

Performance Analysis and SW optimization for HPC on Intel® Core™ i7, Xeon™ 5500 and 5600 family Processors*

Presenter: David Levinthal Principal Engineer

Business Group, Division: DPD, SSG

Version 1.1 June 9, 2010

* Intel, the Intel logo, Intel Core and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

- All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
- Customers, licensees, and other third parties are not authorized by Intel to use Intel code names in advertising, promotion or marketing of any product or service.
- Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate
 performance of Intel products as measured by those tests. Any difference in system hardware or software design or
 configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of
 systems or components they are considering purchasing. For more information on performance tests and on the performance
 of Intel products, visit Intel Performance Benchmark Limitations
- Copyright © 2010, Intel Corporation. All rights reserved.

Risk Factors

The above statements and any others in this document that refer to plans and expectations for the first quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Many factors could affect Intel's actual results, and variances from Intel's current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the corporation's expectations. Current uncertainty in global economic conditions pose a risk to the overall economy as consumers and businesses may defer purchases in response to tighter credit and negative financial news, which could negatively affect product demand and other related matters. Consequently, demand could be different from Intel's expectations due to factors including changes in business and economic conditions, including conditions in the credit market that could affect consumer confidence; customer acceptance of Intel's and competitors' products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; Intel's ability to respond quickly to technological developments and to incorporate new features into its products; and the availability of sufficient supply of components from suppliers to meet demand. The gross margin percentage could vary significantly from expectations based on changes in revenue levels; capacity utilization; excess or obsolete inventory; product mix and pricing; variations in inventory valuation, including variations related to the timing of qualifying products for sale; manufacturing yields; changes in unit costs; impairments of long-lived assets, including manufacturing, assembly/test and intangible assets; and the timing and execution of the manufacturing ramp and associated costs, including start-up costs. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. The recent financial crisis affecting the banking system and financial markets and the going concern threats to investment banks and other financial institutions have resulted in a tightening in the credit markets, a reduced level of liquidity in many financial markets, and extreme volatility in fixed income, credit and equity markets. There could be a number of followon effects from the credit crisis on Intel's business, including insolvency of key suppliers resulting in product delays; inability of customers to obtain credit to finance purchases of our products and/or customer insolvencies; counterparty failures negatively impacting our treasury operations; increased expense or inability to obtain short-term financing of Intel's operations from the issuance of commercial paper; and increased impairments from the inability of investee companies to obtain financing. Intel's results could be impacted by adverse economic, social, political and physical/infrastructure conditions in the countries in which Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC reports.

Performance Analysis Methodology for HPC

- Measure application performance
 - -Time or rate of work
 - Compare to other platforms
- Analyze the contributions to performance bottlenecks methodically
 - -Top Down

Performance Analysis Methodology for HPC

- Two possible objectives
 - Influence future silicon design
 - Intel personnel do lots of this

-Modify build and/or source to improve performance

-The sole focus of this presentation

 The central objective is to identify performance bottlenecks and <u>estimate</u> the potential gain for fixing them

-Without an accurate estimate of the gain a great deal of effort can be wasted

Structure of this presentation

- What would the author do with:
 - A brand new machine
 - -A tar ball of 100 million source lines
 - -Documented, working build procedure
 - -Data set and instructions to run the app
 - -And one commandment:

Make Go Fast

but get the same answer

Presentation Agenda

- Optimization workflow overview
- Event based sampling
 - -Why so complicated
 - -How the nuts and bolts work
- HPC/Scientific computing overview
- Compiler problems/tuning compiler usage
- Identifying and removing stalls
- Identifying and removing resource saturation
- Identifying and removing non scaling
- PTU features and data interpretation
- Glossary in backup

Performance Analysis Methodology

- The steps
 - 1. make sure the platform is correct
 - It should be some thought went into the specifications
 - But don't take this for granted
 - 2. Use the correct compiler (Intel® Compiler)
 - And invoke it correctly
 - This should also have already been done...but..
 - 3. Analyze interaction of SW and micro architecture and tune code/compiler usage
 - Intel® VTune[™] Analyzer* or better, Intel® Performance Tuning Utility (PTU)
 - Iterative process
 - 4. Parallelize the execution as appropriate
 - Batch queue / Intel® MPI Library
 - OpenMP** product, Intel® Threading Building Blocks (Intel® TBB), CILK, explicit threading

Iterate on 3 and 4

*Vtune is a trademark of Intel Corporation in the U.S. and other countries. **Other names and brands may be claimed as the property of others.

Platform Optimization: Step 1

- 1. Make sure the platform is correct
 - Enough memory
 - Page faults (Perfmon*, vmstat*)
 - rates of >100 /sec is cause for investigation
 - Make sure DIMMs are in identical sets of 6 for DP machines
 - 3 channel memory controller
 - Best performance with completely uniform dimms
 - Make sure SATA Bios setting is AHCI, not IDE setting
 - Use RAID or SSD if disk speed is critical
 - Prefetcher BIOS Settings correct for the app: <u>ON</u>
 - Intel® 11.0 compiler can generate SW prefetch
 - NUMA BIOS setting correct: <u>ON</u>
 - Intel® Hyper-Threading Technology BIOS option set correctly for the application
 - HT does not always help HPC
 - Probably makes little difference

Disable C states to ensure machine stability when using event based sampling on Corei7/Xeon 5500

* Other names and brands may be claimed as the property of others.

Compiler Usage Optimization: Step 2

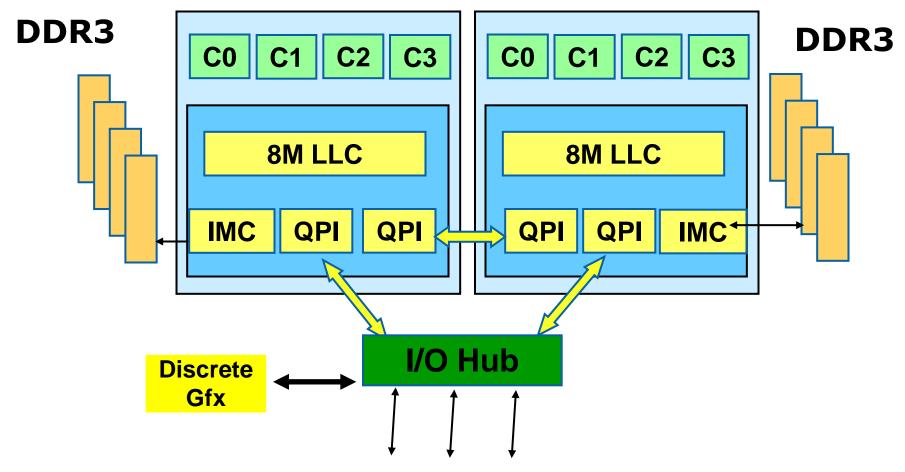
- Optimize the time consuming functions
 - -Profile functions, and check compiler options
 - Intel® VTune[™] Analyzer and Intel® PTU have source file granularities
 - Data grouped per source file to identify hot files
 - Do not assume this has been done
 - Build environments are complex

Micro architectural Optimization: Step 3

- 3. Identify & Optimize the time-consuming functions
- Use performance events methodically to identify performance limitations
 - Intel® PTU, Intel® VTune[™] Analyzer, etc.
- Confirm that compiler really did produce good code (visual inspection of ASM)
 - For the components of the code using the cycles
- Go after largest, easy things first
 - Accurate estimate of potential gain is critical!
- Documentation for Intel® Core[™] i7 processor **Performance Monitoring Unit (PMU)** is available

Parallelization for HPC : Step 4

- 4. Use as many cores and machines as possible
 - -Parallel processing by batch queue is OK
 - Trivial parallelism
 - Hard to beat the throughput


Parallelization for HPC : Step 4

- 4. Use as many cores and machines as possible
 - -Figure out clean data decomposition
 - -Intel® MPI Library for process parallel execution
 - Minimal shared elements
 - Maximal address separation
 - OpenMP*, Intel® TBB, CILK, explicit threading for shared memory
 - Can reduce all to all MPI API costs

* Other names and brands may be claimed as the property of others.

DP Platform

Event Based Sampling Analysis

- Code profiling with performance events can identify where the interaction of the code and data with the microarchitecture is sub optimal
 - -Ex: What code execution results in load driven cache misses?
 - -Event_count*Penalty ~ potential gain
 - A well defined penalty is essential
- Such profiling also provides an execution weighted display of the generated instructions
 - -Vectorized code was generated but is it being executed?

But There are THOUSANDS of Events, Which Ones Matter?

Which Events you need depends on what problem you wish to study and what you want to accomplish Example: Last Level Cache Misses

- What you mean by an LLC miss depends on the exact nature of the question you are asking
- Are you asking about Bandwidth consumption?
 - Due to reads?, RFOs?, HW Prefetch, NT stores? Total?, Code?, SW prefetch?, Cacheable Writebacks?
 - Location of the bandwidth consumption?
 - Source of the data provided?
- Or about Latency/Pipeline stalls
 - Different architectures stall on different things
 - Intel® IA-32/Intel64 Processors' memory access stalls are mostly due to loads

Events needed to measure bandwidth and memory stalls are COMPLETELY different

Intel® Xeon™ 5500 load Penalties

	L1D_HIT	Secondary Miss	L2 Hit	LLC Hit No Snoop	LLC Hit Clean Snoop	LLC Hit Snoop =HITM	Local Dram	Remote Dram	Remote Cache Iocal home Fwd	Remote Cache Remote Home FWD	Remote Cache Local Home HITM	Remote Cache Remote home HITM
Mem_load_retired .L1d_hit	0 (By Def)											
Mem_load_retired .Hit_LFB		0->Max Val			Der	bend c	n freq	uency	dimm	s, bios	s. etc	
Mem_load_retired .L2_hit			6					,		,	,	
Mem_load_retired .LLC_Unshared_hit				~35								
Mem_load_retired .other_core_l2 _hit_hitm					~60	~75						
Mem_load_retired .LLC_Miss							~200	~350	~180	~180	~225 -250	~370
Mem_uncore_retired .Other_core_l2_hitm						~75						
Mem_uncore_retired .Local_Dram							~200				~225 -250	
Mem_uncore_retired .Remote_dram								~350				~370
Mem_uncore_retired. Remote_cache_ local_home_hit									~180			

Note: All latencies and memory access penalties shown are nerely illustrative. Actual latencies will depend on (among other things) processor model, core and uncore frequencies, type, number and positioning of DIMMS, gatform model, bios version and settings. Consult the platform manufacturer for optimal setting for any individual system. Then measure the actual properties of that system by running well established benchmarks. (intel)

The Important Penalties Vary by a Factor of TEN

17

Intel® PTU uses profiles to manage complexity

Intel(R) Performance Tuning Utility - Eclipse	Platform	
File Edit Navigate Project Run Windo		
		😭 💽 Intel(R) Perfo)
🗹 Tuning Navigator 🛛 📃 🗖		
Tuning Navigator X Tuning Navigator X Profile as Profile as Pr	 Core(TM) i7 processor family - Branch Analysis Core(TM) i7 processor family - Client Analysis Core(TM) i7 processor family - Client Analysis with Call Sites Core(TM) i7 processor family - Cycles and Uops Core(TM) i7 processor family - False-True Sharing Core(TM) i7 processor family - Front End Investigation Core(TM) i7 processor family - General Exploration Core(TM) i7 processor family - Loop Analysis Core(TM) i7 processor family - Loop Analysis Core(TM) i7 processor family - Loop Analysis Core(TM) i7 processor family - Memory Access Core(TM) i7 processor family - Memory Access Core(TM) i7 processor family - Memory Access 	
🔤 🔶 1 items selected		

Intel® PTU predefined collections

- Cycles and Uops
 - Cycle usage and uop flow through the pipeline
- Branch Analysis
 - Branch execution analysis for loop tripcounts and call counts
- General Exploration
 - Cycles, instructions, stalls, branches, basic memory access
- Memory Access
 - Detailed breakdown of off-core memory access (w/wo address profiling)
- Working Set
 - Precise loads and stores enabling address space analysis
- FrontEnd (FE) Investigation
 - Detailed instruction starvation analysis
- Contested lines
 - Precise HITM and Store events
- Loop Analysis
 - 32 events for HPC type codes, w/wo call sites , i.e. including LBR capture
- Client Analysis
 - 54 events for client type codes, w/wo call sites , i.e. including LBR capture

Many Possible Issues -> Many Different Events

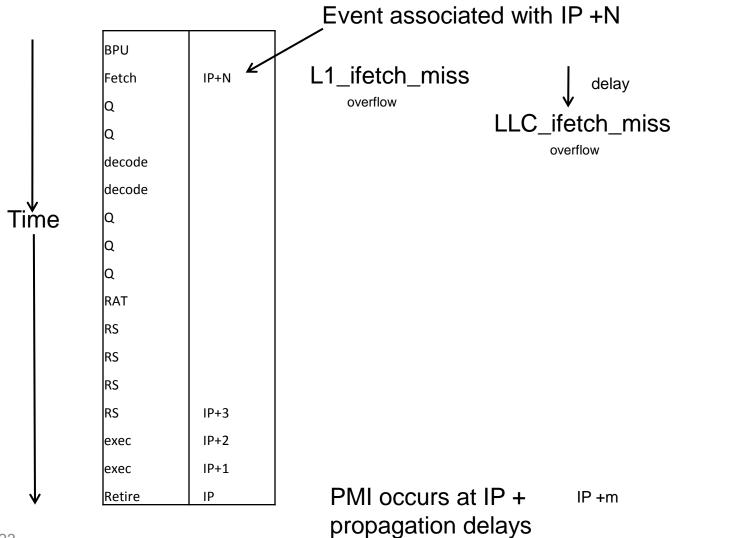
Controlling collection

Preferences									
Intel(R) PTU Project	Intel(R) PTU Project								
	Target Image: This computer Remote computer Check Connection								
	Performance workload								
	Workload duration, sec 20	~							
	O Launch this application at start of profile								
	Application:	Browse							
	Application parameters:	Browse							
	Working directory:	Browse							
	 Profile without launching an application 								
	Advanced properties								
	Time-based-sampling interval multiplier: 1.0	~							
	Event-based sampling 'Sample After' multiplier: 1.0								
(Use event multiplexing 0.1								
	10.0 100.0								
?	ОК	Cancel							

Performance Monitoring Unit

- The Performance Monitoring Unit (PMU) consists of a set of counters that can be programmed to count user-selected signals of microprocessor activity
 - Cpu_clk_unhalted, inst_retired, LLC_miss, etc..
- Counting the number of events that occur in a fixed time period allows workload characterization
 - Using a spectrum of events allows a decomposition of the applications activity with respect to the microarchitecture components
 - Particularly useful for studying the architecture's strengths and weaknesses running an application

Performance Monitoring Unit


- The PMU can be programmed to generate interrupts on counter overflow
 - Allows periodic sampling of program counter for any user-chosen event
 - Initialize count to (overflow periodic rate)
 - Interrupt Vector Table is programmed with the address of the interrupt handler
 - Intel® VTune[™] Analyzer driver is invoked by HW on counter overflows and given a program counter where the interrupt (i.e. counter overflow) happened

Identify statistically where events occur in the program

- Application profiling by event

SKID: IP of causal instruction vs IP of PMI

Analyzing HPC Applications

Overview

Loop analysis

- -Tripcounts
- -Vectorization

Memory access dominated

- -Latency dominated
- Bandwidth dominated
- Execution dominated

Overview

 Performance Breakdown/cycle accounting can be applied to any scale of a program

-Multiple interacting applications-> single apps-> single modules-> source files/functions-> basic blocks

- Methodology does not change
 - But can inherit conclusions from higher levels based on importance/cycle cost
- At all stages in the process look for poorly written, actively executing code that can be improved

HPC Applications

- Dominated by loops
- Rarely have pipeline front end problems
 - Except for very large binaries (ifetch latency)
- Large data sets
 - Not cache resident
 - Ex: Weather simulation, Oil Reservoir
 - Frequently DRAM bandwidth limited
 - Or DRAM Latency limited
- Occasionally HPC apps are uop flow limited
 - Data blocked
 - Ex: oil exploration, FFTs

What matters when optimizing a loop?

- **1.** The Trip Count
- 2. The Trip Count

3.The TRIP COUNT!

- **4.** Variations in the tripcount
- **5.** And some other things

BUT..what you do about them depends on THE TRIP COUNT

And of course there are virtually no tools to assist you in determining this..other than printf

(you can use PIN..)

This Will be Discussed Later

HPC Loops and Memory Access

- Calculations require data as input and the most severe limitations in a computer are on data access
 - -CPU speed and efficiency have increased much faster than memory speeds and bandwidth.
- Load operations are almost always scheduled almost immediately before consumption (adds, multiplies etc)
- Lack of availability will quickly lead to execution stalls
 - -OOO execution can buy only a few cycles.

Event Classes: High Level View

- 1. Execution flow events
 - Cycles, Branches, stalls, uops/inst_retired
 - Guide compiler usage
- 2. Penalty events
 - Ex: load requiring access to dram
 - Modify code/build to reduce penalties
- 3. Resource saturation events
 - Bandwidth, load/store buffers, dispatch ports
 - No well defined cost
 - Change data layout/access patterns
- 4. Architectural characterization
 - Cache accesses, MESI states, snoops
 - Used to improve silicon design, not application performance
- 5. Instruction mix
 - Do not measure what you think, extremely difficult to validate

Event Classes

- **1. Execution flow events:** Guide Compiler Usage
 - Cycles, Branches, stalls, uops/inst_retired
- 2. Penalty events
 - Ex: load requiring access to dram
- 3. Resource saturation events
 - Bandwidth, load/store buffers, dispatch ports
 - No well defined cost
- 4. Architectural characterization
 - Cache accesses, MESI states, snoops
- 5. Instruction mix

Cycles: Multiple time domains

There are actually 4 cycle events on a modern microprocessor

- Core unhalted cycles
- Reference frequency unhalted cycles
- Core halted cycles
- Reference Frequency halted cycles

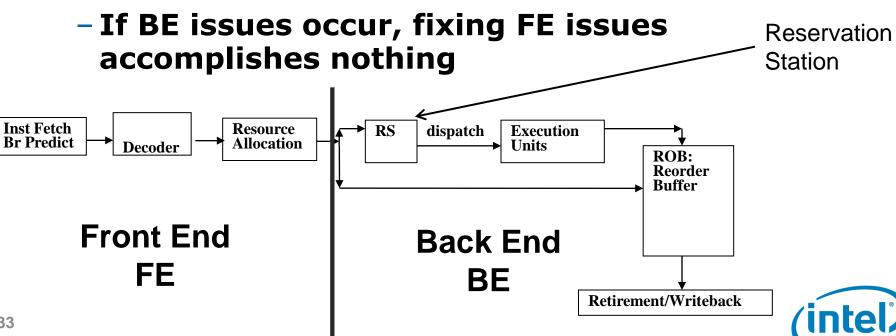
Core frequency needed for perf issues entirely in the core

- Penalties (ie pipeline stalls) in core cycles
- Reference frequency needed for:
 - Evaluation of variable frequency effects (Turbo/Power Management)
 - Wall clock time utilization
 - Ex: Network server applications
 - Bandwidth/memory latency
- Unhalted events are required for counting modes to work at all
- Halted.ref = TSC change cpu_clk_unhalted.ref

Cycle Accounting and Uop Flow

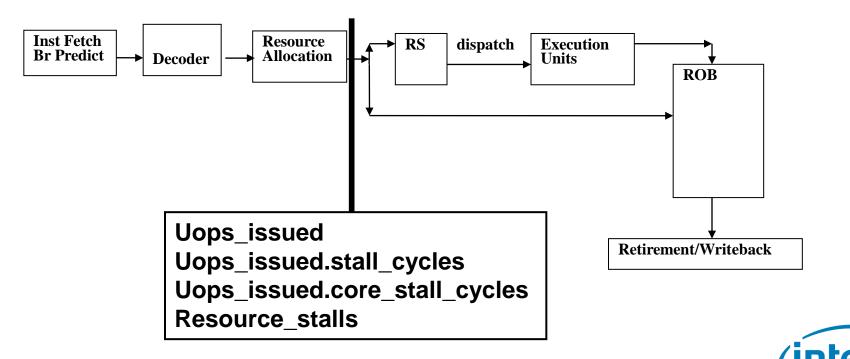
• Cycles =

Cycles dispatching to execution units + Cycles not dispatching (stalls)

