STAVROS GAROUFALIDIS MATH INSTITUTE SUSTECH, SHENZHEN, CHINA

DIABLERETS, 2 FEB 2023

3-DIMENSIONAL TOPOLOGY

NUMBER THEORY SEMINAR

RESURGENCE IN

• I will talk about resurgence
of certain exact and perturbative
quantum invariants of 3-dimensional
spaces.
Good examples of 3-dimensional
manifolds = S²-K, or if you wish

$$K \subset S^3$$
 knot.
An example of an exact invariant
is $\langle K \rangle_N = Kashaeu$ invariant
Here N=1,2,3,....
Fact Ie $\langle K \rangle_N$ grows exponentially
wrt N
(G-Le) $|\langle K \rangle_N| \leq \exp(\frac{N \vee g}{2 \Pi} \#(crossings I \times I))$
 $\vee_g = 3.66... = volume of regular
ideal octahedron (Catalan's Gostaut)$

This bound is asymptotially sharp.

Det
$$G_{k}(z) = \sum_{N=1}^{\infty} \langle K \rangle_{N} z^{N}$$

is the aerm of an analytic
 $G_{ni}(G_{2008}) \quad G_{k}(z)$ is a resurgent
function.
Complements
Singularities in Borel plane are $exp(-A_{k})$
 $R = \cup(CS(p) + 4\pi^{2}Z)$
 $K = \sum_{p=boundary} perabolic reps$
...
If we rotate 90 we get

the peacock patterns (Mariño) Moreover, branch behavior is known. Thus, if you wish, you can take T-NK (universal cover) and uniformize it to (A) IzI<1 Note that Λ_{k} is readily computable. Note Above conjecture was formulated prior to the work on asympt expansion of Kashoev invariant (eg of Dimote-lennels-) Zagier Note Conjecture also formulated for closed 3-monifolds where instead of Koshaev inv, one use WRT ZN(M) which is O(NPOly). Compbell Wheeler studies the ramifications of resurgence for M=-1/2 surgery

on 4, knot.

v

Volume Conjecture (Kashaev)

$$\frac{1}{N}\log|\langle K\rangle_{N}| \sim \text{vol}(K)$$
For 4_{1} knot, we find

$$\langle 4_{1,2} \rangle_{N} \sim e^{\frac{v \cdot l(4)}{2\pi}N} \cdot N^{3/2} \cdot \Phi(\frac{2\pi i}{N})$$
where

$$\text{vol}(4_{1}) = 2 \operatorname{Im}(\operatorname{Li}_{9}(e^{2\pi i/6})) \sim 2.02$$
and

$$\Phi(h) = \frac{1}{\sqrt{3}} \left(1 + \frac{11}{72\sqrt{-3}}h + \frac{697}{2(72\sqrt{-3})^{2}}h^{2} + \frac{724351}{3(72\sqrt{-3})}h^{3} + \dots\right)$$
Note. Terms are alg number in $Q(\sqrt{-3}) = Q(e^{\pi i/6})$

$$except for leading term whose square,
$$vp to a power of i, is also. So coeffs$$
Note $\Psi(h)$ is a factorially divergent
formal power series
Note We can compute $\langle 4_{1}\rangle_{N}$ N=20000
with 10000 digits of precision, vse
Richardson transform and from it
extract first 150 coeffs of $\Phi(h)$$$

Note In [Dimofter &, 2008] we gave a formula for Alh) Using ideal trienquilations, NZ solutions and formal Goussian integration. Note O(h) can also be computed from a stationary phase approximation to a finite dim li-dim for 41) State-integral Doing 50, Jie Gu got easily 300 terms Alright, we now have good control on $\Phi(h)$. In a paper with Don Zagier (Knots, perturbative series and quentum modularity) we went a bit further. For 41, when N=100 <K> = 81985188380512462.9310054954341 $100^{2/2} \hat{\varphi}(\frac{2\pi i}{100})^{\text{pt}} = 81985188380512461.9269943535808$ 1.00401114185 $< K > - \log \phi \left(\frac{2\pi}{100} \right)^{\text{opt}} =$ Repeating the experiment with N=100 being replaced by 100+10n, n=1..20 we found out that this difference has the

