
Compiling for “Nehalem”
(the Intel® Core™ Microarchitecture,
Intel® Xeon® 5500 processor family
and the Intel® Core™ i7 processor)

Martyn Corden

Developer Products Division

Software & Services Group

Intel Corporation

* Intel, the Intel logo, Xeon, Intel Core and Core Inside are trademarks of Intel Corporation in the U.S. and other
countries.

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/082

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/083

Streaming SIMD Extensions 4.2 + ATA.1
(SSE4 Efficient Accelerated String and Text Processing instructions)

7 new instructions

– QWORD comparison (1) image processing

• PCMPGTQ generated automatically in 11.0

– Byte/Word text processing (4) string operations

• used in intrinsics in 11.1

– Accumulation of CRC32 value (1) cryptography

– Bit counting/popcnt (1) "

• No new data types

• use 128-bit operand similar to SSE4.1

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/084

Streaming SIMD Extensions 4.2 (continued)

Supported via inline assembly & intrinsic functions

– Intrinsic header file for Nehalem: nmmintrin.h

– automatic generation with /QxSSE4.2 is limited in 11.0

Manual cpu dispatch name: core_i7_sse4_2

e.g.

__declspec(cpu_specific(core_i7_sse4_2))

__declspec(cpu_dispatch(core_2_duo_sse4_1, core_i7_sse4_2))

Intel® Core™2 Intel® Core™ i7

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/085

PCMPGTQ autogeneration example

long long dst[NUM], src1[NUM], src2[NUM], src3[NUM], src4[NUM];

for (i = 0; i < NUM; i++) {

if (src1[i] <= src2[i]) {

dst[i] = src3[i];

} else {

dst[i] = src4[i];

}

}Vectorization is impossible (without SSE4.2) Vectorization is possible with /QxSSE4.2 /Qunroll0

xor eax, eax

$B2$2:

mov ecx, DWORD PTR [_src1+eax*8]

mov edx, DWORD PTR [_src1+4+eax*8]

sub ecx, DWORD PTR [_src2+eax*8]

sbb edx, DWORD PTR [_src2+4+eax*8]

jl $B2$3

$B2$9:

or ecx, edx

jne $B2$4

$B2$3:

mov edx, DWORD PTR [_src3+eax*8]

mov ecx, DWORD PTR [_src3+4+eax*8]

jmp $B2$5

$B2$4:

mov edx, DWORD PTR [_src4+eax*8]

mov ecx, DWORD PTR [_src4+4+eax*8]

$B2$5:

mov DWORD PTR [_dst+eax*8], edx

mov DWORD PTR [_dst+4+eax*8], ecx

add eax, 1

cmp eax, 16384

jl $B2$2

xor eax, eax

$B2$2:

movdqa xmm0, XMMWORD PTR [_src1+eax*8]

pcmpgtq xmm0, XMMWORD PTR [_src2+eax*8]

movdqa xmm1, XMMWORD PTR [_src3+eax*8]

pblendvb xmm1, XMMWORD PTR [_src4+eax*8], xmm0

movdqa XMMWORD PTR [_dst+eax*8], xmm1

add eax, 2

cmp eax, 16384

jb $B2$2

Speedups:

-Example below: 2.1x

-MIN/MAX idioms: 2.3x

-ABS idiom: 2.7x

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/086

Autogeneration of STTNI for strlen

___intel_sse4_strlen:

add eax, 16

movdqa xmm0, XMMWORD PTR [eax]

pcmpistri xmm0, xmm0, 58

jae ___intel_sse4_strlen

sub ecx, edx

add eax, ecx

ret

mov ecx, edx

and edx, 0xFFFFFFF0

pxor xmm0, xmm0

pcmpeqb xmm0, XMMWORD PTR [edx]

pmovmskb eax, xmm0

and ecx, 0xF

shr eax, cl

bsf eax, eax

jne ..L1

mov eax, edx

add edx, ecx

call __intel_sse4_strlen

..L1:

Partially inlined implementation
• Avoids call overhead for short strings (common case)

• Avoids the excessive code bloat from fully inlining

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/087

Autogeneration of STTNI for strlen (in 11.1)

String Length

E
x
e
c
u

ti
o
n

 T
im

e

STTNI Implementation

Current Intel Implementation (byte loop)

MSVC Implementation

640

• Comparable performance on short strings

• Over 5x improvement for long strings

• Working on strcpy, strncmp, strcmp implementations

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/088

Unaligned Load / Store Improvements

Micro-architectural Feature

• Cache line splits are MUCH less expensive in Nehalem

• Unaligned 16-byte loads/stores are as fast as aligned 16-byte
loads/stores when there is no cache line split

Consequence in 11.0 Compiler (with /QxSSE4.2 only) :

• Favor 16-byte unaligned loads (e.g. movups) over multi-instruction
sequences designed to avoid potential cache line splits
– May replace up to 7 instructions