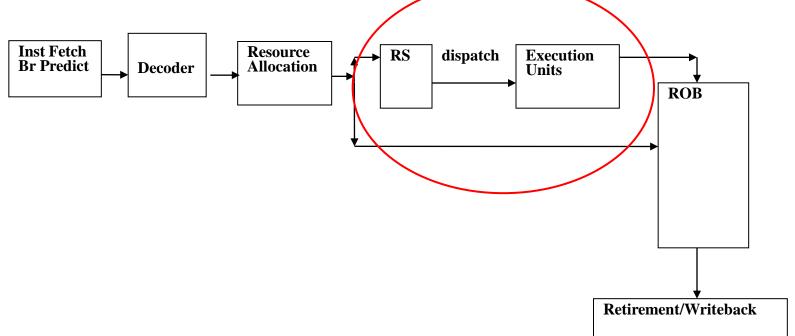

- A trivial truism
- Uops dispatched = uops retired + speculative uops that are not retired
 - Non-retired uops due to mispredicted branches
 - Uops_issued.any uops_retired.slots
- Optimization Reduces Total Cycles by
 - Reducing stalls
 - Reducing retired uops (better code generation)
 - Reducing non retired uops (reducing mispredictions)

(Simplified) Execution in an OOO Engine

- Two asynchronous components connected by buffering
 - -Front End provides instructions
 - Back End gets data and executes instructions
 - Back End trumps Front End


33

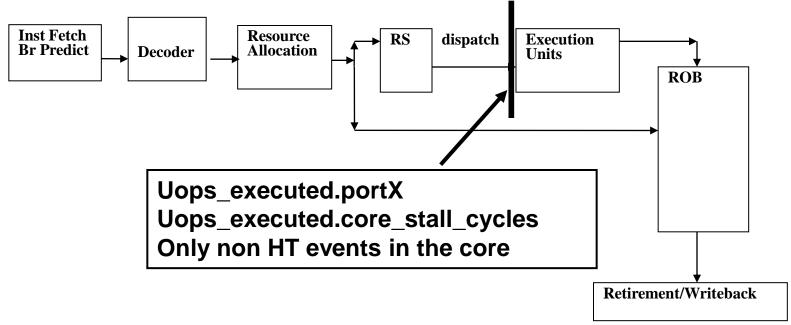
Identifying Front End Stalls


Uop issue

- -Uops have been allocated resources
- -No downstream blockage (resource_stalls)
- -FE Stalls = an instruction delivery problem
 - = Uops_issued.stall_cycles Resource_stalls

(Simplified) Execution in an OOO Engine

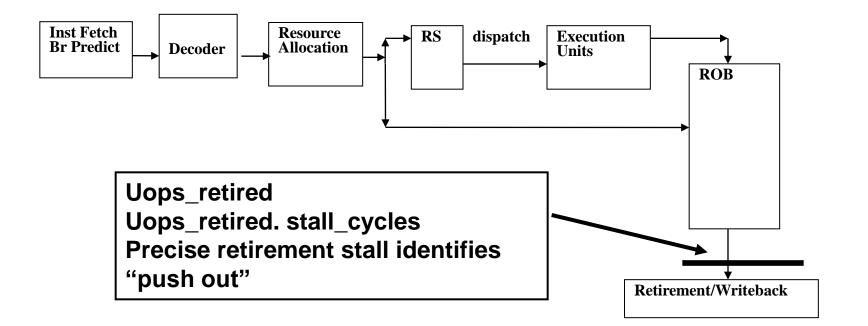
- Design optimizes Dispatch to Execution
 - -Uops wait in RS until inputs are available
 - -Keeping the Execution Units occupied matters



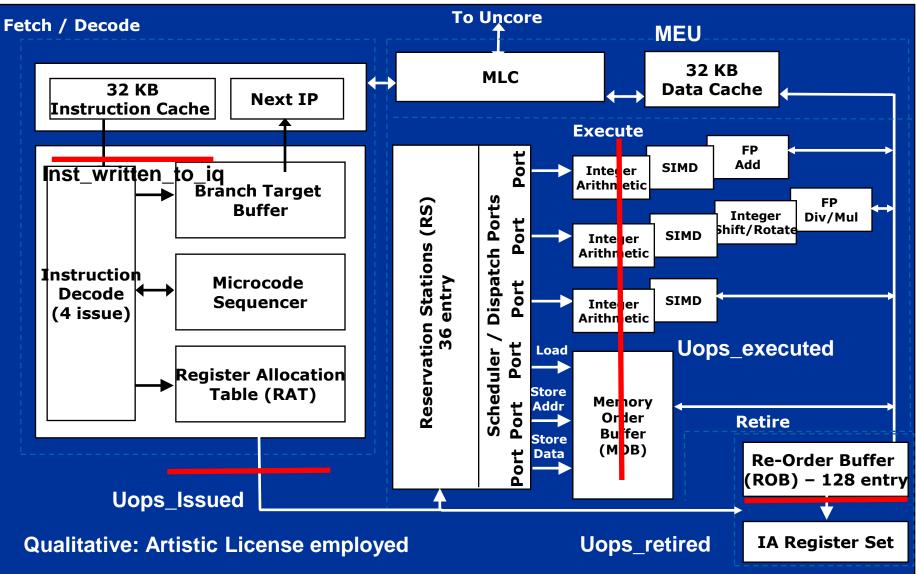
Uop Flow Monitors Execution

• Uop Execute

- -Uops have inputs ?
- -No downstream blockage (DIV/SQRT)
- -No execution = no progress



Uop Flow Monitors Execution • Uop Retire


-All older instructions retired ?

-No retirement = ? (out of order execution?)

Uop Flow

PEBS Basic Events

Mechanism:

- counter overflow arms PEBS
- Next event gets captured and raises PMI
- PEBS mechanism captures architectural state information at completion of critical instruction

<u> </u>	etired	
itlb_m	iss_retired	
uops_i	retired	
br_ins	tr_retired	
mem_i	instr_retired.loads	
mom	instr_retired.stores	

• Including EIP (+1), even when OS defers PMI

For memory events, EIP (+1) is always next instruction

Branch Events

- Measure Control flow through the program
- Can be used for
 - loop trip counts
 - Reconstructing (multi function) execution paths
 - Driving inlining, IPO, PGO compilations
- Used in conjunction with Last Branch Record (LBR) even more can be done
 - Basic block execution counts
 - Instruction mix
 - Call counts per source
 - etc

Basic Branch Analysis

Vastly improved precise branch monitoring capabilities

- Branches retired
- 16 deep LBR
 - LBR can be filtered by branch type and privilege level
- One per SMT
 - Not merged when SMT disabled
- Only taken branches are captured
- Precise BR retired by branch type
 - Calls, conditional and all branches
 - Coupled with LBR capture yields
 - Call counts
 - "HW call graph"
 - Basic block execution counts

Branch Analysis

Precise branch events on NHM enable

- Function call counts
- Function arguments (em64T only)
- Taken fraction/branch
- Mispredicted Branches must be counted with Non-PEBS events BR_MISP_EXEC.* and BR_INST_EXEC.* on Corei7/Xeon 5500
- Br_misp_retired.* on Xeon 5600 (PEBS)

Branch Analysis: Call Counts

- Call counts require sampling on calls
 - Sampling on anything else introduces a "trigger bias" that cannot be corrected for
- Requires PEBS buffer to identify which branch caused the event
 - EIP+1 results in capturing call target
- Requires LBR to identify source and target

- Matching PEBS EIP with LBR target

Precise Conditional Branch Retired

- Counted loops that actually use the induction variable will frequently keep the tripcount in a register for the termination test
 - E.g. heavily optimized triad with the Intel compiler has
 Addq \$0x8, %rcx
 Cmpq %rax, %rcx
 Jnge triad+0x27

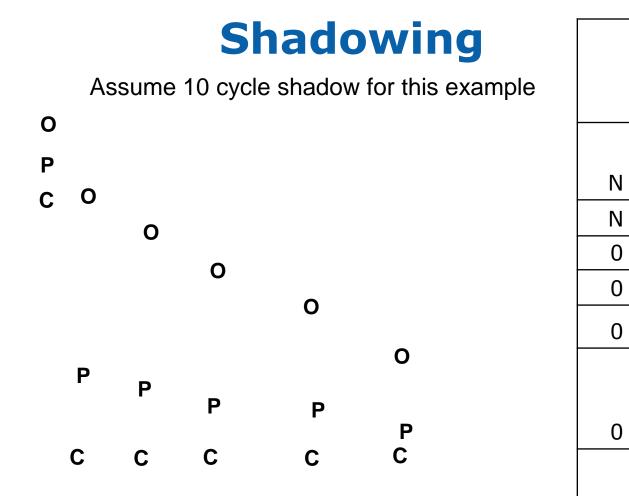
Average value of RAX is the tripcount

Branch Analysis: Function Arguments (Intel64 only)

- Functions with "few" (<6?) arguments use registers for argument values
- Capturing full PEBS buffer + LBR on calls_retired event allows measurement of distribution of argument values per calling site
 - -E.g. length of memcpy, memset

Processing LBRs

- •All instructions between Target_0 and Branch_1 are retired 1 time
- •All Basic Blocks between Target_0 and Branch_1 are executed 1 time
- •All Branch Instructions between Target_0 and Branch_1 are not taken

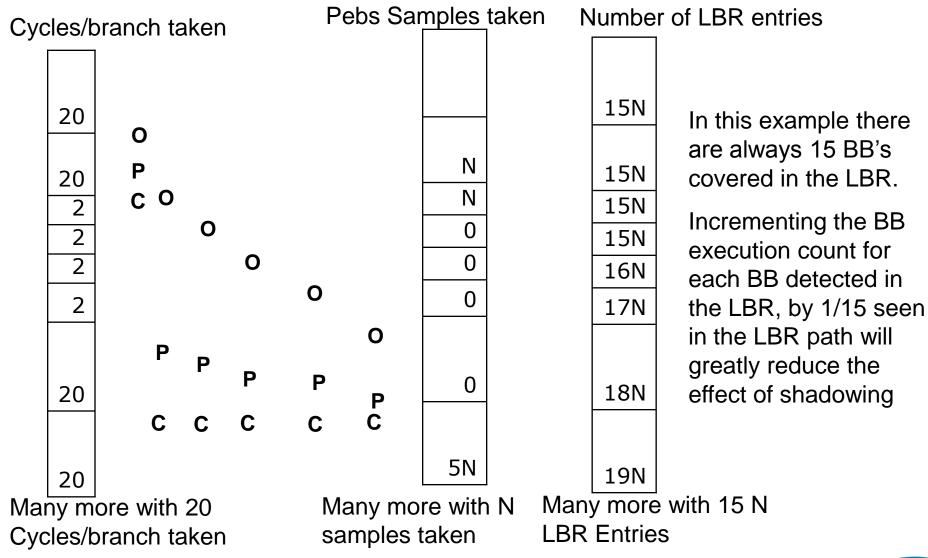

So it would all Seem Very Straight Forward

Shadowing and Precise Data Collection

- The time between the counter overflow and the PEBS arming creates a "shadow", during which events cannot be collected ~8 cycles?
- Ex: conditional branches retired
 - Sequence of short BBs (< 3 cycles in duration)</p>
 - If branch into first overflows counter, Pebs event cannot occur until branch at end of 4th BB
 - Intervening branches will never be sampled

O means counter overflow P means PEBS enabled C means interupt occurs

5N


Reducing Shadowing Impact

- Some "events" will never occur!
 - -Falling into shadowed window
- Use LBR to extend range of the single sample
- Count the number of objects in LBR and increment count for all of them by 1/15

-Since you have only one sample

Minimizing Shadowing Impact on BB Execution Count

Branch Filtering

LBR Filter Bit Name	Bit Description	bit
CPL_EQ_0	Exclude ring 0	0
CPL_NEQ_0	Exclude ring3	1
JCC	Exclude taken conditional branches	2
NEAR_REL_CALL	Exclude near relative calls	3
NEAR_INDIRECT_CALL	Exclude near indirect calls	4
NEAR_RET	Exclude near returns	5
NEAR_INDIRECT_JMP	Exclude near unconditional near branches	6
NEAR_REL_JMP	Exclude near unconditional relative branches	7
FAR_BRANCH	Exclude far branches	8

Branch Filtering

- User near calls only
 - Tracking back from OS critical sections to user function that caused the problem
 - Lack of returns may be an issue in some cases
 - But not for HPC 🙂
 - Use static call analysis to clean up chains
- User and OS near calls only
 - Profiling OS call stacks
 - Eliminating leaf functions may be complicated by lack of returns
 - Don't remove returns if this is a problem
 - Use BTS to capture deeper stack
 - Issue: cannot exclude unconditional jumps without excluding calls

Precise cycles can be constructed from any PEBS event

Allow profiling code sections screened with STI/CLI semantics

- Ring 0 OS critical sections

- PEBS sampling mechanism may loose interrupts during halted state
 - Instruction retirement required to generate performance monitoring interrupts (PMI)

Counts will not occur without PEBS being invoked

- Profile the application for cycle usage and uop flow.
 - Identify hot functions
 - Check asm of FP intensive code for correct instruction mix
 - X87 is slower than SSE
 - Intel® Compiler has FP-model flags and many pragmas
- Vectorize long tripcount loops
 - -SSE4.2 uses unaligned loads more aggressively
 - Align data whenever possible
 - Check loop tripcounts with br events and register values (described later)
 - Interchange loop orders to get long loops as inner loop
 - Change multi dimensional array layout as needed
 - Completely unroll short tripcount (<~7) inner loops
 - Split/merge loops depending on code size
 - Predicate hoist constant condition if's out of loops
 - Etc, etc , etc...I could write a book

- C++ and large binaries: Only optimize what uses cycles
 - Use call counts to drive compiler inlining
 - Compiler needs to evaluate a large enough scope to do its best work
 - Particularly functions/methods invoked inside loops
 - Size vs Speed
 - Extremely large binaries need to minimize size
 - -Os (linux) –O1 (windows)
 - Branch Mispredictions
 - HW prediction is shockingly good
 - Cost is unretired uop flow (uops_issued.any uops_retired.slots)
 - Optimize case statement order, lowers uops_retired
- Use Intel Compiler LIBM and MKL etc

Optimizing large Object Oriented Code

- Inlining is the advice of choice but things are more complicated.
- Inlining increases binary size and can make ifetch misses more costly and code slows down
 - Even if fewer in overall number
- Ifetch miss events have among the largest IP skids of all events
 - They can show up in the wrong function
- Large codes built of many small methods can result in flat cycle profiles
 - It can take thousands of functions to account for 80% of the clock cycle samples
 - Thus thousands of functions must be optimized to achieve a significant performance improvement

Optimizing large Object Oriented Code

- The author knows of no proven methodology to correct the cost of excessive taken branches and the resulting flat cycle profile.
 - Need fewer calls,
 - instructions required for calling conventions
 - Larger functions to allow the compiler to see the whole calculation and do a better job
 - Larger shared objects to allow greater effect from IPO
 - Create shared objects using just the hot methods to avoid excessive inlining
- This has to be applied to enough methods to account for 80->95% of the cycles

Mostly this is about reducing the total instruction count

• PEBS near call event + LBRs to get call counts/source

- Selecting source files to compile with enhanced inlining
 - IPO can be enahnced when used with PGO
- PEBS near call event + registers (em64T) to get function arguments
 - Fix memset/memcpy calls with short lengths
 - Excessive calls to malloc/free due to constructor/destructor?
 - Identify small malloc's/free's
 - Let the compiler allocate small structures statically rather than malloc and free them excessively

Optimize only functions that use significant cycles

- -Reduces build time
- -Minimize fighting the compiler
 - Changing optimizations or compilers in large builds can be problematic

Move gcc/icc and create script called gcc/icc

#!/bin/sh

```
if echo $@ | grep -f /tmp/sourcefilelist.txt > /dev/null ;
```

```
then /opt/intel/Compiler/11.0/083/bin/intel64/icc.ori -g -fast $@;
else gcc.ori -g -O2 $@;
```

fi

- PTU sometimes shows *.h files as source
- Generate a list of c/cpp files as follows:
 - Export list of functions from Intel® PTU
 - Create script grepf.sh to grep for defined symbols: #!/bin/sh
 if nm --defined-only --demangle \$1 | grep -f \$2 > /dev/null ; then echo `basename \$1 .o`.cpp; fi
 - Find hot object files and remember cpp files: find -name "*.o" -exec grepf.sh '{}' /tmp/functionlist.txt \; > /tmp/sourcefilelist.txt
- This will produce sourcefilelist that only includes targets of compiler

Event Classes

- 1. Execution flow events
 - Cycles, Branches, stalls, uops/inst_retired
- 2. Penalty events Change code to remove the penalty
 - Ex: load requiring access to dram
- 3. Resource saturation events
 - Bandwidth, load/store buffers, dispatch ports
 - No well defined cost
- 4. Architectural characterization
 - Cache accesses, MESI states, snoops
- 5. Instruction mix

Memory Access

- Load instruction uses virtual address to access memory space
- HW translates that to physical address to access caches
 - DTLB does this
- Access is hierarchical
 - Check L1D first
 - If (miss) check if Line Fill Buffer (LFB) allocated
 - If(LFB miss) allocate LFB, escalate miss to L2
 - If(miss L2) get Super Queue (SQ) slot, escalate to uncore

Memory Access Penalties

- Load misses cause execution stalls
 - -In most cases store misses will not stall execution
 - Data to be stored is held in store buffer until desired line is in L1d, thus execution continues
- Loads that hit LFBs overlap in time with original line request
 - If the original request was a load, the original miss accounts for the entire penalty
 - If there are multiple load request to the LFB the least costly would be the penalty
 - -Not all load misses are equally costly

Stall Decomposition on Intel® Core™ i7 Processors

- Same basic methodology as on Intel® Core[™]2 processors*
- Basic strategy is to identify the largest penalty event contributions first
 - Work your way down to smaller contributors
- FE starvation can now be measured
 - And no branch misprediction flush penalty
- Only both_threads_stalled can be measured at execution
 - SMT will make **\Sigma** events_i*penalties_i > both_thread_stalled
 - ALU_only stalls can be measured per thread
 Ports 0,1 and 5

* Intel, the Intel logo, Intel Core and Core Inside are trademarks of Intel Corporation in the U.S. and other countries.

Stall Decomposition: Σevents_i*penalties_i The Elephants

- LLC, L2, and DTLB misses are the large penalty, common events
- LLC activity must be measured at L2 for it to have core, PID, TID context
 - Uncore has no ability to track core, PID or ThreadID
 - Uncore event collection not yet supported
- Figure of merit: Events*Penalty/cycles

 - If SAV(ev) = SAV(cyc)/Penalty(ev)
 - FOM = Samples_ev/Samples_cyc
 - This is ~ how the default SAVs are set
 - Minimizes required screen area in the data display

Stall Decomposition: Σevents_i*penalties_i The Elephants

- Figure of merit: Events*Penalty/cycles
 - Overcounts when there are temporally overlapping penalties
 - Compilers can hoist loads. So make sure there are stalls as well
 - PEBS event uops_retired.stall_cycles should pile up very close to instructions suffering large penalties
 - The combination provides the answer to the critical question:
 - Is the fix worth the effort?

