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In this talk, I will focus on perturbation series obtained from a
second order ODE(
ϵ2∂2

z + P(z)
)
ψ(z) = 0, where V (z) = Λ2/(2z3)− u

z2+2mΛ/z−Λ2.

This is a complexified Schrödinger equation, where z ∈ C , and C is
a Riemann surface. u,m,Λ, ϵ are complex parameters of the theory.

Solutions to the ODE can be built by Borel summation of the
all-order WKB series in the perturbation theory around ϵ = 0

ψ(z) = e
1
ϵ

∫ z
z0

∑
n=0

Y n(z)ϵndz
.

[Dingle, Écalle, Nikolaev, Silverstone, Voros, · · · ]

This is one way in the scheme of the exact WKB method.



Y (z , ϵ) =
∑
n=0

Y n(z)ϵn in the WKB ansatz ψ(z) = e
1
ϵ

∫ z
z0

∑
Y (z,ϵ)dz

can be obtained by solving the Riccati equation

−Y (z , ϵ)2 − ϵ∂zY (z , ϵ) + P(z) = 0, where P(z) = V (z)− u

The classical term in the series is

Y 0,(i)(z) = ±
√

P(z), for i = 1, 2.

After picking Y 0,(i)(z , ϵ), all Y n,(i)(z , ϵ) are determined. Y (i)(z , ϵ)
produces 2 independent solutions ψ(i) of the ODE.



The Riccati equation swallowed the complexity of the 2nd-order
ODE and we can recast it into a 1st-order ODE(

∂z − ϵ−1Y (i)
)
ψ(i) = 0.

In this rewriting, we go from the Riemann surface C to the 2-fold
cover of it defined by the classical part of the Riccati equation

Σ = {(Y 0)2 = P(z)}.

The sheets of SW curve correspond to the distinct solutions ψ(i).



The main object in the exact WKB are the quantum periods Πγ (or

Xγ = e
Πγ
ϵ ), also known as Voros symbols or spectral coordinates.

A definition of quantum period is the Borel summation of the series

Πγ ≡ s(ΠWKB
γ ) = s(

∑
n=0

∮
γ
Y n(z)dzϵn),

for some γ ∈ Γ ⊂ H1(Σ,Z).
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The information of the monodromy or Stokes data is captured by
quantum periods.

In this talk, we will show an exact quantization condition Xγ = −1.



This ODE is an example of the QFT-ODE correspondence.

It corresponds to the 4d N = 2 SU(2) gauge theory with one flavor
coupled to a surface defect. The moduli space of the surface defect
is C .

The Seiberg-Witten curve Σ describing the IR physics can be
obtained from the chiral ring of the surface defect.

σ2 = P(z)

The ODE can be obtained by turning on the Ω-background with
parameter ϵ corresponding to the rotation along the surface
defect.[Jeong, Nekrasov, Shatashvili, · · · ]



The Ω-background quantizes the structure of chiral
operators.[Neitzke, Shehper, · · · ]

We can construct a vector bundle over the moduli space C from
chiral operators. It comes with a natural ϵ−connection obtained by
keeping track of the Qϵ invariant chiral operators, e.g.

ϵ∂z +

(
0 P(z)
1 0

)
.

It is straight forward to recast an equation for the flat section of
the ϵ-connection into an oper or ODE, e.g.

ϵ2∂2
z + P(z)

The existence of the QFT-ODE correspondence has also been
shown from different perspectives. [Alday, Cecotti, Gaiotto, Gukov,
Jeong, Moore, Neitzke, Nekrasov, Tachikawa, Vafa, Verlinde, · · · ]



A SW theory produces:
▶ A finite rank charge lattice Γ with a skew pairing

⟨·, ·⟩ → Z(EM and flavor charge lattice).
▶ A homomorphism Z : Γ → C(central charges).

In the dictionary of ODE-QFT correspondence, classical periods
correspond to the central charges.

Quantum periods have the physical interpretations as IR line defect
VEVs. [Gaiotto, Moore, Neitzke]



The QFT-ODE correspondence has been generalized to the
correspondence between 5d N = 1 theories with the insertion of a
codim-2 defect and difference equations [Aganagic, Cherkis, Cheng,
Dijkgraaf, Elliott, Grassi, Hatsuda, Huang, Krefl, Marino, Nekrasov,
Pestun, Shatashvili, Vafa, · · · ].

The simplest example is the 5d theory obtained by compactifying
M-theory on C3. The quantization of Seiberg-Witten curve
corresponds to a difference equation(

ep̂ − 1 − eẑq−
1
2

)
ψ(z , ϵ) = 0, [ẑ , p̂] = ϵ

where
ep̂ψ(z , ϵ) = ψ(z + ϵ, ϵ).