– Reduces register pressure

– Don’t do if cache line split is certain

– 2-3% overall performance benefit on SPEC fp
(application-dependent)

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/089

CPU2000/CPU2006 Results on Nehalem

CPU2000 Measurements

• No performance regressions

• 168.wupwise +8%

• 172.mgrid +21%

• 178.galgel +3%

• 301.apsi +5%

• Overall fp Geomean +2.78%

CPU2006 Measurements

• No performance regressions

• 436.cactusADM +11%

• 437.leslie3d +9%

• 454.calculix +8%

• 459.GemsFDTD +12%

• Overall fp Geomean +2.6%

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/0810

Unaligned Load / Store Improvements

Further compiler opportunities

• Vectorize more loops where alignment is not known

• Avoid loop versioning for different relative alignments

Example in 11.0:

• Facilitate use of dppd/dpps (SSE 4.1) when alignment not known
– Generated for the Fortran DOT_PRODUCT intrinsic when vector length is 4

• However, there are still benefits to aligning data in your code where
it is straightforward to do so
– Avoid cache line splits

– CISC-ize SSE instructions with memory accesses
(i.e., combine load with SSE arithmetic operation in one instruction)

– 16 byte alignment may become important again for AVX

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/0811

DPPD / DPPS Tuning

Ex: DPPD xmm1, xmm2, 0x31

t = a[n] * b[n] + a[n+1] * b[n+1];

Current heuristics generate split sequence
when we cannot prove alignment:

movsd xmm1, QWORD PTR [_a+eax*8]

movhpd xmm1, QWORD PTR [_a+8+eax*8]

movsd xmm0, QWORD PTR [_b+eax*8]

movhpd xmm0, QWORD PTR [_b+8+eax*8]

dppd xmm1, xmm0, 0x31

For Nehalem, we should use

movupd xmm1, XMMWORD PTR [_a+eax*8]

movupd xmm0, XMMWORD PTR [_b+eax*8]

dppd xmm1, xmm0, 0x31

S1 S0

D0D1xmm1

xmm2

0 D1 * S1 + D0 * S0xmm1

D1 * S1 D0 * S0

+

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/0812

DPPD / DPPS Tuning

Take advantage of fast unaligned loads

0

1

2

3

Aligned Data Misaligned Data Aligned Data Misaligned Data

Double Precision Single Precision

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

No DPPD/DPPS

DPPD/DPPS on Penryn

DPPD/DPPS on Nehalem

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/0813

Memory Architectural Changes

Microarchitectural Feature
• Improved memory bandwidth (doesn’t need recompile!)

• Integrated memory controller

• Added cache level compared to Intel® Core™ 2
– 256KB L2 per core, shared L3 ≤8 MB (quad core)
– “cachesize” intrinsic updated

Compiler Opportunities (potential)

• More aggressive software prefetch (must be done judiciously)

• Library tuning for memset/memcpy

• Blocking, unrolling, etc, for larger cache

• More aggressive auto-parallelization

Some Apps may no longer be memory bound

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/0814

Memory Architectural Changes

Microarchitectural Feature

• Memory local to each socket (NUMA)

• Simultaneous MultiThreading (SMT)

Compiler Opportunities

• Extended interface for OpenMP thread affinity (done in 11.0)

– KMP_AFFINITY=compact,1 gives consecutive threads on different
physical cores on the same socket, if SMT is enabled

– KMP_AFFINITY=compact gives consecutive threads on different
physical cores on the same socket, if SMT is disabled (same as
compact,0)

– KMP_AFFINITY=scatter gives consecutive threads on alternating
sockets

– May need KMP_AFFINITY=disable if 3rd party affinity tools used

• Control how memory is allocated between sockets for OpenMP apps
(Like memory_touch directive for Intel® Itanium™ processors)

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/0815

Macrofusion

Microarchitectural Feature

• Processor combines adjacent cmp/test + jcc into single uop
– Increases effective FE & ROB bandwidth

– More cases supported in NHM over Merom/Penryn

• Signed jcc conditions

• Intel 64

Compiler Opportunities

• Already schedules fusible cmp/test + jcc to be adjacent.

• Extend to handle new cases for Intel® Core™ i7 and Xeon™ 5500
processors

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group12/03/0816

Front End

Microarchitectural Issues

• Improved L2->L1 instruction fetch rate

• Increased size of Loop Stream Detector
– Larger loops are able to fit in the LSD, bypassing the front end and any

instruction decoding bottlenecks, & using less power

Compiler Opportunities

• More use of optimizations that result in larger code
– loop unrolling

– inlining

• Avoid aligning loops that are likely to be detected by LSD

• More use of instructions that previously would have risked decoding
bottlenecks, e.g.
– LCP instructions like “addw mem16, imm16”

– POPCNT, et al ?

Backup