Penalty Events: Memory Access

- Intel® Core[™] i7 processor memory access events are "per source"
 - How many times cacheline came from "here"
- Unique sources have unique Penalties
 - DP system has ~10 sources outside a core
 - Large number of performance events
- Memory access events are precise
 - HW captures IP and register values

67

- Sample + Disassembly => Reconstruct Address
- Latency Event captures IP, load latency, data source and address
 - Similar to Itanium® Processor Family* Data Ear

Offcore Response Latencies

- LLC Hit that does not need snooping
 - LLC latency ~ 35-40 cycles
- LLC Hit requiring snoop, clean response ~65
- LLC Hit requiring snoop, dirty response ~75
- LLC Miss from remote LLC ~ 200 cycles
- LLC Miss from local Dram ~60 ns
- LLC Miss from remote Dram ~100 ns

Memory Access PEBS Events

Identify LLC and DTLB load miss

- Precise load events do not include DCU prefetch/ L2 prefetch

Name	Penalty	Umask	Umask_name
mem_load_retired	0	0x1	L1D_HIT
	6	0x2	L2_HIT
	~35	0x4	LLC_HIT_UNSHARED*
	~75	0x8	OTHER_CORE_L2_HIT_HITM*
	depends	0x10	LLC_MISS
	depends	0x40	HIT_LFB
		0x80	DTLB_MISS*

LLC_HIT_UNSHARED should be LLC_HIT_NO_SNOOP OTHER_CORE_L2_HIT_HITM should be LLC_HIT_SNOOP DTLB_MISS counts primary and secondary DTLB misses on Corel7 Only counts primary on Xeon™ 5600 Family Processors Penalty for DTLB miss is not a constant Also use Dtlb_load_misses.walk_cycles on Xeon™ 5600 Family Processors

Precise Uncore Response Xeon™ 5500 Family Processors • Load response from LLC, another core, local DRAM, remote socket, remote DRAM and IO

Name	Penalty	Umask	Umask_name
mem_uncore_retired	~85	0x4	OTHER_CORE_L2_HITM
	~185	0x8	REMOTE_CACHE_ LOCAL_HOME_HIT
	~200	0x20	LOCAL_DRAM
	~350	0x40	REMOTE_DRAM
		0x80	ΙΟ

OTHER_CORE_L2_HITM should be LOCAL_HITM

Precise Uncore Response Xeon™ 5600 Family Processors • Load response from LLC, another core, local DRAM, remote socket, remote DRAM and IO

Name	Penalty	Umask	Umask_name
mem_uncore_retired	~85	0x2	LOCAL_HITM
	~375	0x4	REMOTE_HITM
	~220	0x8	LOCAL_DRAM_AND_ REMOTE_CACHE_HIT
	~375	0x10	REMOTE_DRAM
		0x80	UNCACHEABLE

Precise Store DTLB miss

Name	Event	Umask	Umask_name
mem_store_retired	0x0c	0x1	DTLB_MISS*
		0x2	dropped events

DTLB_MISS counts primary and secondary DTLB misses on Corel7 Only counts primary on Xeon™ 5600 Family Processors

Overlapping Memory access penalties Xeon 5600 family: Offcore_request_outstanding

Event Name	umask	cmask, inv
OFFCORE_REQUESTS_OUTSTANDING.ANY.READ	0x8	
OFFCORE_REQUESTS_OUTSTANDING.ANY.READ_NOT_EMPTY	0x8	1,0
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_CODE	0x2	
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_CODE_NOT_EMPTY	0x2	1,0
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_DATA	0x1	
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_DATA_NOT_EMPTY	0x1	1,0
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.RFO	0x4	
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.RFO_NOT_EMPTY	0x4	1,0

Offcore_requests_outstanding.demand.read_data_not_empty = cycles there is at least one request from L1d that had to be satisfied by escalation to uncore Includes L1d HW prefetch, loads and SW_prefetch

Defines upper limit of memory access penalties due to L2 miss

So what do you do?

- Load driven misses resulting in pipeline stalls can be fixed by
 - Use longest tripcount loop to drive strategy
 - Change loop order/data layout to give HW prefetcher a chance
 - Divide large structures by usage (See MILC)
 - Structures of arrays rather than arrays of structures
 - Make sure buffer initialization is consistent with usage
 - Make remote_dram misses local dram misses & cut latency in half
- DTLB misses: use large pages

So what do you do?

- Load driven misses resulting in pipeline stalls can be fixed by
- SW prefetch _mm_prefetch(addr, hint) <ia32intrin.h>
 - Use LOAD_HIT_PRE to identify when prefetch distance is too small
 - Min prefetch dist (iter) ~ 200/(uops_per_iteration/3)
 - For local dram
 - Will change as latency changes
 - long inner loop-> prefetch ahead in inner loop
 - Short inner loop-> prefetch 1,2 iterations ahead on outer
 - Reused linked list -> create indirect address array
 - #pragma openmp for (guided) will cause havoc
 - Volume 2 of that book
 - SW prefetches will not help a BW limited application

Other Penalties

- Divides and SQRT (Arith.Cycles_div_active)
 - Vectorize
 - Save reciprocals that are reused
 - Merge with bandwidth limited loops
- Store Forwarding (Load_Block.overlap_store)
 - Event only on Xeon™ 5600
 - Use Intel Compiler
 - Be careful with data type sizes (keep consistent)
- FP exceptions (uops_decoded.ms)
 - Use Intel compiler (no x87, FTZ)
 - Uninitialized values in simd registers
- No ability to measure stalls associated with chained long latency instructions
 - Sum = a+b+c+d+e...evaluated left to right

Instruction Starvation

 Lots of calls to small functions can lead to starving the pipeline of instructions

-Only L2 prefetchers prefetch instructions

 Uops_issued.core_stall_cycles – resource_stalls.any = cycles BE wants instructions, but does not get them

-This is more accurate with HT off

 Can be cross checked with l1i.cycles_stalled and on Xeon[™] 5600 processor with offcore_requests_outstanding.demand.read _code_not_empty (for L2 miss)

Decomposing instruction starvation

Event	Penalty
l2_rqsts.ifetch_hit	~6
offcore_response_0.demand_ifetch.local_cache	~35
offcore_response_0.demand_ifetch.local_dram	~200
offcore_response_0.demand_ifetch.remote_dram	~350

Ifetch miss events have among the largest IP skids of all performance events. The IP can easily have been on in a previously executing function at the time the ifetch miss occurred. See slide 23 Uncertainties are also larger, due to the many buffers in the pipeline Instruction starvation does not occur unless the buffers drain

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for any individual system. Then measure the actual properties of that system by running well established benchmarks.

Instruction Access Penalties

- Demand Ifetch: offcore_response.demand_ifetch.*
 - Usually associated with function calls followed by taken branches in LARGE binaries
 - IPO, force inlining
 - PGO to reduce taken branches
 - shrink sizes of other functions
 - Change order of link command
 - Offcore_response.demand_ifetch.local_dram
 - Sw_prefetch(&foo(),1); ?????
 - Offcore_response.demand_ifetch.remote_dram
 - Run 1 copy of binary per socket
 - Must have two complete copies on the disk
 - Offcore_response.demand_ifetch.llc_hit_no_other_core
 - Sw prefetch?, PGO, IPO
- ITLB misses: use large Itlb pages

Reducing calls and *.so

- Use linker and a control list to identify internal and external functions in *.so to reduce the use of trampolines
 - -icpc -WI,-z,defs -L/External -L/Linker -WI,version-script,export.tmp

\$ cat export.tmp

{

global:

_Foo1;

_Foo2;

local:

_Bar1; _Bar2;

};

Reducing calls and *.so

- Identifying the internal functions is not simple
- Use LBRs, and sfdump5 (see backup) to identify call chains between *.so
- Merge source files into fewer *.so
- Use global/local file of previous slide to reduce trampolines
- NOTE: Author has never personally done this, so he does not know if it really works, or if the syntax is really correct.

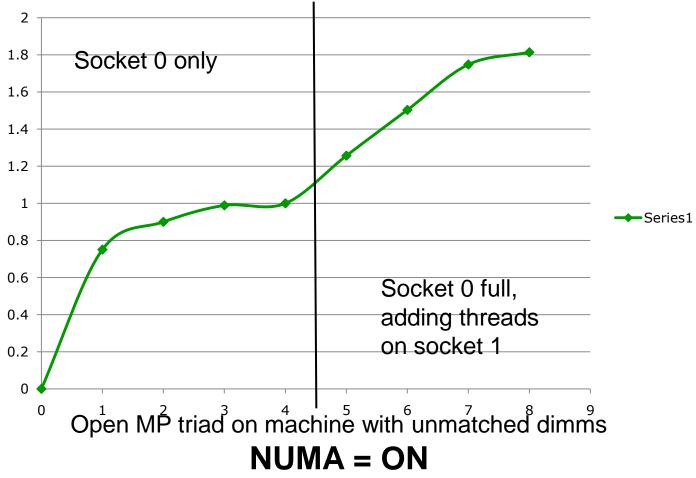
Event Classes

- 1. Execution flow events
 - Cycles, Branches, stalls, uops/inst_retired
- 2. Penalty events
 - Ex: load requiring access to dram
- **3.** Resource saturation events
 - Bandwidth, Id/st buffers, dispatch ports
 - No well defined cost
- 4. Architectural characterization
 - Cache accesses, MESI states, snoops
- 5. Instruction mix

Resource Limitation Events

- Resource limitation is usually only a problem when the resource is saturated
 - There is ~no cost* for bandwidth until the bandwidth is close to saturated
 - *Latency depends weakly on BW on Corei7
- Lost cycles due to resource saturation can be hard to measure
- Only way to determine bandwidth limit is to measure it
 - Count cachelines transferred/cycle for triad
 - (w/wo SSE NT stores)
 - Depends on the number of triad threads
- Resource saturation results in no gain from HT

Resource Limitation: Memory Bandwidth


- Usually needs HW (or SW) prefetch
 - Load latencies will restrict execution otherwise
 - Exception: for(i=0;i<len;i++)a[i] = b[addr[i]];</pre>

Limit depends on

- number and location of concurrent threads consuming large numbers of lines
 - For asynchronous execution this becomes ~impossible to know
- core and uncore frequencies
- type, number, size, location of dimms
- bios version and settings
- Motherboard
- Measured in cycles/cacheline transferred
 - Triad with/wo RFO result in ~ same limit!
 - All "BW" events discussed here count cachelines transferred

Triad bandwidth vs thread count

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for any individual system. Then measure the actual properties of that system by running well established benchmarks.

Latency stalls vs Bandwith saturation

 A latency stalled program has a small number of outstanding data cachelines in flight simultaneously

```
i=0;
While(mystruc->next !=0){
    mystruc=mystruc->next;
    a[i] = mystruc->b_val;
    i++;
}
```

Only one (possibly 2) loads in flight at a time

 Clearly a triad with prefetchers enabled in BW limited

Gather, OOO execution and Bandwidth saturation

Consider:

For(i=0;i<len;i++)A[i] = B[ADDR[i]];</pre>

A data collection might show something like 1000 cycle samples, 200 instruction retired samples and 5000 mem_uncore_retired.local_dram samples

The mem_uncore SAV is 10K, the cycle SAV is 2 million This absorbs the 200 cycle penalty..so the ratio of the samples is the ratio of the cycles...

Clearly, there are more cycles in dram access than cycles executed.

Gather, OOO execution and Bandwidth saturation

In a gather loop the RS acts as a prefetcher. There are 6 uops/iteration -> ~5 iterations in the RS? except the loads go out immediately.. there is no dependency so the 2 loads can be executed, the incr, cmp and branch can execute, again as there are no dependencies so only the stores pile up This would suggest ~30 iterations in flight at a time

the number of load buffers might be what blocks FE uop issue there are 48 and 2/iteration are needed

The loads of ADDR[i] are sequential and thus HW prefetched. All the stalls are on the load of B[ADDR[I]] Thus the events fall on the next instruction.

The mem_uncore_retired.local_dram events are all overlapped.. Thus events*penalties overcounts by a huge factor

Latency vs Bandwidth

- On Xeon[™] 5600 processors the average occupancy of the super queue can be evaluated as offcore_requests_outstanding.any_reads/ cpu_clk_unhalted.thread
- If this is large then the loop is likely BW limited
- If it is small and the event counts indicate a memory access problem due to loads then it is likely to be a latency issue

Bandwidth per core

- Much more complicated than on Intel® Core[™]2 processors
 - Bandwidth limit depends on number of threads using maximum BW and core position of those threads
 - CAN ONLY BE MEASURED
 - No single event counts total cachelines in+out to memory /core
 - Cacheable writebacks are written to LLC and written to memory at a later time
 - Offcore_response.data_ifetch.all_dram
 - However, WB ->dram makes no sense
 - Local vs remote memory
 - NT SSE Stored cachelines are problematic

Offcore_Response: Breaking Down Off-core Memory Access

- Matrix type event
 - Request type X Response type
 - 65025 possible real combinations (65535 2 X 255)
 - Request and Response programmed in MSRs
 - OR(Request bits true) .AND. OR(Response bits true)
 - Ex: all LLC misses = set bits 0,1,2,3,4,5,6,11,12,13,14 - 787F
- Solves problem of averaging over widely differing penalties
- Only one version of the event (b7/msr 1a6)
 offcore_response_0

Memory Access: Off-core Access

- Offcore_Response_0
 - "umasks" set with MSRs 1a6
 - Two versions on XEON 5600 processor family
 - Programming a little different

	Bit position	Description
Request	0	Demand Data Rd = DCU reads (includes partials, DCU Prefetch)
Туре	1	Demand RFO = DCU RFOs
	2	Demand Ifetch = IFU Fetches
	3	Writeback = MLC_EVICT/DCUWB
	4	PF Data Rd = MPL Reads
	5	PF RFO = MPL RFOs
	6	PF Ifetch = MPL Fetches
	7	OTHER
Response	8	LLC_HIT_UNCORE_HIT
Туре	9	LLC_HIT_OTHER_CORE_HIT_SNP
	10	LLC_HIT_OTHER_CORE_HITM
	11	LLC_MISS_REMOTE_HIT_SCRUB
	12	LLC_MISS_REMOTE_FWD
	13	LLC_MISS_REMOTE_DRAM
	14	LLC_MISS_LOCAL_DRAM
	15	IO_CSR_MMIO

Offcore_response Reasonable Combinations

Request Type	MSR Encoding
ANY_DATA	xx11
ANY_IFETCH	xx44
ANY_REQUEST	xxFF
ANY_RFO	xx22
COREWB	xx08
DATA_IFETCH	xx77
DATA_IN	xx33
DEMAND_DATA	xx03
DEMAND_DATA_RD	xx01
DEMAND_IFETCH	xx04
DEMAND_RFO	xx02
OTHER	xx80
PF_DATA	xx30
PF_DATA_RD	xx10
PF_IFETCH	xx40
PF_RFO	xx20
PREFETCH	xx70

Response Type	MSR Encoding
ANY_CACHE_DRAM	7Fxx
ANY_DRAM	60xx
ANY_LLC_MISS	F8xx
ANY_LOCATION	FFxx
IO_CSR_MMIO	80xx
LLC_HIT_NO_OTHER_CORE	01xx
LLC_OTHER_CORE_HIT	02xx
LLC_OTHER_CORE_HITM	04xx
LCOAL_CACHE	07xx
LOCAL_CACHE_DRAM	47xx
LOCAL_DRAM	40xx
REMOTE_CACHE	18xx
REMOTE_CACHE_DRAM	38xx
REMOTE_CACHE_HIT	10xx
REMOTE_CACHE_HITM	08xx
REMOTE_DRAM	20xx

NT local stores counted by 0200 not 4000

A bit different on Xeon 5600 Processor Family

Total Memory Bandwidth

Delivered + Speculative Traffic to local memory

- Reads and Writes Per Source

- UNC_QHL_REQUESTS.IOH_READS
- UNC_QHL_REQUESTS.IOH_WRITES
- UNC_QHL_REQUESTS.REMOTE_READS (includes RFO and NT store)
- UNC_QHL_REQUESTS.REMOTE_WRITES (includes NT Stores)
- UNC_QHL_REQUESTS.LOCAL_READS (includes RFO and NT Store)
- UNC_QHL_REQUESTS.LOCAL_WRITES (no NT stores)

Precise totals can be measured in IMC

- But cannot be broken down per source
 - UNC_IMC_NORMAL_READS.ANY (or by channel, includes RFO)
 - UNC_IMC_WRITES.FULL.ANY (or by channel, includes NT stores)

A few particularly useful events for measuring BW

- Offcore_response.data_in.local_dram
 - Read BW (per core) from local dram
- Offcore_response.data_in.remote_dram
 - Read BW (per core) from remote dram
 - Indicates NUMA locality problem
- Uncore events get totals but only in counting mode with no data/core
 - Unc_imc_normal_reads.any
 - Total read cachelines from this mem controller
 - Unc_imc_writes.full.any
 - Total written cachelines to this mem controller

But what is the potential gain?

- None of this measures what is needed!
 - It does not tell us if the fix is worth the effort!
- The fix is to reduce the number of lines transferred
 - Consume more data per line transferred
- Gain
 - BW_time = total_lines/BW_limit
 - Exec_time = time to execute instructions
 - Memory latency of ~0
 - Time = MAX(BW_time, Exec_time)
 - Completely BW limited ~ change_in_total_lines/BW_limit
 Problem: cannot measure exec time,
 BW limit is absurdly complex in general (must assume synchronous execution)

An example

```
Double *a, *b;
For(i=0; i<len; i+=8)a[i] = sqrt(b[i]);
```

We might be able to compress a and b to transfer fewer lines

```
Double *ap, *bp;
For(i=0; i<len/8; i++)ap[i] = sqrt(bp[i]);</pre>
```

But would it actually go any faster? No, The SQRT latency ~ matches the BW limit

Estimating the gain

- Exec time ~ uops_retired.slots/`3'+ arith.cycles_div_active
 - Undercounts cycles associated with chained long latency uops
- Optimized BW time = Adjusted_lines/Max_bw
- Gain ~ Cpu_clk_unhalted.thread MAX(Optimized BW time, Exec Time)
- Many Uncertainties, but better than nothing
 - Assumptions about concurrency of high BW usage
 - Assumptions about cycles associated with chained long latency uops
 - Is uops/3 realistic?

What do you do about Bandwidth?

- Data layout change is usually best
 - Fix buffer initialization to make remote_dram small
 - Fix order of structure elements (big to small)
 - Eliminate unused structure elements
 - Divide structures into parallel structures by use
 - Measure data consumed/cacheline in
 - Sum load/store in loops (ignore stack pointer, +=)
 - Multiply by total tripcount & divide by 64*offcore_response.data_in.local_dram
 - Fix nested loop order
- Measure data_in with prefetchers on & off
 - If difference is large
 - Change data layout to help HW prefetcher or
 - Consider sw prefetching everything and disabling HW prefetchers

OOO resource Saturation

- Load buffer saturation (resource_stalls.ld)
 - In HPC, frequently due to bandwidth saturation
- Store buffer saturation (resource_stalls.st)
 - This will cause stores to stop the pipeline
 - Usually associated with stores missing I1d/I2 etc
 - SW prefetch, change layout to help HW prefetch
- Port saturation (uops_executed.portX/cycles)
 - Most common for load port (2)
 - Avoid loop distribution (F90)
 - Merge loops to reuse data while available
 - Align data and vectorize

Less than ideal multi core scaling

- Perfect scaling results in the number of perf events (summed over cores) to be constant
- Difference of event counts can identify locality using cycles and some reasons for non scaling behavior

-Cacheline access contention can cause non scaling

- Load-hitm and store address analysis identifies this

 Most non scaling due to resource saturation and evaluated as a ratio: events/wall_cycles

- Wall_cycles ~ cycles/active cores

or Cpu_clk_unhalted.thread max(ICPU)

-<u>Cannot be seen in difference display</u>

Sources/signatures of non scaling

Turbo

- -Having this on results in large drop from 1->2
- Smaller share of LLC
 - -Decrease in LLC hits, increase in LLC miss
- Increase in page faults
 - More threads require more memory
- Asymmetry associated with core 0

 OS induced imbalance
- Context switching
 - -OS's love to move things around, being the boss!
 - Don't know about logical cores & double up on one physical core, while other phys cores are idle

Sources/signatures of non scaling

- Saturating a resource
 - -Ex: Bandwidth
 - Code optimization increases resource saturation
- Shared memory application specific
 - -Serial execution
 - -Overly contested lock access
 - -False sharing (non overlapping access to a line)
- NUMA based non scaling

-Increase in *.remote_dram

HT can be viewed as a way to recover scaling

More sources of non scaling

- Load imbalance
 - -Increase in halted cycles
- MPI global operations
 - increase in time associates with MPI global APIs
 - Ex: allreduce
- Synchronous message passing

-"Intrinsically" non scaling

- Disable turbo while doing measurements
- Disable HT while doing measurements
- Pin all affinities
 - OS's love to move things
 - Old OS's will schedule 2 threads on a physical core while leaving other physical cores idle. This increases with thread count
- Make sure there is enough memory

- /proc/meminfo->Active (?)

