
Intel® Xeon 5500 Platforms,
Integrated Memory Controllers and

NUMA
David Levinthal, Julia Fedorova, Dmitry Ryabtsev

SSG/DPD/PAT

* Intel, the Intel logo, Intel Core and Core Inside are trademarks of Intel Corporation in the U.S. and other countries.

11/10/20092

Agenda

NUMA and Enabling: Overview

Topology Overview

BIOS Options

OS dependent NUMA concerns

Identifying memory locality (and lack
thereof) on Intel® Xeon 5500 processors

Summary

Intel and core are a trademark or registered trademark of Intel Corporation or its subsidiaries in the United
States or other countries

11/10/20093

DP Platform dominant validation vehicle

Intel® Xeon™ 5500
Platforms

Discrete

Gfx

DDR3DDR3

8M LLC

QPI

C0 C1 C2 C3

QPI

8M LLC

QPI IMC

C0 C1 C2 C3

QPI

I/O Hub

IMC

11/10/20094

NUMA, Quickpath and
Intel® Xeon™ 5500 Platforms

Quickpath Interfaces greatly increase memory
bandwidth of our platforms

Integrated memory controllers on each socket
access dimms

• Quickpath interconnctions provide cache
coherency

• Bandwidth improves by ~4X

Bandwidth improvement comes at a price

• Non uniform memory access

• Latency to dimms on remote sockets
is ~2X larger

Pealing away the Bandwidth layer
reveals the NUMA Latency layer

11/10/20095

NUMA Modes on DP Systems
Controlled in BIOS

Non Numa

• Even/Odd lines assigned to sockets 0/1

– Line interleaving

NUMA mode

• First Half of memory space on socket 0

• Second half on socket 1

• Default on Intel® Xeon™ 5500 Processors

11/10/20096

NON-NUMA/NUMA Timings for Specomp*
and NAS* Parallel Benchmarks

NN/N timing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

bt
.C

cg
.C

ep
.C

is
.C

lu
.C

lu
-h
p.
C

sp
.C

ua
.C

w
u
pw

is
e

sw
im

m
gr
id

ap
pl
u

ga
lg
el

eq
ua

ke
ap

si

ga
fo
rt

fm
a
3d ar

t

am
m
p

* Other names and brands may be claimed as the property of others.

11/10/20097

Non Uniform Memory Access and
Parallel Execution
Process parallel is intrinsically NUMA friendly

• Affinity pinning maximizes local memory access

• MPI

• Parallel submission to batch queues

• Standard for HPC

Shared memory threading is more problematic

• Explicit threading, TBB, openMP*

• NUMA friendly data decomposition (page based) has
not been required

• OS scheduled thread migration can aggravate situation

* Other names and brands may be claimed as the property of others.

11/10/20098

HPC Applications will see
Large Performance Gains due to
Bandwidth Improvements

A remaining performance bottleneck may be
due to non uniform memory access latency

Intel® PTU data access profiling feature was
designed to address NUMA

• Intel® Xeon™ 5500 processors events were
designed to provide the required data

11/10/20099

Data Access Events on Intel® Xeon™ 5500
processors Reveal NUMA Access Pattern

“miss” events are inclusive

– Sum over all data sources and their individual
latencies

Intel® Xeon™ 5500 processor Precise events
are exclusive

Per data source

11/10/200910

Data Access Events Reveal NUMA Access
Pattern

11/10/200911

Controlling NUMA Data Locality on Linux*
and Windows*

Linux* assigns physical pages on “first touch”

– ie buffer initialization not malloc

– If each thread initializes its data, things are good

– Can also use numactl or numalib

Windows assigns physical pages with
“allocation”

– VirtualAlloc works like malloc on Linux*

• Physical pages assigned at first use

– malloc & VirtualAllocExNuma allocation must be
parallelized

• Buffers are no longer contiguous linear address ranges

• Much MUCH harder

* Other names and brands may be claimed as the property of others.

11/10/200912

Data Locality, Threaded Applications and
Bandwidth
Consider a threaded triad
int triad(int len, double *a, double *b,

double *c, double *x);
int i,bytes = 24;
#pragma omp parallel
{
#pragma omp for private (i)
#pragma vector nontemporal
for(i=0;i<len;i++)a[i]=b[i]+x*c[i];
}
return bytes

Parallelizes the work
function called 1000 times, len=8192000
~ 1B cachelines written NT, 2B read

11/10/200913

Data Locality, Threaded Applications and
Bandwidth

Run an OpenMP* triad under my usual mini_app
driver, the resulting BW is only

~ 5bytes/cycle for 8 threads

Running in Non Numa Mode results in
~8.5 Bytes/cycle

Why?

Default Version Allocates Buffers on
Thread 0

Using only one Memory Controller
* Other names and brands may be claimed as the property of others.

11/10/200914

Performance Events and NUMA Sources

• Offcore_Response_0
8 flavors of Request Type X 8 flavors of $line Source

– + all combinations..
(~65K possible programmings)

• One “gotcha”…
NT stores to local Dram
appear to go to another core’s cache
(data source = 2 instead of 0x40)

11/10/200915

PTU Display Shows Local and Remote
Access for OpenMP Triad

11/10/200916

Need to Distribute “Allocation”
“Allocate” on First Touch

Original allocation
buf1 = (char *) malloc(DIM*(sizeof (double))+1024);

buf2 = (char *) malloc(DIM*(sizeof (double))+1024);
buf3 = (char *) malloc(DIM*(sizeof (double))+1024);
a = (double *) buf1;
b = (double *) buf2;
c = (double *) buf3;
for(num=0;num<len;num++)
{

a[num]=10.;
b[num]=10.;
c[num]=10.;

}

Initialization must also be done in
Parallel

* Other names and brands may be claimed as the property of others.