[Garoufalidis, Kashaev]



In this talk, we will show the known exact WKB methods for the
quantum period. In particular, the QFT-ODE correspondence
provides a beautiful and analytic way to resum it.

Because of the singularities, quantum periods are piecewise analytic
function of (m,Λ, u, ϵ). I will explain a convenient way to relate
Borel summations in different chambers.

Some generalizations of the exact WKB to 5d · · ·
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Borel summation s(Y )(z , ϵ) of

Y (z , ϵ) =
∑

Y n(z)ϵn

includes two steps
▶ Borel transform

BY (z , ζ) =
∑ Y n(z)

n!
ζn

BY (z , ζ) has a finite radius of convergence, but the analytic
continuation has singularities.

▶ Laplace transform

s(Y )(z , ϵ) =
1
ϵ

∫ ∞eiarg(ϵ)

0
BY (z , ζ)e−ζ/ϵdζ.

Singularities of BY (z , ζ) are responsible for the Stokes
phenomenon.



Jumps can happen when
▶ arg(ϵ) changes (integral contour rotates)
▶ z or other parameters of the theory, ℘ = (u,m,Λ), change

(singularities move)
such that a singularity is on the integral contour at a critical
moment, i.e.

arg(ϵ) = arg(ζsing(z , ℘)).



s(Y )(z , ϵ, ℘) jumps at codim-1 walls in the parameter space of the
theory parametrized by (z , ϵ, ℘). They correspond to the
singularities of BY (z , ϵ).

Stokes graph W is the projection of the codim-1 wall to C .

s(Y )(z , ϵ) exists only away from W.
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Similarly, Borel summation applies to Πγ(ϵ) or its exponential
Xγ(ϵ) = eΠγ(ϵ).

In the QFT-ODE correspondence, singularities of quantum periods
correspond to central charges of BPS states Zγ ’s.[Grassi, Gu, H,
Marino, Neitzke, · · · ]

ζsing = Zγ

Xγ(ϵ, ℘) is piecewise analytic.



Xγ(ϵ, ℘) jumps at codim-1 walls in the parameter space of the
theory, (ϵ, ℘).

The walls separate the parameter space into chambers.

Each wall corresponds to a BPS state.

E.g. walls on the u plane for SU(2) SYM

u

chamber

wall

wall of 
marginal 
stability



Jumps of quantum periods are given by the Kontsevich-Soibelman
transformations.[Delabaere, Gaiotto, Moore, Neitzke, Pham, · · · ] E.g.

X ′
µ(ϵ) = (1 + Xγ(ϵ))⟨µ,γ⟩Ω(γ)Xµ(ϵ).

▶ γ labels the charge for the BPS state corresponding to the wall
crossed.

▶ Ω(γ) is a piecewise invariant of the theory which counts BPS
states with charge γ supported at the wall.
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The first order ODE (
∂z − ϵ−1Y (i)

)
ψ(i) = 0

defines GL(1) connection ∇ab of a line bundle L over Σ.

The solution ψi (z) is a flat section of ∇ab.

Since the solution jumps at Stokes graph, ∇ab naively don’t extend
across the lift of Warg(ϵ) to Σ. In order to extend it we need to
impose the gluing map(

ψL
1

ψL
2

)
→
(

1 0
β 1

)(
ψL

1
ψL

2

)
=

(
ψR

1
[ψL

1 ,ψ
L
2]

[ψL
1 ,ψ

R
2 ]
ψR

2

)
,

where [ψi , ψj ] = det

(
ψi , ψj

ψ′
i , ψ

′
j

)
is the Wronskian.



We use exponentially decaying solutions ψ1, ψ2, ψ3 along Stokes
directions and monodromy M to build the basis of each chamber in
the complement of Warg(ϵ).

𝜓2

𝜓3

𝜓1



Quantum periods are equivalently defined by

Xγ = Holγ∇ab.

[Hollands, Iwaki, Nakanishi, Neitzke, · · · ]
E.g.
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To go from the ϵ-connection to ∇ab, we have used the Stokes
graph W.

W consists of points z satisfying

arg(ϵ) = arg(−Z℘(z)),

Define Wϑ,℘0 for a generic ϑ replacing arg(ϵ) on the l.h.s., and on
the r.h.s. we can use any ℘0.

ϑ = arg(−Z℘0(z)),

The generalized Wϑ,℘0-abelianization when we use the same
canonical form of gluing across Wϑ,℘0 produces us ∇ab,ϑ,℘0 .



