ∈ R+ of exponential type



§4. The WKB Method: Invariant Formulation

The Geometric WKB Problem

0 GIVEN: (E ,∇) an oper: 0 E ′ E E ′′ 0
FIND: a ∇-invariant splitting W : E ′′ → E .

The Geometric WKB Method
1 Fix a reference pair (W0,∇0) where

• W0 : E ′′ → E any reference splitting, so E ∼−→ E ′ ⊕ E ′′;
• ∇0 = ∇′ ⊕∇′′ any block-diagonal connection on E ′ ⊕ E ′′.

2 Write W : E ′′ → E ′ ⊕ E ′′ as S ⊕ id and solve for S by searching for a unipotent gauge
transformation [

id
0

W

]
=

[
id S
0 id

]
:

E ′ E ′

E ′′ E ′′
⊕ ⊕

3 Write ∇ = ∇0 − ϕ where ϕ =

[
ϕ11 ϕ12
ϕ21 ϕ22

]
4 Then W is a ∇-invariant splitting ⇔ S satisfies the geometric Riccati equation:

ad∇0 S − ϕ11S + Sϕ21S − ϕ12 + Sϕ22 = 0

Its exact solutions yield exact WKB flat sections for (E ,∇)

Remark: ?
=⇒ S ∈ Ext1X(E

′′, E ′)
?

=⇒ cohomological WKB method?
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§4. The WKB Method: Invariant Formulation

Traditional Point of View:

0 ℏ2∂2xψ + qψ = 0

1 ψ = exp
(∫
s dx /ℏ

)
2 ℏ∂xs+ s2 + q = 0

Geometric Point of View:

0 GIVEN: (E ,∇) oper:

0 E ′ E E ′′ 0
FIND: ∇-invariant splitting W : E ′′ → E

1 Fix reference pair (W0,∇0)

2 Search for
[
id
0

W

]
=

[
id S
0 id

]
:

E ′ E ′

E ′′ E ′′
⊕ ⊕

3 Write ∇ = ∇0 − ϕ where ϕ =

[
ϕ11 ϕ12
ϕ21 ϕ22

]
.

4 ad∇0 S − ϕ11S + Sϕ21S − ϕ12 + Sϕ22 = 0

• Schrödinger equation = 2-nd order ℏ-differential operator on L := ω
−1/2
X

• Equivalently, ℏ-connection ∇ on the 1-jet bundle E := J 1L
• Oper structure = jet sequence: 0 ωX ⊗ L E L 0
• Reference splitting W0 is given by choice of coordinate x because

E ∼−→
x

〈
dx⊗ dx−1/2

〉
⊕
〈
dx−1/2

〉
= E ′ ⊕ E ′′ and S = s(x, ℏ) dx

• Reference connection ∇0 = ℏd, then ∇ =loc ℏd−
[

0 − q
1 0

]
dx = ∇0 − ϕ

• Riccati equation: ℏ∂xs+ s2 + q = 0
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