- Do 1 thread baseline on a core other than 0
- Increased LLC miss
 - Usual approaches to fixing these, see previous

- Bandwidth issues
 - Check data decomposition for sepparation
 - -Improve data layout to reduce cacheline usage
 - -See previous section on BW issues
- Excessive lock contention
 - -Use finer grained locking
 - -Use faster locking APIs
 - -Make sure the global update is really needed
 - Can you continue working with local copy
- False sharing
 - -Put 64 bytes between data elements

- NUMA related non scaling
 - -Remote dram data access
 - Improve buffer initialization for local access
 - Make multiple copies for each socket
 - -Remote dram ifetch access
 - Make two binaries on the disk and affinity pin per socket
- MPI global operations
 - -Use openMP within a box to reduce MPI nodes
 - -Use good MPI library

- Load imbalance
 - -Seen as halted cycles
 - TSC difference for successive cpu_clk_unhalted.ref != SAV
 - Work queue approach dynamically restores balance
 - At a cost
 - NUMA locality can be lost
 - SW prefetching can become unpredictable within a thread
 - Estimate work during data decomposition to create balanced work rather than balanced iteration count
 - -Save some iterations for final work queue balancing

Graphical tool needed to organize data viewing

- Workflow of event based performance analysis is extremely complicated
 - Requires an enormous number of features/options to enable all possible tasks
 - Automation is very difficult

To do a lot of things requires a lot of options

- Many docking windows, menus, buttons
- Easier to make a tool for a knowledgable user

• The data collection is the easy part Interpreting the data and determining the correct action is the hard part

Tool Requirements

- Maximize data density
 - -Required quantity of data is enormous
- Integrated source/asm display
- Ability to restart sessions later
- Difference utility to monitor changes
- Minimize mouse clicks
- Predefined event lists
- Predefined penalty file
 - -Cycle accounting
 - -dynamic column layout

Primary display shows offending events and even call counts

	tel(R) Performance Tuning	Utility - /hon	ne/levinth/v	vorkspace	e_4_nda	/milc_ori	g/Loop-A	nalysis-w	ith-Call-S	lites-201	0-04-29	-16-14-	12 - Eclipse Platform		
dit <u>N</u> avigate	<u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp														
₽ ≙] 💁 -													E		
ng 🛿 🗖 🗖	Loop-Analysis-with-Call-Site	s-2010-04-29	-16-14-42 🕅												-
⊑ 🔄 ▽	Function	RVA	Module	CPU	CPU	INST	UOPS	UOPS	UOPS	MEM	MEM	RES	BR_INST_RETIRED.NEAR_CALL	UOP	R
tlas_1core_g	compute_gen_staple	0x376A	su3_rmd	33,410	33,410	35,287	12,179	20,637	19,907	22,025	22,091	18,632	(38,163	3
tlas_4	▶ path_product	0x56BE	su3_rmd	27,360	27,360	30,277	10,763	16,813	17,079	22,579	22,604	14,609	I	L 31,494	+ 1
		0x15150	su3_rmd	21,156	21,156	26,444	9,948	11,882	11,709	16,040	16,107	11,133		5 27,959	•
tlas_np_1	eo_fermion_force_3f	0x13972	su3_rmd	0	0	0	0	0	0	0	0	0	3	з о)
lascore_g	eo_fermion_force_3f	0x138E7	su3_rmd	0	0	0	0	0	0	0	0	0	1	1 0)
cc_g_build	eo_fermion_force_3f	0x137F3	su3_rmd	0	0	0	0	0	0	0	0	0	:	2 0)
ilc_orig	▶ dslash_fn_on_temp_s	0xC044	su3_rmd	8,870	8,870	20,017	733	2,167	2,217	592	583	1,873	1	L 22,164	4
Loop-Analysi	▶ add_3f_force_to_mo	0x14842	su3_rmd	16,839	16,839	28,255	3,984	6,240	5,866	4,806	4,775	1,837		5 36,652	2 3
iad	▶ u_shift_hw_fermion_np	0x16A4E	su3_rmd	7,253	7,253	9,046	3,136	3,882	3,915	5,249	5,232	3,688	5	5 9,621	L
	imp_gauge_force	0x11AC8	su3_rmd	3,621	3,621	3,539	1,418	2,171	2,223	1,843	1,820	1,752	c	5,067	,
ad_omp	eo_fermion_force_3f	0x12768	su3_rmd	3,543	3,543	5,576	355	1,017	1,097	407	374	783	c	8,081	L I
ad_snb3	<unknown(s)></unknown(s)>	0x0	vmlinux	4,613	2,268	2,136	599,612	458,805	731,810	1,102	713	416	85,098	8 4,003	\$
ad2	▶ add_3f_force_to_mo	0x16144	su3_rmd	6,414	6,414	11,425	1,269	2,158	2,077	1,462	1,476	808	2	2 14,722	2 1,
	add_3f_force_to_mo	0x170EE	su3_rmd	4,441	4,441	8,076	822	1,403	1,337	951	932	450	c	10,444	ŧ.
	declare_strided_gather	0x73F4	su3_rmd	783	783	1,815	198	167	125	30	32	115	48	B 1,791	L
	load_longlinks	0x5150	su3_rmd	410	410	262	224	289	296	348	349	214	c	375	5
	add_3f_force_to_mo	0x157F2	su3_rmd	1,434	1,434	2,549	278	452	459	313	315	122	c	3,294	ŧ.
	dslash_fn	0x8388	su3_rmd	470	470	576	158	266	268	185	186	237	c	629	,
	grsource_imp	0xED88	su3_rmd	260	260	123	134	219	208	251	249	181	c	152	2
	update	0xA40A	su3_rmd	156	156	97	85	119	109	134	134	99	c	144	£
	Limit 95% 🔻 Granu	ularity Functi	on 😫 Pro	cess All		Thread	All	🗢 Mo	dule All	\$	Cpu 🖯	Total	•		
	Experiment Summary		🗙 Advanced	l Desfile left)								× ¾ 🖡 🖬 🖃 🖻	E - 19	_
	1 m			o Analysis v	with Call S	lintes [Intel	(R) PIUJ vt	sarun /milo	_orig/Loop	-Analysis	-with-Cal	-Sites-20	10-04-29-16-14-42 -s -dl -ec ARITH	.CYCLES	
	workload stopped => 04	workload													
	worktoad stopped => of	1/23/2010 04													
															_
•															

Set the Granularity to LOOPS

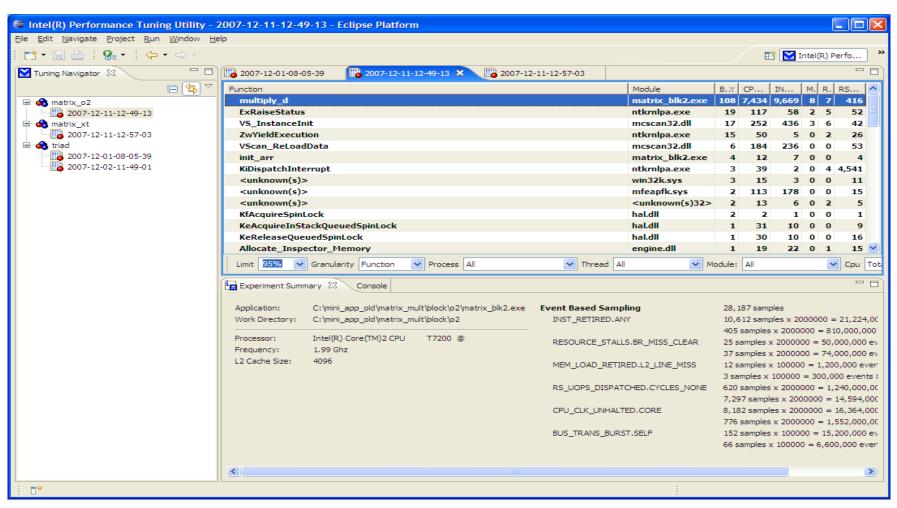
<u>E</u> dit <u>N</u> avigate <u>F</u>		rmance Tuning Utility - /hoi <u>W</u> indow <u>H</u> elp	ine/ieviiicii/w	откарасс	+_nda	mine_or	19/200)	o-Analys	is-with-	samsite	3-2010-0		9-1-9-92	cenpse	Flatto				
- 🛛 🖻 🛛 🚱 -	\$\$.																Ē		
uning 🛿 🗖 🗖	Loop-Anal	ysis-with-Call-Sites-2010-04-29	9-16-14-42 🕱																-
Ē 🔄 ▽	Address	Function	Module	CPU	CPU	INST	UO	UOP	UOP	MEM	RAT	MEM	RES	UOPS	RE	ME	R I	1 T	и в
atlas_1core_g	0x58CB	▶ path_product	su3_rmd	24,831	24,831	28,709	9,642	14,925	15,259	19,207	12,587	19,177	13,840	29,465	988	1,829	391 3	:00	1 473
atlas_4	0x153F2	▼ u_shift_hw_fermion_pp	su3_rmd	15,775	15,775	13,503	9,645	11,032	10,813	15,802	10,607	15,876	10,432	14,700	332	519	0	17 (D 7!
	0x15425		su3_rmd	12,943	12,943	5,720	9,473	10,673	10,328	15,644	10,064	15,707	10,042	6,413	297	493	0	з	0 5
tlas_np_1	0x15425	u_shift_hw_fermion	su3_rmd	12,943	12,943	5,720	9,473	10,673	10,328	15,644	10,064	15,707	10,042	6,413	297	493	0	3	0 5
lascore_g	0x1551C	▶ u_shift_hw_fermion_pp	su3_rmd	2,341	2,341	6,823	46	196	294	0	384	0	248	7,182	30	0	0	0	0 2
c_g_build	0x154FB	u_shift_hw_fermion_pp	su3_rmd	138	138	252	28	35	48	35	20	33	27	377	2	5	0	з	0
lc_orig	0x153F2	u_shift_hw_fermion_pp	su3_rmd	293	293	504	98	127	143	123	125	136	115	546	3	21	0	11	0
Loop-Analysis	0x155F3	u_shift_hw_fermion_pp	su3_rmd	60	60	204	0	1	0	0	14	0	0	182	0	0	0	0	0 0
ad	0x3F57	compute_gen_staple	su3_rmd	13,933	13,933	14,919	5,835	8,801	8,090	10,393	8,907	10,424	7,635	15,149	346	1,117	0	229 (0 190
	0x148BA	▶ add_3f_force_to_mo	su3_rmd	16,838	16,838	28,255	3,983	6,239	5,865	4,806	4,876	4,775	1,837	36,651	3,942	399	0	60 (D 3
riad_omp	0x4BD8	compute_gen_staple	su3_rmd	8,039	8,039	8,961	2,702	4,882	4,795	5,384	4,370	5,417	4,542	9,775	148	580	0	17 (0 10
iad_snb3	0x3985	b compute_gen_staple	su3_rmd	6,954	6,954	7,885	2,133	4,206	4,225	4,601	3,454	4,558	3,993	8,043	160	549	0	24 (0 13
ad2	0x43CA	compute_gen_staple	su3_rmd	3,074	3,074	2,083	1,232	2,044	2,008	1,435	1,707	1,458	1,698	3,087	259	23	0	16	0 13
	0x16CE8	u_shift_hw_fermion_np	su3_rmd	5,273	5,273	4,576	3,023	3,565	3,585	5,194	3,469	5,181	3,398	5,021	142	133	0	1 (D 32
	0x151A5	▶ u_shift_hw_fermion_pp	su3_rmd	5,374	5,374	12,940	299	841	888	231	1,387	231	699	13,257	68	44	0	82	0 22
	0xD0E1	▶ dslash_fn_on_temp_s	su3_rmd	4,018	4,018	9,453	295	977	1,018	285	675	282	848	10,000	80	23	0	62	0 1
	0x11B30	imp_gauge_force	su3_rmd	3,621	3,621	3,540	1,418	2,171	2,224	1,843	725	1,820	1,753	5,067	377	621	7	30	1 3
	0x13015	eo_fermion_force_3f	su3_rmd	3,476	3,476	5,538	321	956	1,039	345	289	316	769	8,025	2	258	160 3	.01	12
	0xC432	◊ dslash_fn_on_temp_s	su3_rmd	3,753	3,753	9,441	249	633	755	139	462	144	643	10,198	64	36	3	10	0 2
	0x57CD	▶ path_product	su3_rmd	1,189	1,189	513	762	980	918	1,994	838	2,024	607	702	331	146	1	0	0 2
	4					_	_			_		_		_					
	Limit 95%	6 🔻 Granularity Loop	Proc	cess All		Threa	d All	\$	Module	All	¢ C	pu Tota	ı 🔶	:					
	Experimer	nt Summary 📃 Console 🕱	🔀 Advanced	Profile Info)									× 🔆 [<u>ک</u> 🖬	.= .×	-1	=] ▼ [<u></u> 9• -
	<terminated></terminated>	Intel(R) Core(TM) i7 processor	ramily - Loop	Analysis v	vith Call s	sites (inte	I(R) PTU	j vtsarun ,	/miic_orig	/Loop-An	alysis-wid	n-Call-Sit	es-2010-0	04-29-16-	14-42 -5	- ai -ec i	ARITH.	LICLE	:S_DIN
	workload	stopped => 04/29/2010 0	4:28:53 PM																
	_																		

Get Tuning Advice for the Selected Event/Ratio: Highlighting the Event Row Enables Explanation

	90	levinth@lev	vinth-nh	hmb:~						😂 Intel(F	() Performa	ance Tuni	ng Utility	- Loop An	alysis wit	h Call Site	es (2
	Intel(R) Performance	e Tuning U	tility -	Loop Ana	ilysis wit	h Call S	lites (20	09-01-0	5-12-51-	57) - Eclij	pse Platfo	orm					_)[
<u>E</u> dit <u>N</u> avigate <u>P</u> roject <u>R</u> un <u>W</u>	indow <u>H</u> elp																
┇ 💩 💁 🖓 ▾ 🚽 ▾ ⇔ ▾															E		
ning Navigator 🕱 📃 🗖	Basic Sampling (2009	-01-05-12-08	3-21)	📙 Basic S	Sampling	(2009-0	1-01-11-4	19-19)	Loop A	Analysis wi	th Call Site	s (2009-0	1-05-12-	51-57) X			-
□ 🔄 🏹	Function	RVA		Module		СР 🔻	CPU	INST	UOPS	UOPS	UOPS	MEM	RAT	RES	MEM	UOP	R
milc	compute_gen_stap	le 0>	x376A	su3_rmd	ĺ	32,722	32,722	35,237	16,111	14,930	18,352	10,787	19,912	20,074	23,366	38,044	1,
Basic Sampling (2009-01-01-:	<unknown(s)></unknown(s)>		0x0	vmlinux-2	2.6.1	32,309	25,071	3,485	467,123	368,591	598,992	91,156	324	598	417	9,120	
	path_product	02	x56BE	su3_rmd		26,927	26,927	30,323	12,888	20,264	8,690	13,485	15,118	15,902	24,046	31,383	2
Basic Sampling (2009-01-05-:	▶ u_shift_hw_fermion	_pp 0x1	L5150	su3_rmd		20,824	20,824	26,474	10,505	11,551	11,110	12,587	13,139	12,267	16,609	27,882	
Loop Analysis with Call Sites (▶ add_3f_force_to_m	o 0x1	14842	su3_rmd		15,914	15,914	28,241	3,675	6,980	5,761	1,903	5,006	1,804	5,009	36,479	4,
	dslash_fn_on_temp	-		su3_rmd				20,048								22,081	
	u_shift_hw_fermion			su3_rmd				9,051			3,713	4,010				9,488	
	▶ add 3f force to m	0x1	16144	su3 rmd		5 976	5 976	11 389	1 285	2 394	2 043	695	1 662	774	1 540	14 674	1
	Experiment Summary C		dvanced	d Profile Info		T V	hread A	AII -	✓ Module	e: All	🔻 Сри	J Total	•				
	Experiment Summary C Function : compute_ge	onsole 🔀 🗛	dvanced	d Profile Info	o ع				✓ Module	2: All	▼ Cpu	J Total	•				
	Experiment Summary C Function : compute_ge Event	onsole 🗹 Ac	dvanced	d Profile Info	o ⊠ Sample	s	Events	Issue		(Cpu	J Total			(Exp	
	Experiment Summary C Function : compute_ge Event CPU_CLK_UNHALTED.T	onsole 🗹 Ac	dvanced	d Profile Info	5ample	s 2 65,444	Events	Issue Hot Fund	 ction = 0.1	919					(Exp	
	Experiment Summary C Function : compute_ge Event CPU_CLK_UNHALTED.T INST_RETIRED.ANY	onsole Ad	dvanced	d Profile Info	o ℜ Sample 32,72 35,23	s 2 65,444 7 70,474	Events 1,000,000	lssue Hot Fun Clocks	ction = 0.1 per Instruct	919 tions Retire	2d - CPI = 0				<	Exp	
	Experiment Summary C Function : compute_ge Event CPU_CLK_UNHALTED.T INST_RETIRED.ANY UOPS_EXECUTED.COP	onsole Ac	dvanced	d Profile Info	o ⊠ Sample 32,72 35,23 16,11	s 2 65,444 7 70,474 1 32,222	Events 1,000,000	Issue Hot Fun Clocks	ction = 0.1 per Instruct on Stall Cy	919 tions Retire cles = 0.49	ed - CPI = 0				<	Exp	
	Experiment Summary C Function : compute_ge Event CPU_CLK_UNHALTED.T INST_RETIRED.ANY UOPS_EXECUTED.COP UOPS_RETIRED.STALL	HREAD	dvanced	d Profile Info	Sample 32,72 35,23 16,11 14,93	s 2 65,444 7 70,474 1 32,222 0 29,860	Events 1,000,000 2,000,000	lissue Hot Fund Clocks Execution Retirem	ction = 0.1 per Instruct on Stall Cy ent Stall Cy	919 tions Retire cles = 0.49	ed - CPI = 0				<	A Exp	
	Experiment Summary C Function : compute_ge Event CPU_CLK_UNHALTED.T INST_RETIRED.ANY UOPS_EXECUTED.COP UOPS_RETIRED.STALL RESOURCE_STALLS.RS	HREAD RE_STALL_CYU _CYCLES 5_FULL	dvanced lark_stul	d Profile Info	Sample 32,72 35,23 16,11 14,93	s 2 65,444 7 70,474 1 32,222 0 29,860 4 40,148	Events 1,000,000 1,000,000 2,000,000 3,000,000	Execution Retirem	ction = 0.1 per Instruct on Stall Cy ent Stall Cy = 0.6135	919 tions Retire cles = 0.49 ycles = 0.4	ed - CPI = 0 924 9563	0.9286			<	Exp	
	Experiment Summary C Function : compute_ge Event CPU_CLK_UNHALTED.T INST_RETIRED.ANY UOPS_EXECUTED.COP UOPS_RETIRED.STALL, RESOURCE_STALLS.RS MEM_UNCORE_RETIRE	HREAD CYCLES S-FULL D LOCAL_DR	dvanced lark_stul	d Profile Info	Sample 32,72 35,23 16,11 14,93 20,07	s 2 65,444 7 70,474 1 32,222 0 29,860 4 40,148 6 233	Events ,000,000 ,000,000 ,000,000 ,000,000	Issue Hot Fun Clocks p Executii Retirem RS Full = LLC Ioa	ction = 0.1 per Instruct on Stall Cy ent Stall Cy	919 tions Retire cles = 0.49 ycles = 0.4	ed - CPI = 0 924 1563	0.9286			<	Exp	
	Experiment Summary C Function : compute_ge Event CPU_CLK_UNHALTED.T INST_RETIRED.ANY UOPS_EXECUTED.COP UOPS_RETIRED.STALL RESOURCE_STALLS.RS	HREAD CYCLES S-FULL D LOCAL_DR	dvanced lark_stul	d Profile Info	Sample 32,72 35,23 16,11 14,93 20,07 23,36	s 2 65,444 7 70,474 1 32,222 0 29,860 4 40,148 6 233	Events ,000,000 ,000,000 ,000,000 ,000,000	Issue Hot Fun Clocks p Executii Retirem RS Full = LLC Ioa	ction = 0.1 per Instruct on Stall Cy ent Stall Cy = 0.6135 d driven m	919 tions Retire cles = 0.49 ycles = 0.4	ed - CPI = 0 924 1563	0.9286	•		<	Exp	
	Experiment Summary C Function : compute_ge Event CPU_CLK_UNHALTED.T INST_RETIRED.ANY UOPS_EXECUTED.COP UOPS_RETIRED.STALL, RESOURCE_STALLS.RS MEM_UNCORE_RETIRE	HREAD RE_STALL_CY _CYCLES S_FULL D_LOCAL_DR LC_MISS	dvanced lark_stul	d Profile Info	Sample 32,72 35,23 16,11 14,93 20,07 23,36 10,78	s 2 65,444 1 32,222 0 29,860 4 40,148 6 233 7 107	Events ,000,000 ,000,000 ,000,000 ,000,000	Issue Hot Fund Clocks J Executio Retirem RS Full = LLC load	ction = 0.1 per Instruct on Stall Cy ent Stall Cy = 0.6135 d driven m	919 tions Retire cles = 0.4 ycles = 0.4 isses - loc isses = 0.2	ed - CPI = (324 1563 al dram = 3297	0.9286	•		<	A Exp	olair
	Experiment Summary C Function : compute_ge Event CPU_CLK_UNHALTED.T INST_RETIRED.ANY UOPS_EXECUTED.COF UOPS_RETIRED.STALL, RESOURCE_STALLS.RS MEM_UNCORE_RETIRED MEM_LOAD_RETIRED.L RAT_STALLS.ROB_REA	HREAD RE_STALL_CY _CYCLES S_FULL D_LOCAL_DR LC_MISS	dvanced lark_stul	d Profile Info	Sample 32,72 35,23 16,11 14,93 20,07 23,36 10,78 19,91	s 2 65,444 7 70,474 1 32,222 2 29,860 4 40,148 6 233 7 107 2 39,824	Events ,000,000 ,000,000 ,000,000 ,000,000 ,000,000 ,660,000 ,870,000	Hot Fun- Clocks J Executi Retirem RS Full = LLC Ioar LLC Ioar	ction = 0.1 per Instruct on Stall Cy ent Stall Cy = 0.6135 d driven m d driven m	919 tions Retire cles = 0.4 ycles = 0.4 isses - 10c isses = 0.2	ed - CPI = (324 1563 al dram = 3297	0.9286			<		
	Experiment Summary C Function : compute_ge Event CPU_CLK_UNHALTED.T INST_RETIRED.ANY UOPS_EXECUTED.COP UOPS_RETIRED.STALL, RESOURCE_STALLS.RS MEM_UNCORE_RETIRED MEM_LOAD_RETIRED.L	HREAD RE_STALL_CY _CYCLES S_FULL D_LOCAL_DR LC_MISS	dvanced lark_stul	d Profile Info	Sample 32,72 35,23 16,11 14,93 20,07 23,36 10,78	s 2 65,444 1 32,222 0 29,860 4 40,148 6 233 7 107	Events ,000,000 ,000,000 ,000,000 ,000,000	Issue Hot Fund Clocks J Executio Retirem RS Full = LLC load	ction = 0.1 per Instruct on Stall Cy ent Stall Cy = 0.6135 d driven m d driven m	919 tions Retire cles = 0.4 ycles = 0.4 isses - loc isses = 0.2	ed - CPI = (324 1563 al dram = 3297	0.9286	•		<	Exp	
111	Experiment Summary C Function : compute_ge Event CPU_CLK_UNHALTED.T INST_RETIRED.ANY UOPS_EXECUTED.COP UOPS_RETIRED.STALL, RESOURCE_STALLS.RS MEM_UNCORE_RETIRED MEM_LOAD_RETIRED.L	HREAD RE_STALL_CY _CYCLES S_FULL D_LOCAL_DR LC_MISS	dvanced lark_stul	d Profile Info	Sample 32,72 35,23 16,11 14,93 20,07 23,36 10,78 19,91	s 2 65,444 7 70,474 1 32,222 2 29,860 4 40,148 6 233 7 107 2 39,824	Events ,000,000 ,000,000 ,000,000 ,000,000 ,000,000 ,660,000 ,870,000	Hot Fun- Clocks J Executi Retirem RS Full = LLC Ioar LLC Ioar	ction = 0.1 per Instruct on Stall Cy ent Stall Cy = 0.6135 d driven m d driven m	919 tions Retire cles = 0.4 ycles = 0.4 isses - 10c isses = 0.2	ed - CPI = (324 1563 al dram = 3297	0.9286			<	A Exp	