a symptotic expression

$$d^{(a)}(h)_{2} = h^{2} + \frac{47}{12}h^{4} + \dots$$
 with $h = \frac{2\pi i}{N}$
Moreover (discovery)
 $d^{(a)}(h)_{2} = \sum_{i=1}^{\infty} (q;q)_{n} [q';q']_{n} = 1 - h^{2} + \frac{47}{12}h^{4} + \dots$
 $n=0$ when $q=e^{h}$
Note $(q;q)_{n} = (1-e^{h})_{\dots} (1-e^{nh})$
 $= (1)^{n} h^{h} + O(h^{n-1})$
Thus the series $d^{(a)}(h)$ is well-defined
and factorially divergent.
 OK . Now let us repeat the experiment
calling $\Phi(h) \longrightarrow \Phi^{(a)}(h) \Phi^{(a)}(h) \longrightarrow \Phi^{(a)}(h)$
Naw $\hat{f}^{(a)}(\frac{2\pi i}{100})^{-1} \Phi^{(a)}(\frac{2\pi i}{100})^{e^{h}} \sim \Phi^{(a)}(\frac{2\pi i}{100})^{e^{h}}$
to all 49 digits of precision
where $\Phi^{(a_{1})}(h) = \Phi^{(a)}(-h)$.
(what are $\Phi^{(a)}(h)$ for $\sigma = \sigma_{1}, \sigma_{0}, \sigma_{2}$?
They are the 3 boundary parabolic
representations.
 $Thus (4_{1}N)$ gives rise to 3
asymptotic (resurged) series $\Phi^{(a_{1})}(h)$ $j=0,1,2$

$$\frac{Next step}{Coellicients of } Asymptotics of the coellicients of $\Phi^{(\sigma_{1})}(h)$
Write $\Phi^{(\sigma_{1})}(h) = \sum_{n=0}^{\infty} A^{(\sigma_{1})}(n) h^{n}$
Then $A^{(\sigma_{1})}(n) \sim \frac{3}{2ni} \sum_{l \ge 0} A^{(\sigma_{2})}(l) \frac{(n-(-l)!)}{(2 \vee (4_{1}))^{n-l}}$
 $A^{(\sigma_{2})}(n) \sim \frac{-3}{2ni} \sum_{l \ge 0} A^{(\sigma_{1})}(l) \frac{(n-(-l)!)}{(-2 \vee (4_{1}))^{n-l}}$
 $A^{(\sigma_{2})}(n) \sim \sqrt{2n} \sum_{l \ge 0} A^{(\sigma_{1})}(l) \frac{\Gamma(n-l+\frac{3}{2})}{(-\nu(4_{1}))^{n-l}+\frac{1}{2}}$
 $-\sqrt{2n} \sum_{l \ge 0} A^{(\sigma_{1})}(l) \frac{\Gamma(n-l+\frac{3}{2})}{(\nu(4_{1}))^{n-l}+\frac{1}{2}}$
 $\sqrt{2n} \sum_{l \ge 0} A^{(\sigma_{2})}(l) \frac{\Gamma(n-l+\frac{3}{2})}{(\nu(4_{1}))^{n-l}+\frac{1}{2}}$
where $\mathcal{N}_{\sigma} = \begin{cases} \frac{3}{2} \sigma}{\sigma + \sigma_{0}} \\ \frac{\sigma' + \sigma}{\sigma} \end{cases}$
 $M_{4_{1}} = \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & -3 \\ 0 & 3 & 0 \end{pmatrix}$
 $3x^{3}$$$

Incidentally the next 2 simplest
hype knots are
$$5_2$$
 and $(-2,3,7)$
Croce held $x^3 - x^2 + 1 = 0$
 $M_5 = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 0 & 0 & 4 & -3 \\ 0 & -4 & 0 & 3 \\ 0 & 3 & 3 & 0 \end{pmatrix}$
 $M_5 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 &$

In other words
Compute the Stokes constants for
all transseries corrections.
In other words
Compute the Stokes phenomenan of
Borel transform of
$$\phi^{(0)}(h)$$
.
This was achieved in
G-Gu-Mariño: The resurgent structure
of quantum knot invariants.
Key features The transferies
Corrections of $\phi^{(0)}(h)$ involve
S. $\overline{q} \cdot \phi^{(0')}(h)$ $h=2ni\tau$ invo-s Rehko
 $\tau = \frac{h}{2ni}$
 $\overline{q} = e^{h}$ $\overline{\tau} = -\frac{2ni}{\tau} = -\frac{2ni}{h}, 2ni\overline{\tau} = \frac{4n^{2}}{h}$
where $S \in \mathbb{Z}$
Thus the transferies have the form
 $g^{(0')}(\overline{q}) \oplus^{(0')}(h)$ where $g^{(0)}(q) \in \mathbb{Z}[\overline{L}q]$