X ϑ,℘0
γ (ϵ, ℘) = Holγ∇ab,ϑ,℘0 .

X ϑ,℘0
γ is the analytic continuation of Xγ in the chamber containing

(ϑ, ℘0).
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Riemann-Hilbert problem
Quantum periods are solutions solving some Riemann-Hilbert
problem. [Bridgeland, Gaiotto, Moore, Neitzke, Voros, · · · ]

▶ Asymptotics:
Xγ(ϵ) ∼ e

Zγ
ϵ , ϵ→ 0

▶ Piecewise analytic:

Xµ(ϵ)′ = (1 + Xγ(ϵ))⟨µ,γ⟩Ω(γ)Xµ(ϵ), arg(ϵ) = arg(−Zγ)

▶ · · ·

The RH problem can be rewritten as TBA-like integral equations

Xµ(ϵ) = exp

(
Zµ
ϵ
+

1
4πi

∑
µ∈H1(Σ,Z)

∫
ϵ′∈R−Zγ

dϵ′

ϵ′
ϵ′ + ϵ

ϵ′ − ϵ
log
(
(1 + Xγ(ϵ′))⟨µ,γ⟩Ω(γ)

))
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For convenience, we choose a particular basis (γe , γm) for the
charge lattice Γ.

For a 4d N = 2 SUSY, Nekrasov-Shatashvili free energy

F inst(Πγe ,m, ϵ,Λ) =
∑

cn(Πγe ,m, ϵ)Λ
3n,

is a computable object which has the property that

Πγm = Πγe log Λ+ϵ log
Γ(1 +

2Πγe
ϵ )

Γ(1 − 2Πγe
ϵ )

+ϵ log
Γ(1

2 +
m−Πγe

ϵ )

Γ(1
2 +

m+Πγe
ϵ )

+∂Πγe
F inst.

F inst provides an alternative analytic resummation of the all-order
WKB series of quantum periods. [Mironov, Morozov, Nekrasov, Rosly,
Shatashvili, · · · ]



Comparison of the four methods

We have introduced 4 definitions for the quantum periods.

The 4 methods are all efficient.

They are proposed to be equivalent once we consider appropriate
transformation.[Hollands, Gaiotto, Iwaki, Moore, Nakanishi, Neitzke,
Nekrasov, Rosly, Shatashvili, · · · ]
▶ TBA equations always produce solutions matching with Borel

summation result.



▶ Wronskians method can be used as a bridge to produce the
transformations.

▶ Quantum periods obtained from NS free energy is the analytic
continuation from the instanton locus.

Instanton locus lies on a wall outside the wall of marginal stability.
Borel summation is defined by median summation.

Using NS free energy and Wronskians, we can get analytic
expressions for the quantum periods in (almost) all the parameter
space.



E.g. An analytic expression for a quantum period in strong coupling
region

Xγ =

e−ΠNS
γm

+
ΠNS
γe
2 − 2πm

h

(
eΠ

NS
γm + 1

)2
e
ΠNS
γe
2 + 2πm

h + eΠ
NS
γm

(
eΠ

NS
γm

+ΠNS
γe + eΠ

NS
γe + 1

)
+ 1


(

eΠ
NS
γe − 1

)2 ,

where ΠNS
γ ’s are the analytic expressions obtained directly from NS

partition function.



Exact quantization condition
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Restricted to the instanton locus of the parameter space, two of the
Stokes directions align.

If we stay on this line, we have a real Schrödinger equation with



For a bound state, we need

ψ1 = λψ2, for some λ

Substitute this condition in to the Wronskians exrepssion

Xγ =
[ψ1, ψ5][ψ4, ψ2]

[ψ5, ψ2][ψ4, ψ1]
= −1.

We reproduce a well known exact quantization condition.
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Some updates on the generalization to 5d
▶ Obtaining the all-order WKB series is in general hard. [Dingle,

Morgan]
Some recent progress has been made via holomorphic anomaly.
[Gu, Marino]

▶ The analogous to the Stokes graph is the exponential network
in 5d.[Banajee, Longhi, Romo]
There is a new type of walls appearing in 5d we have studied
the corresponding jump of solutions.[Alim, Grassi, H, Hollands,
Neitzke, Tulli].

▶ GMN TBA method has been studied in a very special chamber
of the pure SU(2) SYM. [Del Monte, Longhi]

▶ Refined topological string/ Nekrasov partition function
produces a perturbative series. [Alim, Grassi, H, Hatsuda,
Hollands, Huang, Marino, Neitzke, Teschner, Tulli, · · · ]



Thank you!
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