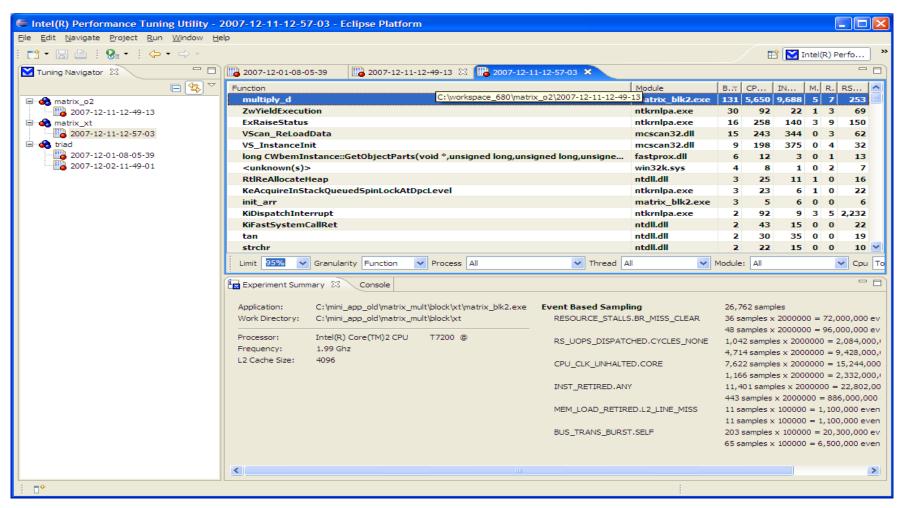
Get Tuning Advice for the Selected Event/Ratio: Highlighting the Event Row Enables Explanation

Applications Places System 🗾 🥱 🔇		evinth@levinth-nhmb:~	Intel(F	 Perform 	nance Tun	ing Utility	- Loop Ana	alysis with	n Call Site	s (200
In	tel(R) Performance	Explain 🔻	Ecli	pse Plat	form				(_0(
e <u>E</u> dit <u>N</u> avigate <u>P</u> roject <u>R</u> un <u>W</u> indov	v <u>H</u> elp	Long latency loads can dominate the performance of an application.	<u>_</u>							
╚┱╶╚╸		Reducing the effective latency can be accomplished by a variety of						E		,
		techniques including data blocking, to keep cachelines closer to the core (in								
Tuning Navigator 🕱 🛛 🗖 📑 🛛	Basic Sampling (2009-01	cache), changing data layout or access patterns, to enhance hardware prefetching efficiency and explicit software prefetch instruction usage. The	s wi	th Call Si	tes (2009-	01-05-12-	51-57) 🖾			- 5
	nction	number of posibilities is almost limitless. What follows is a short discussion of	-	UOPS .	MEM	RAT	RES	MEM	UOP	RE
		a few more common issues. Nested loops: HW prefetching is driven by the	930		2 10,78					
••• mile	ompute_gen_staple	access pattern of the inner loop for the most part. If there are address								
Basic Sampling (2009-01-01-)	unknown(s)>	discontinuities at the termination of the inner loop, (large strides induced by changes in outer loop index) then long latency loads are likely at the change.		-	91,15				9,120	
Basic Sampling (2009-01-05-1	ath_product	This is perhaps most easily solved by using SW prefetches executing several	264		0 13,48					2,1
, Pu	ı_shift_hw_fermion_p	outer loop index values anead. If inner and outer loop indexes doind in	551		0 12,58					e
	dd_3f_force_to_mo.	opposite directions this can cause this discontinuities even when the entire	980		1,90					4,2
⊳ d	islash_fn_on_temp_s	address space is being accessed. Simply reversing the direction of one of	547			9 1,838			22,081	1
l ⊳ u	_shift_hw_fermion_n	the loops is usually the simplest solution. Indiretly accessed data: Consider an access of Data[address[loop index]] address is accessed sequentially	þ 02	3,71	.3 4,010	4,437	4,014	5,435	9,488	1
	dd 3f force to mo	and will be effctively prefetched by the HW prefetcher. Data will not. By far	394	2 04	I3 69	5 1 662	774	1 540	14 674	14
		the simplest solution is to us SW prefetches, but the prefetch distance (as								
	imit 95% 🔻 Granu	defined by the value of loop_index_pref is set to loop_index + pref_distance)	=		pu Total	-				
Exp	eriment Summary Con	is dependent on the latency and the time per iteration of the loop (after correcting for the latency) approximately pref_dist is set to latency/								- 6
		ideal_cycles_per_iteration. If the ideal_cycles/iteration is very small there								
Fu	unction : compute_gen_	may be little that can be gained as the Reservation Station will be able to do								
		the prefetching by itself. For example a simple gather loop does not improve								
	vent	when SW prefetches are added. Further in such cases it is important to							Exp	ain
C	PU_CLK_UNHALTED.THR	organize the data so that the fewest number of cachelines and thus SW prefetches are needed. Arrays of large structures: Looping over arrays of								
	IST_RETIRED.ANY	large structures, while using only a fraction of the structure components can	etire	ed - CPI =	0.9286					
	OPS EXECUTED.CORE	result in discontinuous strides which defeat the HW prefetchers. In such	0.4	974						
		cases not only will the HW prefetchers not prefetch the desired cachelines								
	OPS_RETIRED.STALL_C	but they can pollute the caches by prefetching unused cachelines. The use of SW prefetches can over come the first issue and lower the latency. The best califies is to califie the large church we into pagallel structures and thus	= 0.4	4563						
R	ESOURCE_STALLS.RS_F	best solution is to split the large structures into parallel structures and thus								
M	IEM_UNCORE_RETIRED.I	parallel arrays, defined by the applications use. The Array of Structure	loc	al dram :	= 0.5356					
M	IEM LOAD RETIRED.LLC	histograms and the event filtering capabilities in PTU were designed for	= 0.1	3297						
		exactly this purpose and are reccomended. Pointer chasing: Structure								
	AT STALLS DOD DESC	access by pointer chasing (mystruc is set to mystruc->next) is a very common data access coding style. It results in assembly instructions that		0.0005						
	AT_STALLS.ROB_READ_	look like: mov register [register+const]. Thus are fairly easy to recognize	s =	0.6085						
	OPS_RETIRED.ANY	even when there is no source nor symbolic information. In most cases there							-	
		is little that can be done. Hyperthreading is usually effective for applications								
□◆		whose performance is limitted by the resulting latency associated with								
		pointer chasing. If the linked list is stable over repeated accesses then it is highly advised to switch to an indirect address array, which can be				1				


Differences of EBS Measurments

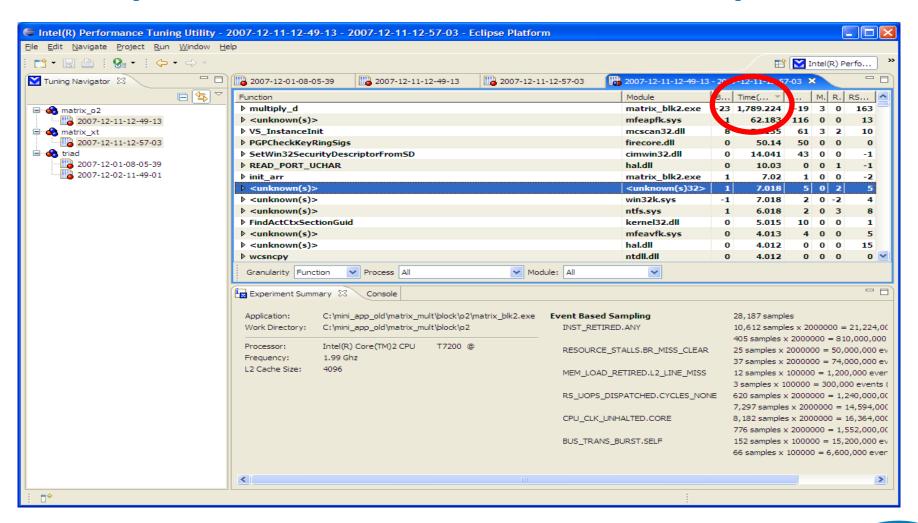
- Intel® PTU supports an analysis of differences of experiments
- This requires
 - Event names must be the ~same
 - Load Modules have the same names
 - They can be the same, with data taken on different machines
 - They can be different but built from the same source
 - Allowing differences to be analyzed down to source view
 - They can be completely different (sources and binaries)
 - PTU will compare functions with the same names for modules with the same names
- Identify compiler differences/regressions
- Multi core scaling

For perfect scaling and identical work, total event counts, summed over cores, will be equal



Data blocked 2X2 unrolled Matrix Multiply compiled at -O2 (Binary = o2\matrix_blk2.exe) Cycle_Usage Profile

Data blocked 2X2 unrolled Matrix Multiply compiled at -O3 -QxT (Binary = xt\matrix_blk2.exe) Cycle_Usage Profile



Only Significant Difference is Cycle Count Create Difference Display

- Control click to select 2 experiments
- Right click to select "Compare Experiments"

	2007-12-11-12-57-03 - Eclipse Platform					
iile Edit Navigate Project Run Window ⊦ টি ▾ 🔛 📄 🕴 🚱 ▾ 🗄 🗘 ▾ ⇔ ▾	ep			📬 💌 In		
				H3 🔽 Tu	tel(R) F	
Tuning Navigator 🗙 📃 🗖	2007-12-01-08-05-39					
🗆 🔁 🖂	Function	Module	B CP	IN	M. R.	RS 🔼
🖃 😪 matrix_o2	multiply_d	matrix_blk2.exe	131 5,650	9,688	5 7	253
2007-12-11-12-49-13	ZwYieldExecution	ntkrnlpa.exe	30 92		1 3	69
atrix_xt	ExRaiseStatus	ntkrnlpa.exe	16 258		39	150
2007-12-11-12 F7 03		mcscan32.dll	15 243		0 3	62
= 😽 triad	nstanceInit	mcscan32.dll	9 198	375	0 4	32
2007-12-01-08 Compare Experim		-	6 12		0 1	
	known(s)>	win32k.sys	4 8		0 2	
Delete	eAllocateHeap	ntdll.dll	3 25		1 0	16
Delete	:quireInStackQueuedSpinLockAtDpcLevel	ntkrnlpa.exe	3 23		1 0	
Repeat	arr	matrix_blk2.exe	3 5		0 0	6
Re-convert	patchInterrupt	ntkrnlpa.exe	2 92			2,232
8 Refresh	stSystemCallRet	ntdll.dll	2 43		0 0	22
& Reliesh		ntdll.dll	2 30		0 0	
	strchr	ntdll.dll	2 22	2 15	0 0	10 🚩
	Limit 95% 🗸 Granularity Function 🗸 Process All 🗸 Thread A	All 🖌 🖌	Module: All			V Cpu T
	Experiment Summary 23 Console					- 6
	Application: C:\mini_app_old\matrix_mult\block\o2\matrix_blk2.exe Event Based Samp Work Directory: C:\mini_app_old\matrix_mult\block\o2 INST_RETIRED.AN	-	28, 187 san 10,612 san 405 sample	nples x 200		
	Frequency: 1.99 Ghz	S.BR_MISS_CLEAR	25 samples 37 samples			
	L2 Cache Size: 4096 MEM_LOAD_RETIR	RED.L2_LINE_MISS	12 samples 3 samples :			
	RS_UOPS_DISPAT	CHED.CYCLES_NONE	620 sample 7,297 samp			
	CPU_CLK_UNHALT	ED.CORE	8, 182 samı 776 sample			
	BUS_TRANS_BURS	T.SELF	152 sample 66 samples			
					2,55	
						>

Differences of Samples Differences in Cycles Shown in msec to Correct for Comparison of Machines at Different Frequencies

Scaling Analysis: Sort by Time and see what causes non scaling

11 9

Drill down by Double Click on Function to Source in difference view

It is likely to ask where to find the source file

🖨 Map Source File 🔀
Could not find the following source file:
multiply_t2i2j_blk.c
Choose file from a different location:
C:\mini_app_old\matrix_mult\block\multiply_t2i2j_blk.c
Add directory to the project search directories list
Never show this dialog for this project again (show assembly only instead)
OK Assembly Only Cancel

Same Source can Display Difference per Source Line

• • • •	Utility - multiply_t2i2j_blk.c - Eclipse Platform
le <u>E</u> dit <u>N</u> avigate <u>P</u> roject <u>R</u> un <u>W</u>	
🗈 • 🖫 🖻 🕴 🚱 • 🕴 🗇 • 🕬	⇒ - EÎ 💟 Intel(R) Perfo
Tuning Navigator 🛛	🙄 🗖 🔀 2007-12-01-08-05-39 📓 2007-12-11-12-49-13 📓 2007-12-11-12-57-03 📓 2007-12-11-12-49-1 📑 multiply_t2i2j_blk.c 🗙 🖓
	🛿 🔄 🎽 Source Assembly (1st exp.) Assembly (2nd exp.) 🛛 📰 🗮 🥻 谷 🤣 🧐 👔 Event of Interest: BUS_TRANS_BURST.SELF 💌
= 🔥 matrix_02	L., Source B Tim INS M., R RS
2007-12-11-12-49-13 matrix_xt	
2007-12-11-12-57-03	7 int i,j,k,ii,jj,numi,numj;
a triad	8 int i2,j2,numi2,numi2;
2007-12-01-08-05-39	9 double temp;
2007-12-02-11-49-01	10 //transpose b
_	11 for(i=0;i <num;i++) td="" {<=""></num;i++)>
	12 $for(k=0)k < NUM; k++) \{$ 4 5 4 10
	13 $T[i][k] = b[k][i];$ -1 -15 1 -11
	14 }
	15 }
	16 numi = 256;
	17 numj = 16;
	18
	19 for(ii = 0; ii <num; ii+="numi){</td"></num;>
	20 for(jj = 0; jj <num; jj+="numj){</td"></num;>
	21
	22 for(i=ii; i <ii+numi-1; i+="2)" td="" {<=""></ii+numi-1;>
	23 for(j=jj; j <j+numj-1; -4="" 1<="" j+3="" td=""></j+numj-1;>
	24 for(k=0; k <num; -5="" 134="" 153="" 23<="" k++)="" td="" {=""></num;>
	25 c[i][j] = c[i][j] 3 241 -490 1 1 46
	26 c[i+1][j] = c[i+117 546 362 2 36
	27
	28 c[i][j+1] = c[i][5 516 155 -1 29
	29 c[i+1][j+1] = c[i2 364 -199 -1 29
	30
	31
	32 }
	Total Selected:
	Experiment Summary 🕄 Console

