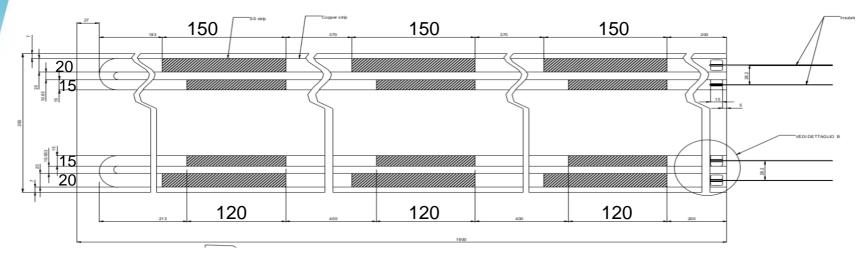
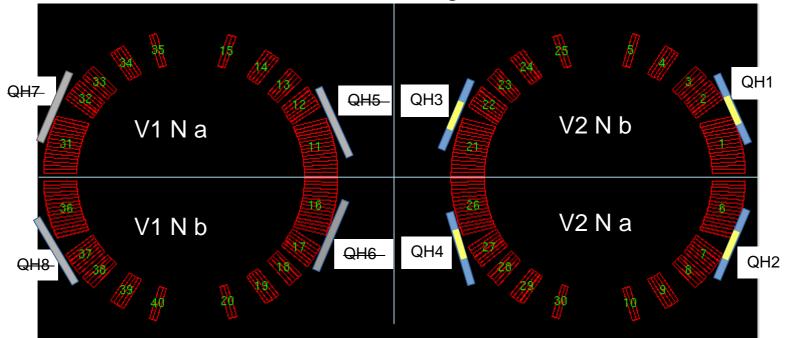

D2 protection studies

- 1- Protection scheme
- 2- Roxie model
- 2- Quench test cases
- 3- Simulation results vs measurements
- 4- Conclusions

HIL-LHC PROJECT 1.Protection scheme

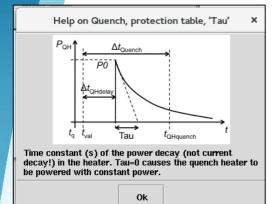

Design configuration

- 8 QHs (2 per coil)
- 4 QHs to be used (1,4,6,7)
- WRFS: 1 QH failing



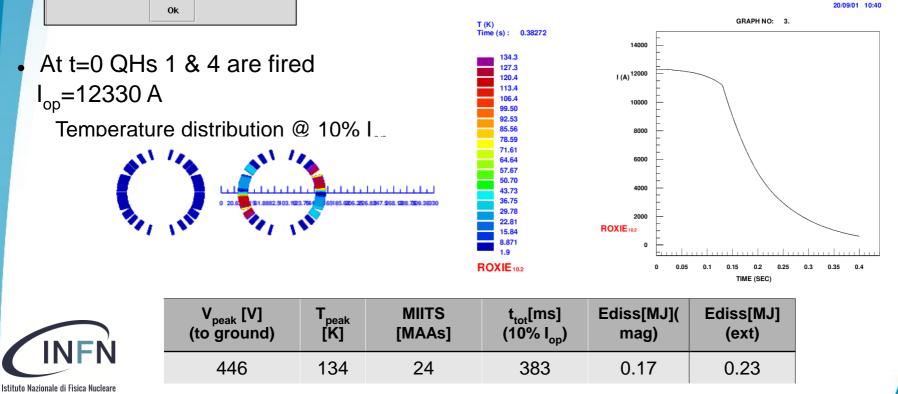
- LF strip: covers conductors 4-14 of block 1
- $A_1 = 0.150*0.02=0.003 \text{ m}^2$, $A_{tot} = A_1 x 3=0.009 \text{ m}^2$
- N=3 number of repetitions, thickness=25 μm
- R=0.51 Ω
- HF strip: covers entirely block 2
- A₁= 0.120*0.015=0.0018 m², A_{tot}=A₁x3=0.0054 m²
- N=3 number of repetitions, thickness=25 μm
- R=0.57 Ω

HIL-LHC PROJECT 1.Protection scheme


Current configuration

- 4 QHs in coil V2N
- New baseline: 2QHs used

2.Roxie model


HL-LHC

 $R_{LF}{=}0.51~\Omega$, $R_{HF}{=}0.57~\Omega,$ $R_{tot}{\simeq}~6~\Omega$ (also exit extra lengths are considered) V=900 V