11/10/200917

Parallel “Allocation” for Linux*
Requires Parallel Initialization

Parallel allocation
buf1 = (char *) malloc(DIM*(sizeof (double))+1024);
buf2 = (char *) malloc(DIM*(sizeof (double))+1024);
buf3 = (char *) malloc(DIM*(sizeof (double))+1024);
a = (double *) buf1;
b = (double *) buf2;
c = (double *) buf3;

#pragma omp parallel
{
#pragma omp for private(num)

for(num=0;num<len;num++)
{

a[num]=10.;
b[num]=10.;
c[num]=10.;

}

}

* Other names and brands may be claimed as the property of others.

11/10/200918

Event Triad_omp Triad_NUMA

CPU_CLK_UNHALTED.THREAD 2.23E+11 1.17E+11

CPU_CLK_UNHALTED.THREAD;Socket 0 7.51E+10 5.84E+10

CPU_CLK_UNHALTED.THREAD;Socket 1 1.48E+11 5.83E+10

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION 3.13E+09 3.11E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION;Socket 0 1.56E+09 1.56E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION;Socket 1 1.56E+09 1.55E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM 1.56E+09 3.11E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM;

Socket 0 1.55E+09 1.55E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM;

Socket 1 8000000 1.55E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM 1.55E+09 400000

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM;Socket 0 1.55E+09 300000

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM;Socket 1 100000 100000

Note socket 0/1 switch between PTU runs

11/10/200919

Event Triad_omp Triad_NUMA

CPU_CLK_UNHALTED.THREAD 2.23E+11 1.17E+11

CPU_CLK_UNHALTED.THREAD;Socket 0 7.51E+10 5.84E+10

CPU_CLK_UNHALTED.THREAD;Socket 1 1.48E+11 5.83E+10

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION 3.13E+09 3.11E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION;Socket 0 1.56E+09 1.56E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION;Socket 1 1.56E+09 1.55E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM 1.56E+09 3.11E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM;

Socket 0 1.55E+09 1.55E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM;

Socket 1 8000000 1.55E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM 1.55E+09 400000

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM;Socket 0 1.55E+09 300000

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM;Socket 1 100000 100000

5.1 B/cyc vs 8.5 B/cyc vs 12.5 B/cyc
on a poorly tuned machine

11/10/200920

OpenMP and Core Affinity Pinning

Export KMP_AFFINITY=compact,0,verbose
will pin affinity of threads

Just not reproducibly (per socket) on Red Hat
5.1 from run to run

Causing problems in multi run PTU collections

Problem is that an app does not use OMP
runtime libs to pin affinity until there is a
#pragma parallel {}

You must add this around first instruction to pin
affinity of Main thread

11/10/200921

Multi-thread Scaling and NUMA

When measuring scaling between 4 and 8
threads (assuming no SMT) the affinity of the 4
threads matters

4 threads all on one socket has the same LLC
cache size/core as 8 threads

BUT

2 threads/socket has closer to the same
memory BW as the 8 thread run

Thus 4->8 scaling will always have a non
scaling contribution due to one of these 2
effects

11/10/200922

Per Socket Display + Data Source events
Show NUMA /Cross Socket Traffic

11/10/200923

Indirect Addressing, Locality and Latency
(Diff Eq on Non Uniform Grid, Oil Res)

Multi-dimensional array access can cause large
address gaps in data decomposition.

This can make mapping NUMA home node-
>pages->data decomposition ranges

Challenging
Ex: color = decomposition = thread

64.5K
Structures

11/10/200924

Default Initialization Breaks Array into 8
Contiguous Pieces 50% Non Local Access

11/10/200925

Address Histogram for all Dram Accesses

11/10/200926

Filtering to a Single Thread Displays the
Data Decomposition

11/10/200927

A Different Thread

11/10/200928

Using Only Precise Remote Dram Event
Only Half the entries shown
Gaps due to lack of events are suppressed

11/10/200929

Using Only Precise Remote Dram Event
Only Half the entries shown
Gaps due to lack of events are suppressed

11/10/200930

Change Initialization to Follow Work Access
Pattern

Thread initialization with same access sequence
as work

Expect ~33% improvement

– 1/2 of accesses get lower latency by 2

Simple OMP ran in 14.3 cycles/cell

NUMA initialized version ran in 11.2 cycles/cell

Every access has serious DTLB issues, which
don’t change with the improved NUMA layout

11/10/200931

Sampling View for Correctly Initialized
Array has no Remote Access

11/10/200932

Page Allocation Order Matters

Serially
initialized/allocated

Accessed with
complex pattern

avg Lat =230

Initialized/Allocated
and Accessed with
complex pattern

avg Lat = 209

11/10/200933

Conclusions

NUMA will add complexity to software
performance analysis and optimization

We have the infrastructure to manage this

11/10/200934

Backup

