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Truncated perturbation expansions

• Se�ing: a function F is only known as n of terms of a perturbation expansion
convergent, or resurgent, possibly with limited accuracy, and we need to find
F as precisely as possible.

• Let Mn be the Maclaurin polynomial obtained by Borel transforming the series.

• What is the maximal accuracy in determining F from Mn?

• Without further information about F , this question is of course ill posed. But:
O�en we know or guess the position of Borel plane singularities (the underlying
Riemann surface Ω) and a rate of growth of F .

• We find that with it the questions become well posed. The optimal reconstruct-
ing procedure is explicit, and dramatically improves over classical methods.

• Also very useful when there are no theoretical limitations on the number of
terms/accuracy: understanding the Borel plane and physical domain of ana-
lytic functions based on easier to generate perturbative expansions.

• We have now quantified the e�ects of numerical noise of the optimal approach
as well as of traditional ones s.a. Padé.
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“ What the package includes”
• The explicit optimal reconstruction formula of F given Mn and Ω; this for-

mula is based on uniformizing maps of Riemann surfaces;

• We obtained the uniformization maps for Riemann surfaces commonly en-
countered in applications;

• Continuation of F on many sheets of Ω (o�en tens of sheets, and in a precise
sense, infinitely high/deep).

• (With some more info): Operators removing (or modifying, if desired) a sin-
gularity at a given point to further improve accuracy.

• Coe�icient extrapolation. Meaning: e.g., from the first n terms of the expan-
sion, determine with good precision, say 2n coe�icients.

• Global reconstruction in the physical domain. Returning to the physical
domain, find, from the asymptotic series at +∞ precise information on the
global behavior in the physical domain.

• Formulas for the sensitivity to numerical errors.
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Truncations of series of ”natural origin” contain hidden
info: proof of concept

Claim

• The first n (large enough) Maclaurin coe�icients of a given function 1 determine
with high accuracy the n + 1th coe�icient.

Method (not optimal), using Padé
(take a known function to test it)

• Calculate the maximal possible diagonal Padé approximant [n/2, n/2] of Mn.

• Calculate P̃n+1 of [n/2, n/2]. It is very close to the actual one! (�ite a few
more Maclaurin coe�s can be calculated accurately.)

• (Try it!) Detailed explanation in CMP 2022.

1known to be analytic in D with some number of singularities in Dc
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First, a classical tool: Padé

• Assume for definiteness that the (maximal) disk of analyticity of a function F ,
for which we know M2n, is D .

• One the oldest tools in the “reconstruction trade” are Padé approximants.

• Padé is the “best” approximant of F as a rational function Pn(x)/Qn(x)

• In particular, the best approximation condition has to hold in a tiny neighbor-
hood of the origin. Close to 0, the Maclaurin polynomial is already optimal.
(We prove this later.) Hence the choice:

Definition
The Padé approximant [n, n] associated to M2n(F ) is the (unique up to normalization)
ratio of polynomials Pn/Qn having the same Maclaurin polynomial, M2n.

• Padé approximants have remarkable properties, including faster convergence
in D than the Maclaurin series and o�en, convergence (in the sense of capacity)
as n→∞ to F even outside D, in a larger domain of analyticity in C.
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Padé, revisited: conformal maps, and electrostatics

There is a remarkable and intuitively useful physical interpretation of the do-
main DP of Padé convergence and placement of Padé poles, best seen if the
expansion point is∞ . This is derived from a fundamental paper of H. Stahl 2:

1 Given F , let D be any simply connected single-valuedness domain of F (ω−1)
and let E = ∂D. Think of E as an infinitely flexible, perfect conductor.

2 Capacitance. Place a unit charge on E , and normalize the electrostatic poten-
tial V (x, y) = V (ω), ω = x + iy w.r.t. ω =∞ by V (E) = 0.
Define the capacitance of E by C=cap(E) = 1/V (∞).