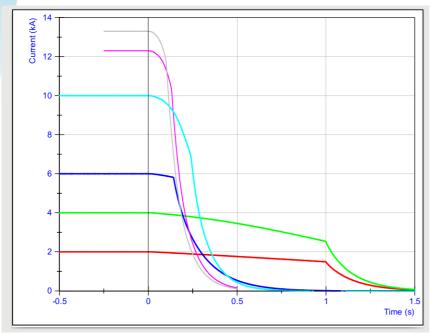
I=V_{ΩH}/R_{ALL} = 900V / 6 Ω= 150 A

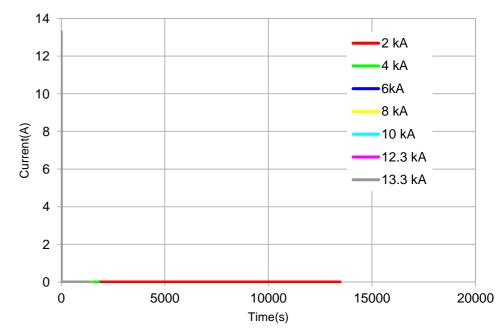
PROJEC

$$\begin{split} \mathsf{P} = \mathsf{R}_{\mathsf{QH-LF}}^{\mathsf{R}} \mathsf{I}_{\mathsf{QH}\,2} = & 1.15 \ 10^4 \, \text{W} \to \mathsf{P/A}(\text{low field}) = \mathsf{P/A^{tot}}_{\mathsf{LF}} = & 1.15 \ 10^4 / \ 0.009 = & 1.28 \ \text{MW/m^2} \\ \mathsf{P} = \mathsf{R}_{\mathsf{QH-HF}}^{\mathsf{QH-LF}} \mathsf{I}_{\mathsf{QH}}^{\mathsf{L}} = & 1.23 \ 10^4 \ \text{W} \to \mathsf{P/A}(\text{high field}) = & \mathsf{P/A^{tot}}_{\mathsf{HF}} = & 1.25 \ 10^4 / \ 0.0054 = & 2.28 \ \text{MW/m^2} \\ \mathsf{T} = & 0.042 \ \text{s} \quad (\mathsf{T} = \mathsf{RC} \ \mathsf{R}_{\mathsf{ALL}} = & \Omega, \ \mathsf{C} = & 7 \ \text{mF}) \end{split}$$

HIL-LHC PROJECT 2.Quench test cases

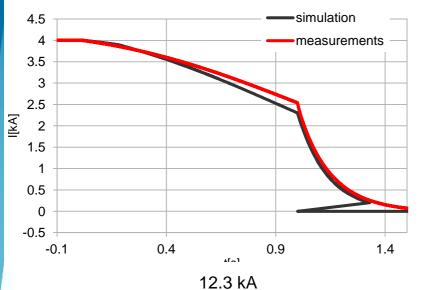
Current [kA]	R_dump [mOhm]	L_magnet [mH]	Delay_dump [ms]	QI_dump [MA²s]	V_max [V]
2	40	6.40	999	3.3	60
4	40	6.40	999	12	91
6	40	6.40	800	18	87
8	40	6.40	420	21	175
10	40	6.40	240	24	298
12.3	40	6.40	130	24	446
13.3	40	6.40	100	24	501

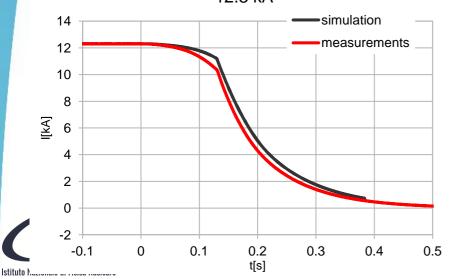

When the measurement plan was defined the standard protection was designed with 1 QH per coil and only 1 QH failure allowed, so missing the QHs of one aperture the test with only 2 QHs working was not included. Indeed in the meantime the new failure scenario include 2 QHs failing, but the test plan was not changed

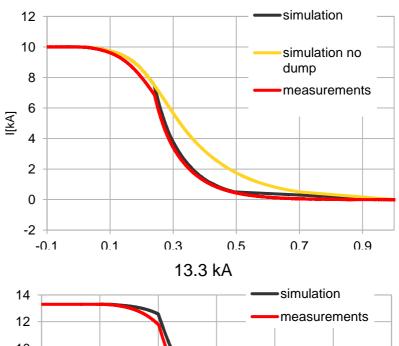


3.Simulation results vs measurements

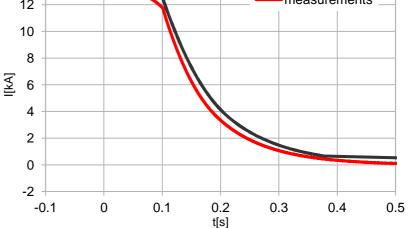
Measurements

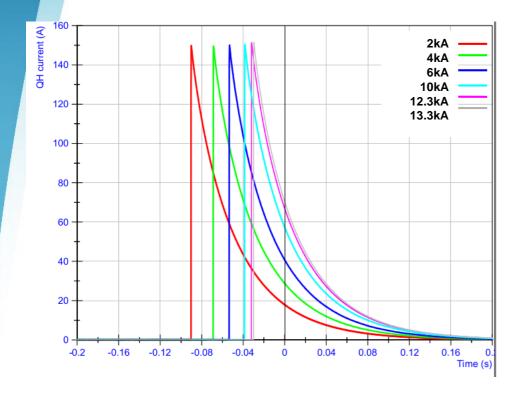

Roxie simulation





3.Simulation results vs measurements


4 kA


10 kA

3.Simulation results vs measurements

Time between QH activation and quench

	Measurements	Roxie
t(2kA)	90 ms	28.8 ms
t(4kA)	75 ms	26.5 ms
t(6kA)	45 ms	24.6 ms
t(10kA)	40 ms	21.2 ms
t(12.3kA)	38 ms	19.4 ms
t(13.3kA)	37 ms	18.9 ms

- Quench calculations were performed with Roxie, simulating the QHs protections schemes including dump resistor in the conditions of the tests.
- Simulations and measurements show good agreement.