Shift Right click to Highlight a Region and Display Subtotal at the Bottom

Intel(R) Performance Tuning Utility - r	nultiply_t2i2j_blk.c - Eclipse Platform	
<u> E</u> dit <u>N</u> avigate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> e	p	
📬 • 🔚 🗁 🕴 🚱 • 🗄 🗇 • 🔿 •	😰 🚺 Intel(R) Perfo	
🗹 Tuning Navigator 🛛 🗖 🗖	🖥 2007-12-01-08-05-39 🛛 🔀 2007-12-11-12-49-13 🛛 🔀 2007-12-11-12-57-03 🛛 🐻 2007-12-11-12-49-1 🚺 multiply_t2i2j_blk.c 🗙 🖆	
	Source Assembly (1st exp.) Assembly (2nd exp.)	
📮 🚷 matrix_02		
2007-12-11-12-49-13	L., Source B.,, Tim.,, INS.,, M., R.,, RS.,,	^
matrix_xt		-
2007-12-11-12-57-03	7 int i,j,k,ii,jj,numi,numj;	-
	8 int i2,j2,numi2,numj2; 9 double temp:	-
2007-12-01-08-05-39 2007-12-02-11-49-01	9 double temp; 10 //transpose b	
2007-12-02-11-49-01		
	11 for(i=0;i <num;i++) td="" {<=""> 12 for(k=0;k<num;k++) td="" {<=""> 4 5 4 10</num;k++)></num;i++)>	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	15 }	
	16 numi = 256:	
	17 nunj = 16;	
	18 18	
	19 for(ii = 0; ii <num; ii+="numi){</td"><td></td></num;>	
	20 for(jj = 0; jj <num; jj+="numj){</td"><td></td></num;>	
	21	
	22 for(i=ii; i <ii+numi-1; i+="2)" td="" {<=""><td></td></ii+numi-1;>	
	23 for(j=jj; j <jj+numj-1; -4="" 1<="" j+3="" td=""><td></td></jj+numj-1;>	
	24 for(k=0; k <num; -5="" 134="" 153="" 23<="" k++)="" td="" {=""><td></td></num;>	
	25 $c[i][j] = c[i][j] \dots 3$ 241 -490 1 1 46	
	26 $c[i+1][j] = c[i+117 546 362 2 36$	
	27	
	28 c[i][j+1] = c[i][5 516 155 -1 29	
	29 c[i+1][j+1] = c[i2 364 -199 -1 29	
	30	-
	31	
	32 }	~
	Total Selected: -26 1.801 -19 3 -1 163	
	Experiment Summary 🖾 Console	
		-
□ ◆		

Select "Assembly (1st Exp.)" Only Contributing Basic Blocks are Displayed

Intel(R) Performance Tuning Utility - multiply_t2i2j_blk.c - Eclipse Platform Ele Edit Navigate Project Run Window Help Image: Project Run Window Help Project Run Help	
	Intel(R) Perfo
	📑 multiply_t2i2j_blk.c 🗙 🗖 🗖
🖂 🔄 💟 🛛 Source 🛛 Assembly (1st exp.) 🗋 Assembly (2nd exp.) 🛛 🗐 🧮 🏹 🎲 🧐 😍 😒 🚺 Event of Interest: BUS	S_TRANS_BURST.SELF
🖙 🍓 matrix_02	
2007-12-11-12-49-13 L., Source B., Tin Address L., Assembly (1st e	
G { multiply_d+0 multiply_d+0	
	ecx, DWORD PTR [esp+034h]
	DWORD PTR [esp+08h], ebp
	esi, ebp
	DWORD PTR [esp+04h], eax
	esi, Ox6h
	esi, ebp
	DWORD PTR [esp], edx
	esi, 0x7h
	ecx, DWORD PTR [ecx+esi]
	esi, DWORD PTR [esp+02ch]
	DWORD PTR [esp+0ch], ecx
	ebp, ecx
	ecx, edi
	ecx, 0x6h
	ecx, edi 💳
	ecx, 0x7h
	ecx, DWORD PTR [esp+038h]
	DWORD PTR [esp+010h], ecz
	edx, ecx
26 c[i+1][j] = c[i+117] 0x146F 25 mov 6	ecx, edi
	ecx, 0x3h
28 c[i][j+1] = c[i][5 v Block 10 multiply_d+0	
29 c[i+1][j+1] = c[i2] 0x1474 24 mov example 1	eax, -0x400
30 v Block 11 2 multiply_d+0	a9h:
31 0x1479 25 fld 0	QWORD PTR [esi+eax*8+020 🔽
Total Selected: -26 1,80 Total Selected	d (40 instructions):
	•
Console	- 8
	<u> </u>

Select "Assembly (2nd Exp.)" Only Contributing Basic Blocks are Displayed Now for BOTH Binaries

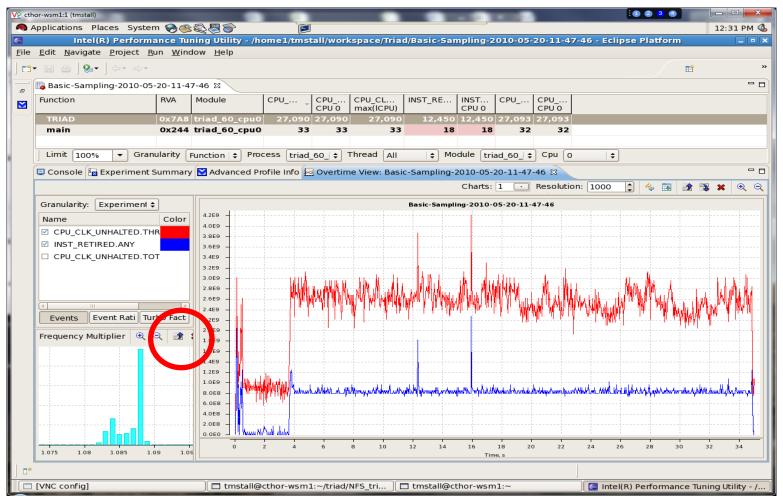
Intel(R) Performance Tuning Utility - m	ultiply t2i2i blk.c - Eclipse Platform				
Eile Edit Navigate Project Run Window Help					
	-				Thtel(R) Perfo
	2007-12-01-08-05-39	2007-12-11-12-	57-03	2007-12-11-12-4	9-1 📔 multiply_t2i2j_blk.c 🗙 🖓 🗆
	Source Assembly (1st exp.) Assembly (2nd exp.)	📃 🐼 🖓 🖑	تا 😔 🛭	Event of Interest	BUS_TRANS_BURST.SELF
matrix_o2	L. Source	B Tim	I man I w	I R RS	~
2007-12-11-12-49-13	<pre>L Source 22 for(i=ii; i<ii+numi-1; i+="2)" pre="" {<=""></ii+numi-1;></pre>	B 11m	1NS M	R RS	<u> </u>
matrix_xt	22 $for(j=jj; j< jj+numj-1; j+)$ 23 $for(j=jj; j< jj+numj-1; j+)$	-3	-4	1	
= 4 triad	24 for $(k=0; k \in NUM; k++)$ {	-5 134		23	
2007-12-01-08-05-39	25 c[i][j] = c[i][j]	3 241		1 1 46	
2007-12-02-11-49-01	26 c[i+1][j] = c[i+1	-17 546		2 36	
	27				
	28 c[i][j+1] = c[i][-5 516	155	-1 29	
	29 c[i+1][j+1] = c[i	-2 364			
	30				✓
	Total Selected:	-26 1,801	-10	3 -1 163	
	Total Scietca.	20 1,001	15	5 1 105	
	Address L., Assembly (1st exp.)	~	Address	L., Assembly	(2nd exp.)
			▼ Block		
	0x1435 25 mov ecx, DWORD PTR [es	sp+034h]	0x	151F 25 movsd	xmm3, MMWORD PTR [esi]
	0x1439 25 mov DWORD PTR [esp+08h	1], ebp	0x	1523 26 movsd	xmm2, MMWORD PTR [esi+02
	0x143D 25 mov esi, ebp		0x	1528 28 movsd	xmm1, MMWORD PTR [esi+08]
	0x143F 25 mov DWORD PTR [esp+04h	n], eax	0x	1530 29 movsd	xmm0, MMWORD PTR [esi+02
	0x1443 25 shl esi, 0x6h		0x	1538 29 mov	edx, -0x400
	0x1446 25 add esi, ebp			11 2 multiply	_d+016dh:
	0x1448 25 mov DWORD PTR [esp], e	edx	0x	153D 25 movsd	xmm4, MMWORD PTR [edi+ed
	0x144B 25 shl esi, 0x7h		0x	1546 25 mulsd	xmm4, MMWORD PTR [ebx+ed
	0x144E 25 lea ecx, DWORD PTR [ec	-	0x	154F 25 addsd	xmm3, xmm4
	0x1451 25 add esi, DWORD PTR [es			1553 25 movsd	MMWORD PTR [esi], xmm3
	0x1455 25 mov DWORD PTR [esp+0ch	n], ecx		1557 26 movsd	xmm5, MMWORD PTR [edi+ed
	0x1459 25 mov ebp, ecx			1560 26 mulsd	xmm5, MMWORD PTR [ebx+ed
	0x145B 25 mov ecx, edi	×		1569 26 addsd	xmm2, xmm5 🛛 💌
		>	<		>
	Total Selected (40 instructions):			Total Se	lected (23 instructions):
	Experiment Summary 🕱 Console				- 8
	A REP AND THE PROPERTY OF THE				
				E	

Export Selected Source and the Contributing Basic Blocks from Both Binaries to a Single CSV Spread Sheet Instant Compiler Regression Bug Report

Edit Navig		uning Utility - multipl Run Window Help	y_t2i2	j_blk.	c - Ecli	pse Pla	tforn	n									-)[□
3 - 🖪 🖻	s i Q ∎ • i	⇔ • ⇔ •														🕆 🔀 Inte	l(R) Per	fo
2007-12-01-	-08-05-39	2007-12-11-12-49-13	:	2007-12	2-11-12-5	57-03		2007-	12-11	-12-49-13 - 2007	-12-	11-12-57-03	multiply_t2i2j_bl	k.c 🗙				
Source As	sembly (1st exp	o.) Assembly (2nd exp.)			. 49 4	. 🕫	i	Event	t of In	terest: BUS_TRA	ANS_	BURST.SELF	~					
Source			· 1	в [Tim	INS		n	DC	1								
	r(i=ii: i	<ii+numi-1; i+="2)</td"><td></td><td>D</td><td>100</td><td>105</td><td>191</td><td>R</td><td>R5</td><td>· _</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ii+numi-1;>		D	100	105	191	R	R5	· _								
3		j; j <jj+numj-1; j·<="" td=""><td>-</td><td></td><td>-3</td><td>-4</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></jj+numj-1;>	-		-3	-4				1								
1		=0; k <num; k++)="" td="" {<=""><td></td><td>-5</td><td>134</td><td>153</td><td></td><td></td><td>2</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></num;>		-5	134	153			2	3								
5		c[i][j] = c[i][j	1	3	241	-490	1	1	4	6								
5		c[i+1][j] = c[i+1]	1	-17	546	362	2		3	6								
7																		
3		c[i][j+1] = c[i]		-5	516	155		-1	2									
		c[i+1][j+1] = c[i]	i	-2	364	-199		-1	2	9 Export to CSV F	ile.							
										Copy to Clipboa								
1										Select All								
Total Sel	ected:			-26	1,801	-19	3	-1										
	1 1				_			- (· · · · · · · · · · · · · · · · · · ·	_		ciated basic blocks					
ddress	L Assembly		BU	Time(.		г М.	R	F		Address		Assembly (2		BU 1		INST 9	M R	
Block 9	5 25 mov	<pre>/_d+065h: ecx. DWOR</pre>			1					→ Block 10 Ov1515		multiply_c	xmm3. MMWO	1	22	9	1	
	9 25 mov	DWORD PTR							_			movsd	xmm2, MMWO		14	7	1	
) 25 mov	esi, ebp							=			movsd	xmm1, MMWO	1	7	1	-	
	25 mov	DWORD PTR										movsd	xmm0, MMWO	-	· · · · ·	1		
0x1443	3 25 shl	esi, Ox6h								0x1538	29	mov	edx, -0x400			-		
	5 25 add	esi, ebp								▼ Block 11	2	multiply_c	d+016dh:	117	5,583	9,661	1	6
0x1446	3 25 mov	DWORD PTR								0x153D	25	movsd	xmm4, MMWO	9	560	899		
	20 1100									0x1546	25	mulsd	xmm4, MMWO	8	90	104		2
0x1448	25 mot	esi, Ox7h														453		2
0x1448 0x1448		ecx, DWOR									25	addsd	xmm3, xmm4	5	295			
0x1448 0x144B 0x144E 0x144E 0x1451	25 shl 25 lea 1 25 add	ecx, DWOR esi, DWOR								0×154F 0×1553	25	movsd	MMWORD PTR	3	295 453	874		
0×1448 0×144B 0×144E 0×1451 0×1455	25 shl 25 lea 25 add 5 25 mov	ecx, DWOR esi, DWOR DWORD PTR								0×154F 0×1553 0×1557	25 26	movsd movsd	MMWORD PTR xmm5, MMWO	3 16	453 481	874 952		
0x1448 0x144B 0x144E 0x1451 0x1455 0x1455	8 25 shl 25 lea 25 add 25 mov 25 mov	ecx, DWOR esi, DWOR DWORD PTR ebp, ecx								0x154F 0x1553 0x1557 0x1557	25 26 26	movsd movsd mulsd	MMWORD PTR xmm5, MMWO xmm5, MMWO	3 16 5	453 481 45	874 952 51		
0x1448 0x144B 0x144E 0x1451 0x1455 0x1459 0x1459 0x1458	3 25 shl 5 25 lea 1 25 add 5 25 mov 9 25 mov 3 25 mov	ecx, DWOR esi, DWOR DWORD PTR ebp, ecx ecx, edi								0x154F 0x1553 0x1557 0x1560 0x1569	25 26 26 26	movsd movsd mulsd addsd	MMWORD PTR xmm5, MMWO xmm5, MMWO xmm2, xmm5	3 16 5 8	453 481 45 97	874 952 51 126		
0x1448 0x144B 0x144E 0x1451 0x1455 0x1459 0x1459 0x145B 0x145D	8 25 shl 25 lea 25 add 25 mov 25 mov 25 mov 25 mov 25 mov	ecx, DWOR esi, DWOR DWORD PTR ebp, ecx ecx, edi ecx, 0x6h								0x154F 0x1553 0x1557 0x1560 0x1569 0x156D	25 26 26 26 26 26	movsd movsd mulsd addsd movsd	MMWORD PTR xmm5, MMWO xmm5, MMWO xmm2, xmm5 MMWORD PTR	3 16 5 8 11	453 481 45 97 463	874 952 51 126 752		
0x1448 0x1448 0x144E 0x1451 0x1455 0x1459 0x1459 0x145B 0x145D 0x1460	3 25 shl 5 25 lea 1 25 add 5 25 mov 9 25 mov 3 25 mov	ecx, DWOR esi, DWOR DWORD PTR ebp, ecx ecx, edi							~	0x154F 0x1553 0x1557 0x1560 0x1569 0x156D 0x156D 0x1575	25 26 26 26 26 26	movsd movsd mulsd addsd	MMWORD PTR xmm5, MMWO xmm5, MMWO xmm2, xmm5	3 16 5 8	453 481 45 97	874 952 51 126		
0x1448 0x144B 0x144E 0x1451 0x1455 0x1459 0x1459 0x145B 0x145D	 25 shl 25 lea 25 add 25 mov 25 mov 25 mov 25 mov 25 shl 25 add 	ecx, DWOR esi, DWOR DWORD PTR ebp, ecx ecx, edi ecx, 0x6h	92	7.4		.650	5	>	38	0x154F 0x1553 0x1557 0x1560 0x1569 0x156D	25 26 26 26 26 26	movsd movsd mulsd addsd movsd movsd	MMWORD PTR xmm5, MMWO xmm5, MMWO xmm2, xmm5 MMWORD PTR	3 16 5 8 11	453 481 45 97 463	874 952 51 126 752		>

Measuring non parallel execution

- With turbo enabled, non parallel execution will result in a frequency boost to the core executing the serial code
- The serial functions can be identified using the filtering capability of the over time display



Single threaded execution with turbo boost enabled

	n1:1 (tmstall)					100 A 1						:1 2	3 🕘		
Аррис	ations Places System														12:27 PM
		nce Tuning Utility	- /home1/tmsta	all/work	space/Triac	l/Basic-Sa	mplin	g-2010	-05-20-1	1-47-46	5 - Eclip	se Plat	form		
	<mark>lenu</mark> vigate <u>P</u> roject <u>R</u> u	in <u>w</u> indow <u>H</u> eip													
3 ▼ 🖫													_ E	1	
Ba	asic-Sampling-2010-05-	20-11-47-46 🕱													_
Add		Module	CPU	CPU	CPU_CL	INST RE	INST	CPL	J CPU						
Add.				CPU 0	max(ICPU)		CPU	0	CPU						
0x8		triad_60_c		27,089	27,089	12,450			092 27,0						
0x4		triad_60_c		33	33	18		18	31	31					
0x9		triad_60_c triad_60_c	-	1	1		0 0	0	0	0					
0x7		triad_60_c	-	0	0	-	,)	0	1	1					
										_					
Lin	mit 🛛 100% 🔻 Granı	ularity Basic Blo 🖨	Process triad_	50_ \$ T	hread All	≑ M	odule	triad_6	о_ ‡ Ср	1 0	=				
Co	onsole 🔚 Experiment S	ummary 🔀 Advance	ed Profile Info 🗖	Overtim	e View: Basio	-Sampling	-2010-	05-20-1	1-47-46 ¤						_
_		,	tard						• Reso		1000	1		* 	× 🗨
							Cha		Kese		1000	•		2 4	~
Gra	nularity: Experiment 🖨] .				Basic-San	pling-2	010-05-	20-11-47-4	6					
Nan	ne	Cc Scale													
✓ C	CPU_CLK_UNHALTED.TH	R				1									
⊠ 1	NST_RETIRED.ANY	.X • 3.5E9 -													
	CPU_CLK_UNHALTED.TO							1							
		3.0E9 -	·					- 1	1						
				Ubaidadad	le all'h al le	t s Il Mila		, Mahilai	Wi Wi		. L	Mada M M	. k E	1.1	a dhi la
1		2.5E9 -	· · · · · · · · · · · · · · · · · · ·	标材情格	national set for a data	We Link	WIN	N 14 1 14 1	- And	MIMAA	klik at dir	<u>, 18, 18, 19</u>	We have	։ լիֆուս	ENVERIO I
E	events Event Ratio	rbo Facto		- [ĭ	n 1 - 1 - 1	1	t i i i i		- Add with a	i li i li i i		րի	in wat	M/ 11	
Fred	uency Multiplier	2 📑 🗙 🔤 -												· · · · · · · ·	
		1.5 -	,				1								
		1.05	has a dalla and												
		1.023	MMMMMMMMMM horas	hand	petymounthintent	with the group of m	angle A	phanking	nt which it is the state of the	undern Aller	handaha	approxim	handraath	manteria	Morning
		5.0E8 -	T Talk												
		0.0E	Muun No Arish shisin 🗄 👘												
		d	2 4	6	8 10	12 14	16	18	20	22 2	24 26	28	30	32	34
0	0.2 0.4 0.6 0.8							Time, s							
\$															
] tmstall@d				1					

Zoom in on frequency multiplier select range and filter up

Source View Shows what is Executed

Applications	1 (levinth)	System 🗾 🥱 🕥	I lovi	nth@levinth	-phpph:c:						linto!/D) Porformanco Tuning Liki	lity quarks	tuff4 c Fr	linco Platfa	
plications	Flaces			N) Perforn		ning Util	ity - quar	k stuff4	c - Eclips) Performance Tuning Uti	iity - quark_s	sturt4.c - Ec	· ·	rm
Edit Navi	igate Proi	ect <u>R</u> un <u>W</u> indow <u>H</u> elp	mean	() Periori	Tance Tu	ning oui	icy - quai	x_stants	e - cenps	e Platio						
		•• ⇔•												-		,
] ? ∎▼] ¢	J• 42+												E		
x - 🗆	l 📴 Basic	Sampling (2009-01-0	🍃 Basic Samplin	g (2009-01-	0	🖥 Loop An	alysis with	Call Sit	📄 patł	n_produc	t.c	Branch_Analysis (2009-	-01	quark_stu	ff4.c 🔀	
□ 🔄 マ	Source	Assembly Control Gra	on 💷 🗏 🖥	i 49 49	2 i	Event of l	nterest: Cf	V_CLK_U	NHALTED.T	HREAD		•				
d milc	Line S	Source		CPU_C	INST	BR_I	CPU_C	Add	ress	Line A	Assembly		1	CPU_C	NST B	R_
Basic S	1939	FORALLSITES(i,s)		88	79	766	88		0x1541B	1945 a	ıdd	r13,rdx		45	160	
Basic S	1940	mult_su3_mat_hwvec_f	or_inline	4,505	12,886	2,661	4,505		0x1541E	1945 1	ea	r12,QWORD PTR [r10+	r8]			
Branch		}							0x15422	1945 x	or	r14d,r14d				
📙 Loop A		else /* backward shift	*/					▼B	lock 12					11,974	5,896	1 =
	1943	(0x15425	1945 m	lovaps	xmm6,xmm5		75	43	
	1944	FORALLSITES(i,s)		50	177	502	50		0x15428			xmm8, xmm4		39	148	
	1945	mult_adj_su3_mat_hwv	ec(&(s->1	14,277	13,301	2,932	14,277	=	0x1542C		- /	xmm12,xmm3				
	1946	}							0x15430			xmm2				
	1947								0x15434		-			69	86	
	1948	if(*mtag == NULL)							0x15438	1945 m	10755	xmm7, DWOR VR [r	14+r13]	35	156	
		otal Selected:		14.277	13,301	2,932	14,277			т	otal Sel	ected (1 instructio :		75	43	1,2
	25 (Block 26 Block 27 ent Summary Console X	dvanced Profile I	Block Line 1		Block 11 Line 194		ock 12 e 1945	Block Line 1		Block Line 19	45 Block 41	Block 55	Block		
÷												J				