3 Minimal capacitor. Deform E to the set EP of minimal capacity under these
constraints. Then DP = C \ EP is the domain of convergence of Padé, in the
sense of capacity.

4 The electrostatic equilibrium distribution of charges along EP is the equilibrium
measure µ. As j → ∞ the poles of the near diagonal Padé approximants are
placed (close to) EP , with distribution (close to) µ.

5 Let ψ be the conformal map from Dc
P to D . Then, V (ω−1) = −Re lnψ.

2“The Convergence of Padé Approximants to Functions with Branch Points”, JAT 91 (1997).
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Proposition (Slight enhancement of Stahl’s, OC, Dunne, Meynig (2022))

Let F be analytic in D with branch points in C. �en, for large n and ω ∈ DP ,

(F (ω)− [n, n]F (ω))1/2n = eiλψ(ω)(1 + o(1))

Here eiλ is some phase, [n, n]F is the order n diagonal Padé of F andDP is the domain
of convergence of Padé.

In a log sense, the approximation [n, n]F provides the conformal map ψ. The
approximation quality is |ψ|n.

• Padé maps a ”large” domainD of analyticity of F toD, calculates the Maclaurin
series there, and maps it back to D.
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Optimal reconstruction: Notations and conventions
• By the celebrated uniformization theorem, a sweeping generalization of the

Riemann mapping theorem, any simply connected Riemann surface Ω is con-
formally equivalent to one of D,C, Ĉ. In all but the simplest cases, it is D.

• Because of analyticity at zero in Borel plane Riemann surfaces of interest con-
tain a disk around zero, say D, on the first Riemann sheet.

• Take such an Ω; we denote by ψ the conformal map to D, the uniformization
map, and let ϕ = ψ−1.

Figure: Notation. The uniformizing map z = ψ(ω) is the conformal map from the
simply connected Riemann surface Ω to D; ϕ = ψ−1. The map is normalized as usual,
ψ(0) = 0, ψ′(0) > 0.
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The optimal reconstruction procedure
• Let F (ω) be analytic on Ω with Maclaurin polynomial Mn(ω).

• Let ψ be the uniformization map (conformal map to D) of Ω s.t. ψ(0) =
0, ψ′(0) > 0 and let ϕ = ψ−1.

• Note that ϕ(D) = Ω and F ◦ ϕ is analytic in D.

The most accurate (quantified below) reconstruction of F is as follows.

1 Take (Mn ◦ ϕ)(z).

2 Expand (Mn ◦ ϕ)(z) in Maclaurin series at zero.

3 Discard all terms beyond the nth (‼) We get a polynomial (Mn ◦ ϕ)n.

4 The best approximant is R̂n := (Mn ◦ ϕ)n ◦ ψ .

5 To improve the accuracy of reconstruction, we needed to throw away part of the
information we had.
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Less is more!

1 Take (Mn ◦ ϕ)(z). Expand (Mn ◦ ϕ)(z) in Maclaurin series at zero.

2 Discard all terms beyond the nth (!) We get a polynomial (Mn ◦ ϕ)n. 3

3 The best approximant is R̂n = (Mn ◦ ϕ)n ◦ ψ .

3Any further terms of the Maclaurin series of Mn ◦ϕ, calculated from Mn ◦ϕ, lead to loss
of accuracy, in fact at an exponential rate in n.
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• Intuition: The Taylor coe�icients of F are the Fourier coe�icients of FI∂D . For the
general class of functions analytic in D and in L2(∂D), the best approximation
that can be go�en out of a given number of Fourier coe�icients is precisely the
associated Fourier sum (the orthogonal projection on that space).

• ”Hence” in a space of functions analytic in D and no further, the Taylor poly-
nomial is already optimal.

• ”Hence”: map to D the whole analyticity domain of F and use the mapped
Maclaurin polynomial as the approximant: this must be the best. (It is a good
intuition, but not how the proof goes.)
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Theorem (OC, G. Dunne 2020)

–Let ω0 ∈ Ω, and Mn an (n − 1)-order truncation of a Maclaurin series, converging
in D.