^

See equations (79), (80) of CGM paper
There, two Stokes matrices appear

$$S^{+}(q) = \begin{pmatrix} & & \\ & & \end{pmatrix} \qquad S^{+}(o) = \begin{pmatrix} 1 & 3 \\ & & 1 \end{pmatrix}$$

$$S^{-}(q) = \begin{pmatrix} & & \\ & & \end{pmatrix} \qquad S^{+}(o) = \begin{pmatrix} 1 & 3 \\ & & 1 \end{pmatrix}$$

$$S^{-}(q) = \begin{pmatrix} & & \\ & & \end{pmatrix} \qquad S^{+}(o) = \begin{pmatrix} 1 & 3 \\ & & 1 \end{pmatrix}$$

$$S^{-}(q) = \begin{pmatrix} & & \\ & & \end{pmatrix} \qquad S^{+}(o) = \begin{pmatrix} 1 & 3 \\ & & 1 \end{pmatrix}$$

$$S^{-}(q) = \begin{pmatrix} & & \\ & & \end{pmatrix} \qquad S^{+}(o) = \begin{pmatrix} 1 & 3 \\ & & 1 \end{pmatrix}$$

$$S^{-}(q) = \begin{pmatrix} & & \\ & & \end{pmatrix} \qquad S^{+}(o) = \begin{pmatrix} 1 & 3 \\ & & 1 \end{pmatrix}$$

$$S^{-}(q) = \begin{pmatrix} & & \\ & & \end{pmatrix} \qquad S^{+}(o) = \begin{pmatrix} 1 & 3 \\ & & 1 \end{pmatrix}$$

$$S^{-}(q) = \begin{pmatrix} & & \\ & & \end{pmatrix} \qquad S^{+}(o) = \begin{pmatrix} 1 & 3 \\ & & & \end{pmatrix}$$

$$S^{-}(q) = \begin{pmatrix} & & \\ & & \end{pmatrix} \qquad S^{+}(o) = \begin{pmatrix} 1 & 3 \\ & & & \end{pmatrix}$$

$$S^{-}(q) = \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

$$g^{(m)}(q) = \sum_{n=0}^{\infty} (-1)^n \frac{q^{n(n+1)/2 + nm}}{(q;q)_n^2} (2m + E(q) + 2\sum_{j=1}^{\infty} \frac{1+q^j}{(-q^j)})$$

$$E_i(q) = 1 - 4\sum_{j=1}^{\infty} q^{n'(1-q^n)} \quad \text{first Eigenstein Serier}$$

$$Thm q^{(m)}, C^{(m)} \text{ is a fundamental solution to}$$

$$\bigoplus_{j=1}^{\infty} y_{(m+1)} (q) - (2-q^m) y_m(q) + y_{m-1}(q) = 0, \text{ me Z}$$

$$\bigoplus_{j=1}^{\infty} det \left(g^{(m)} G^{(m)} \right) = 2$$
Hence full resurgence structure of $\varphi_{(1)}^{(r)}(h)$ is governed by a linear q-difference eqn.
Same for $\varphi_{52}^{(r)}(h) = 3x3$.

$$E_{x} + ension = fo = 3x3 : done in$$

$$G_{x2} - Mexino-Wheeler for 4_{1}, \frac{1}{2x^{2}}$$
But how was $g^{(m)}(q), G^{(m)}(q)$ goessed?
This requires to go back to history 12 year

Another part of the story
(complementary)
The second paper with Don Zegier
Knots and their related q-series.
On the train back from Diablerets 2011
Don and I computed the radial asymptotics
of the series

$$g(q) = \sum_{n=0}^{\infty} (-1)^n \frac{q^{n}(a+1)}{(q;q)^2} \quad q = e^{2\pi i \tau}$$

 $\tau \in i\mathbb{R} \to 0$ and much to our surprise
we have out that
 $g(e^{2\pi i \tau}) \sim r_{\overline{\tau}} (\hat{\Phi}(2\pi i \tau) - i\hat{\Phi}(-2\pi i \tau))$
Thus g is related to 4₁. But why?
There is an Andersen-Kasheev state
integral where factorization produces
 $\overline{Thm} \quad 2i(\frac{\alpha}{q})^{\frac{1}{2n}} \int \Phi_0(x)^2 - \pi i x^2$
 $= r_{\overline{\tau}} G(q) g(x) - \frac{1}{\sqrt{\tau}} g(q) G(\overline{q})$

where $G(q) = \sum_{n=0}^{\infty} (-1)^n \frac{q^{n(n+1)/2}}{(q;q)_n^2} \left(2m + E(q) + 2\sum_{j=1}^{\infty} \frac{1+q^j}{1-q^j}\right)$ Eilql=1-4 2 9/(1-9) hirt Eigenstein serier Then There is a 2x2 matrix of state (Gzagier integrals that bilinearly factorizes in terms of q times q series gm, G(m) and extends past cut plane. This is a holo quention moduler form responsible for the anglete description of the resurgent structure of the motion of $\phi^{(o,m)}(h)$ series. But all this is conjectural, and numerically Checked. The story extends to closed 3-manifolds and the example of M=-1/2 surgery on 4, is studied in Wheeler's thesis for 8×8 matrix (1 triviel connection plus 7 PSLC otheroner) the full