Cmp in Blk 15 Controls Loop, Comparing R8 and R11. R8 increments by 48 (30H)

levinth-nhmb:1	(levinth)					
Applications	Places System 🗾 🥱 🕥	levinth@levinth-nhmt	0:~		📄 🔿 🕽 Intel(R) Performance Tuning Utility - quark	_stuff4.c - Eclipse Platform
		Intel(R) Performance	e Tuning Utility - o	quark_stuff4.c - Eclipse Pla	tform	,
le <u>E</u> dit <u>N</u> avig	jate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp					
:• 8 ≙]	8 ∎ ▼					🖹 "
8 -0	Basic Sampling (2009-01-0	Basic Sampling (2009-01-0	Loop Analysis	with Call Sit	duct.c 📴 Branch_Analysis (2009-01	📄 quark_stuff4.c 🗙 🦵 🗖
E 🔄 ▽	Source Assembly Control Graph	h 💷 🗏 🖗 🍄 🧐	i Event of Interes	t: CPU_CLK_UNHALTED.THREA	D	
Basic S	Line Source	CPU_C INST_	BR_I CPU_	C Address Line	Assembly	CPU_C INST BR
-	1940 mult_su3_mat_hwvec_fo	or_inline 4,505 12,	886 2,661 4,	505 0x155DE 194	5 movss DWORD PTR [r14+r12+01c	91 301
Basic S	1941 }			0x155E5 194	5 add r14,08h	134 518
📙 Branch	1942 else /* backward shift	*/		0x155E9 194	5 cmp r14,018h	1 1
📑 Loop A	1943 (0x155ED 194		1
	1944 FORALLSITES(i,s)		177 502	50 ▼ Block 15 1		48 177
	1945 mult_adj_su3_mat_hwve	ec (& (s->1 14,277 13,	301 2,932 14,			10 59
	1946 }			≡ 0x155F7 194		37 110
	1947			0x155FB 194		1 8
	1948 if(*mtag == NULL)			0x15602 194		
	1949 *mtag = start_gather_	_from_tem		• 0x15605 194	4 jnge Block 11	
	Total Selected:	50 1	L77 502	50	Total Selected (5 instructions):	48 177 5
		BIUCK LU		,	RIDCK 23	
		2.001 20	*			Blo
			Block 11 /	Block 12	Block 54	
		Block 15		Line 1945	Block 55	Blov
		Line 1944		Line 1945		
			\sim		Block 14 Line 1945	Block 43
				Block 19	Block 42	
			Block 18 Line 1952	•	Block 41	
	25 Block 26			_	BIOCK #1	
	Block 27 Block 27				Block 40	•
	•			III		Þ
	Experiment Summary Console 🔀 Ad	vanced Profile Info ස				- 6
;;]\$						
					J	
			Ш			

Register Values Collected with Precise Event Br_inst_retired.all_branches in Blk 11 Yield Values for R11 (14 samples)

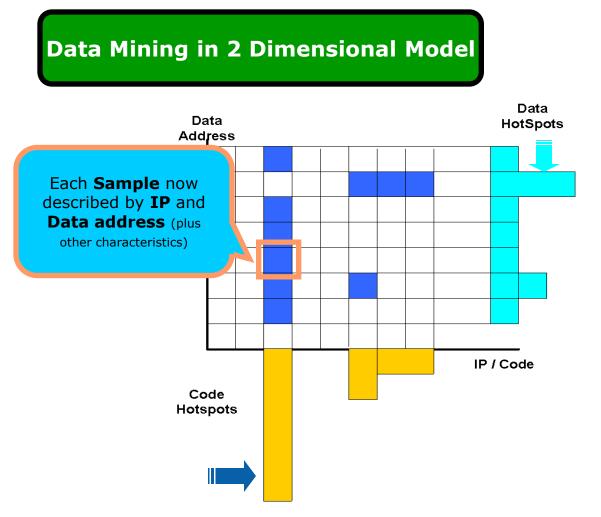
	(levinth) Places System 🔊 🏀 🚫	levinth@levinth-nl	hmb:~				Intel(B) Perfo	imance Tur	ning Utility - quark_stuff4.c - Eclips	e Platform
	. 800	=		na Util	lity - au	ark_stuff4.c - Eclipse Platfor			ing ouncy quart_start the zenps	
Edit Navig	jate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp	initial(ii) i anomini								
-										»
	8 ∎▼								E*	
×	Basic Sampling (2009-01-0	Basic Sampling (2009-01-0.	🔡 Li	oop An	nalysis wi	th Call Sit 📄 path_product.	c 🛛 📴 Brand	ch_Analysis	(2009-01 🚺 quark_stuff4.c	×
⊑ 🔄 ▽	Source Assembly Control Graph] 🗐 🖶 🗔 🐼 🧐 🖄	i Ev	ent of I	Interest:	CPU_CLK_UNHALTED.THREAD	•			
🗞 milc	Line Source	C Addr	ess	Line	Assembl	V	CPU C	INST	BR INST RETIRED.ALL BRANCHE	S CPU
Basic S	1941 }		0x153E3			r15,r15d		_		
Basic S	1942 else /* backward shift	4	0x153E6	1945	lea	r15,QWORD PTR [r15+r15*8]				
📑 Branch	1943 {		0x153EA	1945	lea	r11,QWORD PTR [r11+r11*2]		h.		
📑 Loop A	1944 FORALLSITES(i,s)		0x153EE	1945	shl	r11,04h				
	1945 mult_adj_su3_mat_hwved			1			274			14
	1946 }		0x153F2			rsi,QWORD PTR [rax+rdi]	50			14
	1947		0x153F6			xmm5,DWORD PTR [rsi]	16			
	1948 if(*mtag == NULL)		0x153FA			xmm4,DWORD PTR [rsi+04r				
	1949 *mtag = start_gather_:		0x153FF			xmm3,DWORD PTR [rsi+08h				
	1950 dir, B	VENANDOD	0x15404	1945	movss	xmm2,DWORD PTR [rsi+0ch	1] 41	. 149		•
	Total Selected:	14,			Total Se	elected (11 instructions):	274	555		14 2
					_	/	BIOCK 53			
			╶╲╭╴		_ /	' I		··· b .		Blo
				Block 1	<u> </u>	Block 12		Block 5	4	
		Block 1 Line 194		ne 194		Line 1945 Block 13			Block 55	Blov
			╧ू└─		-/ •	Line 1945	Block 14			
					/		Line 1945	٦	Block 43	
					<u> (</u>	Block 19			Block 42	
			B	lock 1	8			-		
	25			ne 195				Block 4	1	
	Block 26 Block 27							-		
							Block 40	/		•
	Experiment Summary Console 🔀 Adv	anced Profile Info 🛱								- 8
)]\$										

Select the Asm Line, Right Click and Show Register Statistics

evinth-nhmb:1 Applications	(levinth) Places System 🗾 🥱 🕥	🔲 levinth@levinth-r	nhmb:~	🕽 In	tel(R) Perfor	mance Tu	ning Utility - qua	rk_stuff4.c - Eclipse	Platform
		Intel(R) Perform	ance Tuning Utility - quark_s	tuff4.c - Eclipse Platform					_ 🗆 🗙
<u>E</u> dit <u>N</u> avig	jate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp								
:- 8 €]	⊗ ∎▼							Ē	**
x - 0	Basic Sampling (2009-01-0	asic Sampling (2009-01-0) 🛛 🔀 Loop Analysis with Cal	l Sit 📄 path_product.c	📙 Branc	h_Analysis	s (2009-01	quark_stuff4.c	x - D
□ 🔄 🏹	Source Assembly Control Graph		Devent of Interest: CPU	CLK_UNHALTED.THREAD	•				
😪 milc 🔢 Basic 🛙	Line Source	C Add	Iress Line Assembly		CPU_C	INST	BR_INST_RETIR	RED.ALL_BRANCHES	CPU 🔺
- 1	1941 }		0x153E3 1945 movsxd	r15,r15d					
Basic S	1942 else /* backward shift *	/	0x153E6 1945 lea r1	5,QWORD PTR [r15+r15*8]					
📙 Branch	1943 (0x153EA 1945 lea r1	L,QWORD PTR [r11+r11*2]					
📙 Loop A	1944 FORALLSITES (i, s)		0x153EE 1945 sh1 r1	L,04h					
	1945 mult_adj_su3_mat_hwvec	(&(s->1 ▼B	lock 11 1		274	555			14
	1946 }		0x153F2 1045 more rg	OWORD PTR [rax+rdi]					14
	1947	=	0x153F 0x153F Export to CSV File	RD PTR [rsi]	16	6			
	1948 if(*mtag == NULL)		0x153F Copy to Clipboard	RD PTR [rsi+04h]	70	37			
	1949 *mtag = start_gather_f	rom_tem	0x153F Select All	RD PTR [rsi+08h]	1	2			
	1950 dir, BV	ENANDOD	0x1540 Expand All	RD PTR [rsi+Och]	41	149			-
			Collapse All						► I
	Total Selected:	14,		truction):	50	152			14 !
		BIUCK	Show registers values	statistics BI	оск 53				Blo
				•		Block 5	4		
		Block 1		12		BIOCK 5	14		
		Line 19	I ine 1945 / 1 ine 1	945 Block 13			Block 5	5	Blov
				Line 1945	ock 14				
			· · · · · · · · ·		e 1945	1		Block 43	
			Block	10			Dia de 1		
			Block 18	19]	Block 4	.2	
			Line 1952			Block 4	1		
	25 Block 26 Block 27								
					lock 40	/			•
									Þ
	Experiment Summary Console 🔀 Adva	nced Profile Info 😫							- 8
]◆									

Tripcount is constant (min=max=avg, rms=0) and Equals 786432/48 = 16384 Which is the 4-Dim Lattice size for this Problem

Applications	Places Syste	em 🗾 🔗 🕥	levinth@	levinth-nhmb:~			😂 Intel(R) Pe	rformance Tu	ning Utility - quar	k_stuff4.c - Eclipse P	atform
			Intel(R) Pe	erformance Tuning	Utility - quark_s	tuff4.c - Eclipse	Platform				
<u>E</u> dit <u>N</u> avig	ate <u>P</u> roject	<u>R</u> un <u>W</u> indow <u>H</u> elp									
• 8 4]	8 ∎•							_		Ē	,
x - D	📙 Basic Sam	npling (2009-01-0 📑 Ba	Registers Sta	ts			-	ch_Analysis	a (2009-01	📄 quark_stuff4.c 🎗	
- (-	Source	Assembly Control Graph	Name	Min	Max	Average	Std. Dev				
a milc		Control Graph	rax	10112	130952	74449	42080		-		
Basic S	Line Source	ce	rbx	442533120	443450736	443066835	344925	. INST	BR_INST_RETIR	ED.ALL_BRANCHES	CPU 📤
Basic S	1941)	•	rcx	4	7	5	1				
Branch		se /* backward shift */	rdx	47519491776912	47519508815352	47519500848529	5933300				
Loop A	1943 1944	(FORALLSITES(i,s)	rsi	453042848	459092256	456269140	1786479				
Loop /		<pre>nult_adj_su3_mat_hwvec(&</pre>	rdi	442533120	443450736	443010654	287229	4 555		1	4
	1946		rbp	14073609518390	14073609518392	14073609518391	9	0 152			4
	1947		rsp	14073609518320	14073609518320	14073609518320	0	6 6			
	1948 if	(*mtag == NULL)	r8	60672	785712	446698	252480	0 37			
	1949	*mtag = start_gather_fro	r9	443057472	443450736	443226013	160002	1 2			
	1950	dir, EVEN	r10		458524272	457170075		1 149			
	Total	Selected:	r11	786432	786432	786432	0	0 152		1	
				456225552	459078528	457622725	1038897				
			r13	47519491776108	47519508814404	47519500847633	5933283				Blo
			r14	24	24	24	0	Block 5	4		
									Block 5	5	Blo
						Click outside or	press <esc> to clos</esc>	e			
							Line 1945	• -		Block 43	
						19		1	Block 4	2	
				Bloc	ck 18						
	25			Line	1952			Block 4	1		
		Block 27					Block 40				-
	•						- · · · · · · · · · · · · · · · · · · ·				Þ
	Experiment S	ummary Console 🔀 Advand	ed Profile Info	3							
	2. perment o	Advance Advance									

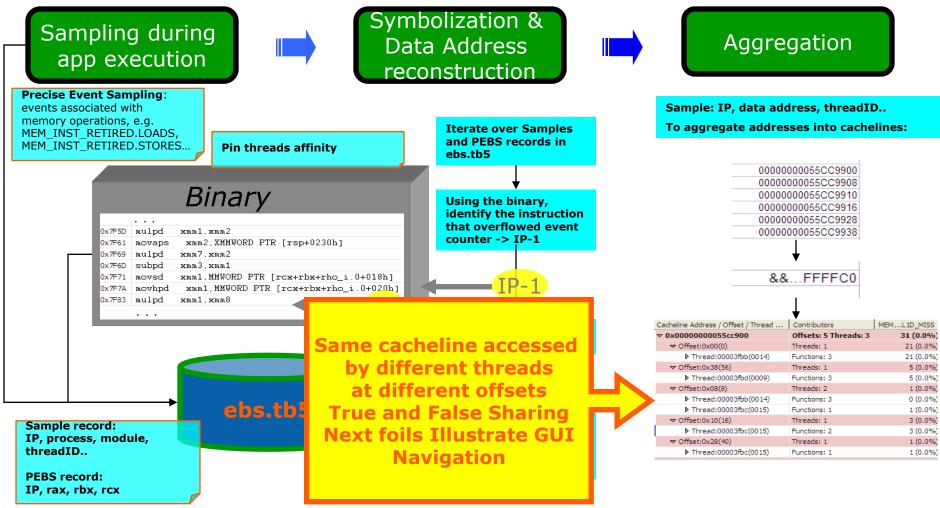


Source/Asm View Text Search Utility

nth-nhmb:1						
oplications	Places System 🗾 🔗 🕥	levinth@levinth-nhmb:~		🏮 Intel(R) Performance Tu	ning Utility - quark_stu	
		Intel(R) Performance Tu	ining Utility - quark_stuff4.	c - Eclipse Platform		_0
Edit Navig	ate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp					
Bè	8∎ • │ <> • ⇒ •					E
3	Basic Sampling (2009-01-0	Basic Sampling (2009-01-0	Loop Analysis with Call Sit	📄 path_product.c	(2009-01	uark_stuff4.c 🕱 🗖
- (
milc	Source Assembly Control Graph		Event of Interest: CPU_CLK_UN	IHALTED.THREAD		
Basic 5	Line Source	CPU_C INST	BR Address Line	Assembly	CPU_C INST	BR_INST_RETIRED.AL
-	1941)		😂 Find 📐 🖸	ovsxd r15,r15d		
Basic S	1942 else /* backward shift	*/	Find:	ea r15,QWORD PTR [r15+r15*8]		
🔥 Branch	1943 (ea r11,QWORD PTR [r11+r11*2]		
谒 Loop A	1944 FORALLSITES (i, s)	50 177	Direction Scope	hl r11,04h		
	1945 mult_adj_su3_mat_hwve	c(&(s->1 14,277 13,301	Forward Source		274 555	
	1946 }		○ Backward ○ Assembly	ov rsi,QWORD PTR [rax+rdi]	50 152	
	1947		Options	pvss xmm5,DWORD PTR [rsi]	16 6	
	1948 if (*mtag == NULL)	5	Case Sensitive	bvss xmm4, DWORD PTR [rsi+04h]	70 37	
	1949 *mtag = start_gather_	VENANDOD	Match Whole Word	bvss xmm3,DWORD PTR [rsi+08h] bvss xmm2,DWORD PTR [rsi+0ch]	41 149	
	1950 dir, B	VENANDOD		bvss xmm2,DWORD PTR [rsi+0ch]	41 149	•
	Total Selected:	14,277 13,301	Find Next Bookmark All	otal Selected (1 instruction):	50 152	2
		BIOCK LU	Close	BIOCK 53		Blo
				Block 5	4	
		Block 15	Block 11 Block 12			/
		Line 1944	Line 1945	BIUCK 13	Block 55	Blo
			、 / L	Line 1945 Block 14		Block 43
			/	Line 1945	_	
			Block 19		Block 42	
			Block 18 Line 1952		1	
	25 Block 26			Block 4	1	
	Block 27			Block 40		t
	•					Þ
	Experiment Summary Console 🔀 Adv	anced Profile Info 없				-
	-					

Data Address Profiling and False Sharing Detection

Sorting – repositioning segments of the axes


- Applying granularity – changing scale of the axis
- Filtering projecting slices onto another dimension

Filtering by cachelines marked as "falsely-shared" isolate the causing instructions And the data objects

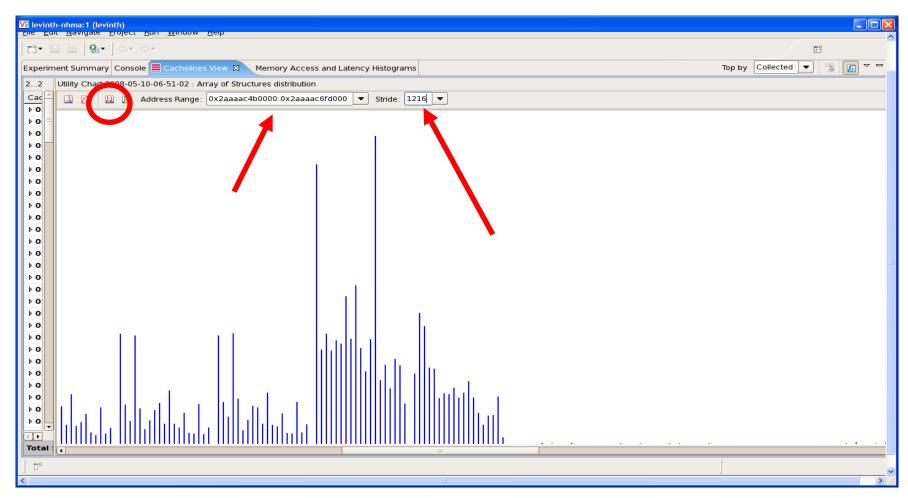
This foil is best viewed in animation mode