–Define Fn = {F analytic on Ω : ||F‖∞ <∞, and Mn is the Maclaurin coe�. of F}
–Let R̂n = (Mn ◦ ϕ)n ◦ ψ.

Rate of approximation: Let ω0 ∈ Ω. For F ∈ Fn we have

|F (ω0)− R̂n(ω0)|
‖F‖∞

6
|ψ(ω0)|n

1− |ψ(ω0)|
(∗)

Optimality: ∀Rn ∈ C and δ > 0 ∃Fδ ∈ Fn s.t.
|Fδ(ω0)− Rn|
‖F‖∞

> |ψ(ω0)|n(1− δ)

• (∗) Since Ω ⊃ D, we have |ψ(ω)| < |ω| for ω ∈ D.

• Note. The sequence {(Mn ◦ ϕ)n ◦ ψ}n∈N converges on the whole of Ω.

• Weighted bounds are covered too, in the paper.

• The method is independent of ω0 and n but is optimal at any ω0 and any n.
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�antifying convergence improvement: Near zero
• Say the coe�icients of Mn are bounded by some c, ensuring errors∼ cωn. Then

the errors in the optimal method are ∼ ψ′(0)nωnc ; we note that 0 < ψ′(0) < 1

is decreasing with the size of Ω, and it is typically |ψ′(0)| < 1
2 .

• Example: If the unit disk is a natural boundary for F , then Mn (say with coe�i-
cients as above) is optimal, with accuracy of order cωn. If instead F is analytic
in Ω = C\ [1,∞) and no further, the accelerated rate is 4−nωnc. If [1,∞) is not
a natural boundary of F but instead F is analytic on the Riemann surface over

Ĉ \ {(0), 1,∞} , as is the case for hypergeometric functions, then the optimal

rate is 16−nωnc .

Near singularities, that is near ∂Ω

• This is even more dramatic: as we have seen, optimally used, M200 of K is still
accurate at a distance∼ 10−52 of the singular point 1. (With M200 alone we can
get within 10−1 and with Padé 10−3).
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Looping around on the Riemann surface: elliptic K
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Figure: Approaching singularities on three sheets of K◦ϕ using M200. The curves are
parametrized by t ∈ [1, 1). The shape of the graph matches log singularities with
specific ”Stokes” constants.
• Singularity of K at 0 on sheet −1 (circling 1 once). It can be approached within
|ε| ∼ 10−52, keeping 7 digits of acuracy.
• The singularity at 0 a�er 2 loops around 1.

• The singularity at 1 a�er one loop around 1 and a loop around 0 on the second
sheet.
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Optimal coe�icient extrapolation

• The optimal extrapolation is given by: Mn+1 ≈ Mn + 1
n! [(Mn ◦ ϕ) ◦ ψ](n)(0)ωn.

• If the nth Maclaurin coe�icient of F is bn, it di�ers from this extrapolation by
exponentially small relative error, ψ′(0)nbn.

• In the examples above, ψ′(0) = 1/4 and 1/16 resp.

• Unlike Richardson extrapolation etc. this procedure works even if the coe�i-
cients of P are complex, oscillating or whatever.
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How accurate is the optimal extrapolation?

• For K(m), analytic on the Riemann surface over Ĉ \ {(0), 1,∞}, M8 predicts
M9with relative error ε9 ∼ 5 · 10−9 (.1% for Padé)

• M471 is predicted with maximum relative error in its coe�icients of 0.13%.

• With more coe�icients, say 60,M61 is predicted with relative error ε61 ∼ 5·10−73

and M120 with maximum relative error 10−51.
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Application: exploring Riemann surfaces, Painlevé PI

Riemann surface and singularities for PI
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Figure: Borel plane ΩZ of PI: universal covering of C \ {(0),N,−N}.

Theorem

ΩZ is uniformized by ϕ−1, ϕ = 1
2πi ln(1− q−1), with q = elliptic nome.

• The singularities of tronquée solutions F of P1 lie on ∂ΩZ. Hence F◦ϕ is analytic
in D and all singularities above are mapped on ∂D. Scanning ∂D reveals all
singularities on all (in practice, many) Riemann sheets! Next.
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Painlevé PI ◦ ϕ on ∂D from 2oo coe�icients.

Figure: |(M200 ◦ ϕ)200| of P1 plo�ed on a circle of radius 0.99, parametrized by t ∈
[0, 1]. We see singularities from many sheets.
–Notice the thick lines (the thickness decreases with the distance to ∂D): these are
two exponential singularities. The exponential nature is clear in the ”large n” empir-
ical asymptotics of the coe�icients of M200.
–Exponential singularities only exist when the sheet index → ∞. We see in-
finitely deep on Ω, and uniformization may be the only way to extract this informa-
tion from M200.
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Application: Global reconstruction in the physical domain
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Figure: The tritronquée solution of P1 reconstructed from M200, Borel transformed from its
divergent expansion as x → +∞. There is a 2π/5 wedge of poles (about 66 of which are
recovered with high accuracy), and in its complement y is analytic.

• The position x1 of the first pole and the “energy” constant h1 at x1 are important in
applications, but not (yet?) known in closed form. Best existing numerical methods
provided some 16 digits of accuracy. We get 66 digits of accuracy,

x1 = −2.38416876956881663929914585244876719041040881473785051267725...

h1 = 0.0621357392261776408964901416400624601977407713738296636635333...

The accuracy is roughly preserved throughout the analyticity sector.
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Singularity modifier operators and singularity elimination

• Singularity modification & elimination applies to functions for which the nature
of a singularity is known or empirically guessed, in ways we propose. A�er elim-
ination of a singularity, the reconstruction accuracy improves substantially.

• In applications, generic singularities in Borel plane (normalized to be at ω0 = 1)
are known to be of the form (1−ω)αA(ω)+B(ω); α ∈ C\Z; or, for α = m ∈ Z
a pole, or more commonly, and generally:

dk

dωk [(1− ω)m ln(1− ω)A(ω)] + B(ω) A,B analytic at 1

• An operator of the form (ω−β[ωβ ∗F ])◦h where h(ω) = 2ω−ω2 preserves the
Borel plane structure except that it transforms the behavior near 1 to A(ω) +
B̃(ω), A as before and with B having some explicit expression. It eliminates the
singularity without moving it.
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E�ects of noise

Assume the Maclaurin polynomial Mn is perturbed by a zero average
random variable, Nε = ε

∑n
k=0 rk ω

k ,

Mn 7→ Mn +Nε

For mth-digit truncation errors, the random perturbation is rk = ± 1
2 10−m.

• Q: how does numerical noise a�ect the accuracy of conformal map approxi-
mants, and relatedly of Padé?

• A: In a universal way: there is a universal relation among number of terms,
noise, as a random variable, and accuracy, as a random variable.

First: Numerical Experiments of Padé “Breakdown” (M. Meynig)

• The noise eventually causes the appearance of arcs of poles which form a nat-
ural boundary touching genuine singularities of F . We first illustrate this on
the sample functions (1 + ω)−1/9 and (1 + ω2)−1/9.
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•

Figure: Padé poles for di�erent orders [n, n] starting with n = 32, for (1+ω)−1/9,
with coe�icients truncated at 40 digits. Spurious noise poles begin to appear at
order 33, and in the limit they form as arcs originating at ωinf = +1, the point
of best approximation of Padé in the absence of noise.
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Figure: This pa�ern explained later.
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Figure: Plots of Padé breakdown (∆n is some measure of accuracy) for five dif-
ferent realizations of the random noise with same noise strength ε = 10−20 for
functions with 1 and 2 branch points (−1 and −1, 1). The order of breakdown
is twice as large for the two-singularity function.
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Intuition. If ω ∈ ∂D ⊂ Ω is no singular then Mn(ω) gives an accuracy
O(ωn+1) = O(1) if n is not large. Instead, Mn(F ◦ϕ), has accuracy O(ψ(ω)n+1),
exponentially small in n since |ψ(ω)| < 1. This accuracy comes from massive
cancellations, perturbed by noise, the source noise sensitivity. (Padé can be put
in this framework too.) Write

(F ◦ ϕ)(z) =
∞∑
j=0

Fjϕj(z) :=
∞∑
k=0

ck zk (1)

Definition

In approximating F from its truncated expansion F[m] by using a conformal map or
Padé, both relying on F ≈ (F ◦ ϕ)[k] ◦ ψ, k > n, we measure the noise-induced
breakdown by one of the following criteria

1 First k for which ck becomes inaccurate.

2 For a fixed z ∈ D, first k for which (F ◦ ϕ)(z) ≈ Mk(F ◦ ϕ)(z) becomes inaccurate.

3 First k for which there is a z ∈ D for which (F ◦ ϕ)(z) ≈ Mk(F ◦ ϕ)(z) becomes
inaccurate.

1 and 3 are roughly equivalent, while 2 provides more local information.
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• LetNε be the noise function above and let n(z) be the the composition ofNε
with ϕ.

n(z) := (Nε ◦ ϕ)(z) = (
∑
k>0

rkωk) ◦ ϕ) =
∞∑
k=0

nkzk (2)

• nk are exponentially larger than rk , more precisely as follows

Proposition

1 As before, let ψ := ϕ−1. a

For each realization of the noise variables ri we have, with probability one,

lim sup
k
|nk |

1
k = |zinf |−1 where |zinf | = |ψ(ωinf )| := dist(b, 0) (3)

aWith probability one, the unit circle S1 in Ω is a natural boundary of Nε, and
b = {z : |ϕ(z)| = 1} = ψ(S1) is a natural boundary ofNε ◦ ϕ.

The crucial quantity is zinf , the closest point to the origin of ψ(D)
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Theorem

For large k, nk is a random variable of zero average and standard deviation

σ(nk) = εA k−
1
4 |zinf |−k(1 + o(1)) (4)

where
A = 3−

1
2 (2π)

3
4 |ψ′(ωinf )| [ Reα(ωinf )]−

1
4

(A relatively delicate asymptotic problem!)
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Corollary

For given error threshold δ ,
1 For ω ∈ Dc , with zω = ψ(ω) the approximation breakdown condition is

A k−1/4

∣∣∣∣ zωzinf

∣∣∣∣k ∣∣∣∣ 1
1− zinf/z

∣∣∣∣ ' δ/ε (5)

with mink |z|k(1 + εAk−1/4|zinf |−k) ≈ τ
τ−1 (Ak−1/4

min ετ)1/τ , τ = ln(zinf )/ ln z . In the

limiting case |z| = 1, 2 reduces, up to a constant, to the condition in 1 .

• Note. As a function with O(1) random coe�icients, Nε is analytic in D ⊂ Ω,
and the unit circle S1 ⊂ Ω is, with probability one, a natural boundary.

• Extrapolation quality relies on cancellation of coe�icients, hence the points of
best extrapolation accuracy are also those which are most sensitive to noise.
Indeed, the e�ects of the noise first appear there; therea�er, noise poles spread
out on a “circle of noise” in the “order” of approximation quality.
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Critical n

For diagonal [n, n] Padé we identify m = 2n and we have the general charac-
terization of breakdown:

nc =
log10(ε/δ)

2 log10(z inf )
(6)

ε =numerical accuracy, δ is the ”tolerated” accuracy. Importantly, the expres-
sion does not depend on the specificities of F , but just the locations of its sin-
gularities. In practical applications, even approximate information about the
location of the leading singularities of F can be used to obtain good approxi-
mations to nc .
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