Data Address Profiling and False Sharing Detection

Use Cacheline Access Count to Measure Working Set Size

		20.21	00.10.01.00	2008-05-06-14-5	i3- 18 %	- 8
	8-05-06-14-53-00		1			
Function	Module	BR_INSTANCHES	_	MEM_INSLOADS	MEM_INSSTORES	
OpenMPUpdateStress	test_seismic_static_r100.ex					
OpenMPUpdateVelocity	test_seismic_static_r100.ex				518,283 (33.2%)	
<unknown(s)></unknown(s)>	vtune_drv	7,794 (1.4%)		3,136 (0.0%)	2,105 (0.1%)	
<unknown(s)></unknown(s)>	vmlinux-2.6.18-53.el5	1,508 (0.3%)	3 (3.3%)	2,683 (0.0%)	1,664 (0.1%)	
kmp_fork_call	libguide.so	129 (0.0%)	0 (0.0%)	262 (0.0%)	206 (0.0%)	
Total Selected:						
Granularity Function Process test_seismic_static_r100.ex	xe 🔻 Thread All 💌	Module All		▼ Filter by selection	on 🖹 者 🗶	
Console Experiment Summary 🗮 Cachelines View 🛛					Top by Collected	
2008-05-06-14-53-00 (2)	Utilit	a 2008-05-06-14-53-0	0 (2) : Workir	a Set		
Cacheline Address / Offset B., B., MEM ADS MEMRES				-		
▶ 0x000000000d7ffc0 0 0 233 (0.0%) 53 (0.0%)		📕 🛄 Address Ra	ange:	Stride: 100 🔻		
▷ 0x00000000000000000000000000000000000						
▷ 0x00000000000000000000000000000000000						
▶ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%)	Offsets: 9 Threads: 1					
 ▷ 0x000000000d7e080 ○ 0x0000000000c08fc0 ○ 0 0 205 (0.0%) ○ 38 (0.0%) 	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1					
▷ 0x00000000d7e080 00. 180 (0.0%) 72 (0.0%) ▷ 0x00000000c08fc0 00. 205 (0.0%) 38 (0.0%) ▷ 0x00000000d7c140 00. 188 (0.0%) 54 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1					
 ▷ 0x000000000d7e080 ○ 0x0000000000c08fc0 ○ 0 0 205 (0.0%) ○ 38 (0.0%) 	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1					
▷ 0x00000000d7e080 00. 180 (0.0%) 72 (0.0%) ▷ 0x00000000c08fc0 00. 205 (0.0%) 38 (0.0%) ▷ 0x00000000d7c140 00. 188 (0.0%) 54 (0.0%) ▷ 0x00000000d55040 00. 181 (0.0%) 57 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1					
> 0x000000000d7e080 00. 180 (0.0%) 72 (0.0%) > 0x000000000c08fc0 00. 205 (0.0%) 38 (0.0%) > 0x000000000d7c140 00. 188 (0.0%) 54 (0.0%) > 0x000000000d55040 00. 181 (0.0%) 57 (0.0%) > 0x000000000c05140 00. 176 (0.0%) 58 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1					
> 0x000000000d7e080 00. 180 (0.0%) 72 (0.0%) > 0x000000000c08fc0 00. 205 (0.0%) 38 (0.0%) > 0x000000000d7c140 00. 188 (0.0%) 54 (0.0%) > 0x000000000d55040 00. 181 (0.0%) 57 (0.0%) > 0x000000000c05140 00. 176 (0.0%) 58 (0.0%) > 0x000000000da9fc0 00. 192 (0.0%) 41 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1					
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x000000000c08fc0 0 0 205 (0.0%) 38 (0.0%) ▷ 0x000000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x000000000da9fc0 0 0 192 (0.0%) 41 (0.0%) ▷ 0x000000000c2e180 0 0 175 (0.0%) 58 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1					
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x000000000c08fc0 0 0 205 (0.0%) 38 (0.0%) ▷ 0x000000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 175 (0.0%) 58 (0.0%) ▷ 0x0000000000c2c000 0 0 187 (0.0%) 43 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1				40 19/1 Potes 42710/0	
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x000000000c08fc0 0 0 205 (0.0%) 38 (0.0%) ▷ 0x000000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 175 (0.0%) 58 (0.0%) ▷ 0x000000000d2c000 0 0 187 (0.0%) 43 (0.0%) ▷ 0x000000000cdbeco 0 0 173 (0.0%) 57 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1	Mem	ory Size: 5 Mt	o 688 Kb (Cumulative:	49.1%) Refs: 43710 (C	Cumulative: 80.8%)
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x00000000c08fc0 0 0 205 (0.0%) 38 (0.0%) ▷ 0x000000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 175 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 187 (0.0%) 43 (0.0%) ▷ 0x000000000cdbec0 0 0 173 (0.0%) 57 (0.0%) ▷ 0x000000000cdf9380 0 0 176 (0.0%) 53 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1	Mem	ory Size: 5 Mt	9 688 Kb (Cumulative:	49.1%) Refs: 43710 (C	Cumulative: 80.8%)
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x000000000c08fc0 0 0 205 (0.0%) 38 (0.0%) ▷ 0x000000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 175 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 187 (0.0%) 58 (0.0%) ▷ 0x000000000cdbec0 0 0 173 (0.0%) 57 (0.0%) ▷ 0x000000000cdf9380 0 0 176 (0.0%) 53 (0.0%) ▷ 0x000000000cccc4c0 0 0 166 (0.0%) 63 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1	Mem	ory Size: 5 Mt	9 688 Kb (Cumulative:	49.1%) Refs: 43710 (C	Cumulative: 80.8%)
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x000000000d7c140 0 0 205 (0.0%) 38 (0.0%) ▷ 0x00000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x00000000c2e180 0 0 187 (0.0%) 58 (0.0%) ▷ 0x00000000c2e180 0 0 187 (0.0%) 53 (0.0%) ▷ 0x00000000c2e180 0 0 173 (0.0%) 57 (0.0%) ▷ 0x000000000c2e180 0 0 173 (0.0%) 57 (0.0%) ▷ 0x000000000c2e180 0 0 173 (0.0%) 57 (0.0%) ▷ 0x000000000cc44ec 0 0 176 (0.0%) 53 (0.0%) ▷ 0x000000000cc4c40 0 0 166 (0.0%) 63 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1	Mem	ory Size: 5 Mt	o 688 Kb (Cumulative:	49.1%) Refs: 43710 (C	Cumulative: 80.8%)

Performance comparison difference may be due to Cache Size


NEW – Exact latency / Latency - Exact latency in CPU cycles for loads collected with

- Latency events
- Intel[®] PTU offers a latency histogram
 - Can be filtered by selected hotspots
 - IP and address spreadsheets, and memory histogram can be filtered by latency region (shown below)

Function	Modul	e Unk	ce >>	On Core	>> L	ocal LLC 🛛 😕	RC>>>	Local DRAM	>> Re.	AM >>	Unknown	Home	Locme	Remote Home	MEM_INSTOLD_128
main	glob-	obj	0 (0.0%)	6 503 (24	1.4%)	97 (16.1%)	0 (N/A)	139 (16.1	%)	0 (N/A)		0 (N/A)	0 (0.0%)	6 7394.0%)	6 739 (23.9%)
otal Sele	Function	D			~	Thread All		Module All			- Filte	r by coloct	ion 📆 🔒	A A	
sranularity	Function	Process	gion-onl			Inread All	Y	Module All				i by select		2 🔺	
Memory	Access and Late	icy Histog	grams 🗙									Me	emory Acces	ss Bin Size: 64 K	byte 🔽 🔍 🔍 🗖
ob-obj-nhr	n-lat														
Max Refer Number of Bin Size Filter Low VA dis	played 0xDA00 played 0xFFFF ence 262 bins 128 64 Kb played 0xDA00 played 0x1910	83A0000				A salanya A salanya			Laten	cy: 231 cy	des Refere	ences: 759	000 eventi	9	
neriment	Summary 📃 Ca	chelines \	/iew 🖾	Console T	Funing Na	vigator						Т	op by Co	lected Data Refs	- V 🖳 📶 V 🗖
						-									
			Source File		lue »	On Core >>	LC 3	→ RC>> L.	.м »	RM>>	Une	Locme	Reme	MEM_INST_R	ETIRETHRESHOLD_128
ob-obj-nh	lule Size (byt	s)	Source File												
lob-obj-nh		-	glob-obj.			3 737 (14.0%)	44 (7.3%	6) 0 (N/A) 70	(8.1%)	0 (N/A)	0 (N/A)	0 (0.0%)	387%)	3 851 (13.7%

Array of Structures (address-base)% struct_size Most structure elements never accessed

Filtering to a Single Thread Displays the Data Decomposition

□									E	**
ining Navigator 🕱 🛛 🗖 🗖	2008-04-28-11-	-08-58	3-11-09-36 📑		8 (2) 🕱					- 8
	Function	Module	Ue » Oe »	> LC >> RC >>	Local DRAM 🔉	RemRAM >>	MEM_UHITM	MEM_UHITM		
CG		gather_fma16_omp) O (N/A) O (N/A)						
gather_numa	<unknown(s)></unknown(s)>	vmlinux-2.6.18-53.el5	5 O (N/A) O (N/A) O (N/A) O (N/A)) 5 (0.2%)	44 (1.8%)	5 (0.2%)	44 (1.8%)		
2008-04-28-11-09-36										
gather_omp										
108-58 2008-04-28-11-08	Total Select									
OMP_triad	Granularity Func	tion 🔻 Process gath	er_fma16_omp 🔻	Thread 000039	bb(0003) 🔻 M	odule All	•	Filter by selection	R 🔁	
sp.B										
triad		ary Console Cachelines	View Memory	Access and Latency	Histograms 🛿		Memory Access	s Bin Size: 4 MByte		
	2008-04-28-11-08-	-58 (2)			1					
	Description	1			1		I			
	Low VA displa				0x2AAB184000			I		
	High VA displa					oo samples.55				
	Max Referenc			n daal bah			and a state	10.00 Junit		
	Max Referenc									
	Max Referenc Number of bin		l hall h				n <mark>l</mark> add	19 <mark>0</mark> 00		
	Max Referenc Number of bir Bin Size						(<mark>M</mark> A)(h			
	Max Referenc Number of bin Bin Size Filter						an a			
	Max Referenc Number of bin Bin Size Filter Low VA displa									
	Max Referenc Number of bir Bin Size Filter Low VA displa High VA displa									
	Max Referenc Number of bir Bin Size Filter Low VA displa High VA displa									
	Max Referenc Number of bir Bin Size Filter Low VA displa High VA displa									
	Max Referenc Number of bir Bin Size Filter Low VA displa High VA displa									
	Max Referenc Number of bir Bin Size Filter Low VA displa High VA displa									
	Max Referenc Number of bir Bin Size Filter Low VA displa High VA displa Number of bir									
	Max Referenc Number of bir Bin Size Filter Low VA displa High VA displa Number of bir									
	Max Referenc Number of bir Bin Size Filter Low VA displa High VA displa Number of bir									

A Different Thread

• 📄 🗁 💁 🖓 • 🗸 🗇 •													Ē		**
uning Navigator 🕱 📃 🗖	2008-04-28-11	-08-58	2008-04-28	-11-09-36	20	008-04-28	11-08-58	(2) 🗙						-	
□ 🔄 ▽	Function	Module		Ue »	0e »	LC »	RC >>	Local DRAM	» RemRAM	»	MEM_UHITM	MEM_UHITM			٦
CG		gather_fm) 2,369 (98.2%			
gather_numa	<unknown(s)></unknown(s)>	vmlinux-2	.6.18-53.el5	0 (N/A)	0 (N/A)	0 (N/A)	0 (N/A)	2 (0.19	%) 43 (1	.8%)	2 (0.1%) 43 (1.8%)		_
2008-04-28-11-09-36															
gather_omp															
10 2008-04-28-11-08-58	Total Select														
OMP_triad	Granularity Fund	tion 🔻 P	rocess gathe	er_fma16_d	omp 🔻	Thread	рооозэр	9(0008) 🔻	Module All		•	Filter by selecti	on 🕄 者	×	
sp.B				(#5											
alaa	Experiment Summ 2008-04-28-11-08		e Cachelines	View 🛄 N	4emîbry A	ccess and	Latency	Histograms 🛛			Memory Acces	s Bin Size: 4 MB	/te	€	
	High VA displa					1							1		
	Max Referenc Number of bir Bin Size Filter Low VA displa High VA displa Number of bir														
	Number of bin Bin Size Filter Low VA displa High VA displa Number of bin														

Example: False Sharing What is it and why is it a Problem

- Cache coherency protocols require that all cores use the most current version of every cacheline
- Shared lines can be modified by any thread
 - Causing lines to be renewed regularly, if any thread writes to any byte in the line
 - (replace an invalid state copy with new valid copy)
 - Line renewal can cause a cache miss by other threads
 - and a 40-300 cycle execution stall
 - Depending on cacheline location

 False sharing is when different threads access nonoverlapping regions of a cacheline

False Sharing Causes Avoidable 40-300 Cycle Stalls For Every Read Following a Write by Another Thread

Synthetic Example: Heavy Contention on this Line --Multiple Threads Accessing Different Offsets Indicate False Sharing (Identified by Rose Highlighting)

<u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp									
8∎ •									😭 🔀 Inte
2007-12-15-08-22-51	07-12-15-08-33-27 🖾								
Function	Module Colle	ected Data Refs (%Total)	LLC Misses (%Total)	Avg. Latency	Total Latency (%Total) C	achelines #	Pages # (%Total)	MEM_LOAD_RETIRED
sort	main_share.exe	8,594,000,000 (100.0%) 400,000 (100.0%)	3	3 26,186,000,00	00 (100.0%)	1,029	24 (85.7%))
<									
Total Selected:									
Experiment Summary Console 🚍 Cad	chelines View 🐹 🔪							Top by	Collected Data Refs
2007-12-15-08-33-27									
		a LLC Misses (%T	Avg. Latency Total	Latency (C	Contention (%	MEM_LOAD_RE.	MEM_LOAI	D_RE INST_RETI	IR' Contributor
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F • 0x0042a3c0	Function Collected Data	00 400,000 (100	3 6,252	2,000,000 9	09,100,000 (400,000 (100.	39,200,00	00 (8 1,920,000	000 Offsets: 2
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F • 0x0042a3c0 • 0x0064ff40	Function Collected Data 1,959,600,00 836,000,000	00 400,000 (100 (0 (0.0%)	3 6,252 3 2,508	2,000,000 9 8,000,000	09,100,000 (0 (N/A)	400,000 (100 0 (0.09	39,200,00 %) 0	00 (8 1,920,000 (0.0%) 836,000,0	000 Offsets: 2 000 Offsets: 1
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0042a3c0 ▶ 0x0064ff40 ▶ 0x0054ff40	Function Collected Data 1,959,600,00 836,000,000 764,000,000	400,000 (100 (0 (0.0%) (0 (0.0%)	3 6,25 3 2,508 3 2,292	2,000,000 9 8,000,000 2,000,000	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 0 (0.09 0 (0.09	39,200,00 %) 0 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0	000 Offsets: 2 000 Offsets: 1 000 (Offsets: 1
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0042a3c0 ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80	Function Collected Data 1,959,600,00 836,000,000 764,000,000 366,000,000	00 400,000 (100 (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%)	3 6,253 3 2,500 3 2,293 3 1,098	2,000,000 99 8,000,000 2,000,000 8,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.09 0 (0.09 0 (0.09	39,200,00 %) 0 %) 0 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 366,000,0	000 Offsets: 2 000 (Offsets: 1 000 (Offsets: 1 000 (Offsets: 2 000 (Offsets: 2
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0064gra3c0 ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0064ff80	Function Collected Data 1,959,600,000 836,000,000 764,000,000 366,000,000 276,000,000	00 400,000 (100 (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 8 828,0 3 828,0	2,000,000 99 8,000,000 2,000,000 8,000,000 000,000 (09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.09 0 (0.09 0 (0.09 0 (0.09	39,200,00 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 366,000,0 (0.0%) 276,000,0	000 Offsets: 2 000 Offsets: 1 000 (Offsets: 1 000 (Offsets: 2 000 (Offsets: 2
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff60 ▶ 0x0054ff60 ▶ 0x0064ff60 ▶ 0x0064ff60	Function Collected Data 1,959,600,000 836,000,000 764,000,000 366,000,000 276,000,000 14,000,000 (00 400,000 (100 (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 0 (0.0%)	3 6,253 3 2,504 3 2,293 3 1,094 3 828,0 3 42,00	2,000,000 91 8,000,000 2,000,000 8,000,000 000,000 (00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.09 0 (0.09 0 (0.09 0 (0.09 0 (0.09 0 (0.09	39,200,00 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 366,000,0 (0.0%) 276,000,0 (0.0%) 14,000,00	000 Offsets: 2 000 Offsets: 1 000 (Offsets: 1 000 (Offsets: 2 000 (Offsets: 2 000 (Offsets: 2 000 (Offsets: 7
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0042a3c0 ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x0064ff80 ▶ 0x004369c0 ▶ 0x0042e580	Function Collected Data 1,959,600,000 836,000,000 764,000,000 366,000,000 276,000,000 276,000,000 14,000,000 (14,000,000 (00 400,000 (100 (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828,0 3 42,00 3 42,00	2,000,000 91 8,000,000 2,000,000 8,000,000 000,000 (00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0° 0 (0.0° 0 (0.0° 0 (0.0° 0 (0.0° 0 (0.0°	39,200,00 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 366,000,0 (0.0%) 276,000,0 (0.0%) 14,000,00 (0.0%) 14,000,00	000 Offsets: 2 000 Offsets: 1 000 Offsets: 1 000 Offsets: 1 000 Offsets: 2 00 Offsets: 3 00 Offsets: 6
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff60 ▶ 0x0054ff60 ▶ 0x0064ff60 ▶ 0x0064ff60	Function Collected Data 1,959,600,000 836,000,000 764,000,000 366,000,000 366,000,000 14,000,000 14,000,000 14,000,000 14,000,000 14,000,000	00 400,000 (100 (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (3 6,25; 3 2,504 3 2,29; 3 1,094 3 828,0 3 42,00 3 42,00 3 42,00	2,000,000 91 8,000,000 2,000,000 8,000,000 000,000 (00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	39,200,00 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 366,000,0 (0.0%) 276,000,0 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 14,000,00	000 Offsets: 2 000 Offsets: 1 000 Offsets: 1 000 Offsets: 1 000 Offsets: 1 000 Offsets: 2 000 Offsets: 2 000 Offsets: 2 000 Offsets: 2 00 Offsets: 7 00 Offsets: 6 00 Offsets: 6
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0042a3c0 ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0064ff80 ▶ 0x0064ff80 ▶ 0x004369c0 ▶ 0x0042e580 ▶ 0x0042e580	Function Collected Data 1,959,600,000 836,000,000 764,000,000 366,000,000 276,000,000 276,000,000 14,000,000 (14,000,000 (00 400,000 (100 (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828,0 3 42,00 3 42,000 3 42,0000 3 42,0000 3 42,0000 3 42,000000000000000000000000000000000000	2,000,000 91 8,000,000 2,000,000 8,000,000 000,000 (00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0° 0 (0.0° 0 (0.0° 0 (0.0° 0 (0.0° 0 (0.0°	39,200,00 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 366,000,0 (0.0%) 276,000,0 (0.0%) 14,000,00 (0.0%) 14,000,00	000 Offsets: 2 000 Offsets: 1 000 Offsets: 1 000 Offsets: 1 000 Offsets: 1 000 Offsets: 2 000 Offsets: 3 000 Offsets: 4
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0042a3c0 ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0044ff80 ▶ 0x004369c0 ▶ 0x0042c580 ▶ 0x0042f380 ▶ 0x0042f380	Function Collected Data 1,959,600,000 836,000,000 764,000,000 366,000,000 276,000,000 14,000,000 (14,000,000 (14,000,000 (14,000,000 (14,000,000 (00 400,000 (100 (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828,4 3 42,00 3 42,00 3 42,00 3 3 6,00 3 3 6,00	2,000,000 91 8,000,000 2,000,000 8,000,000 00,000 (00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0° 0 (0.0° 0 (0.0° 0 (0.0° 0 (0.0° 0 (0.0° 0 (0.0° 0 (0.0°	39,200,00 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0	00 (8 1,920,00d (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 766,000,0 (0.0%) 276,000,0 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 12,000,00	000 Offsets: 2 000 Offsets: 1 000 (Offsets: 2 00 (Offsets: 3 00 (0 Offsets: 6 00 (0 Offsets: 6 00 (0 Offsets: 6 00 (0 Offsets: 4 00 (0 Offsets: 4 00 (0 Offsets: 5
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042580 ▶ 0x0042580 ▶ 0x004227c0 ▶ 0x004327c0 ▶ 0x00440900	Function Collected Data 1,959,600,000 764,000,000 276,000,000 14,000,000 14,000,000 (14,000,000 (14,000,000 (12,000,000 (12,000,000)	00 400,000 (100 (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0	3 6,25; 3 2,504 3 2,295 3 1,094 3 828,4 3 42,00 3 42,00 3 42,00 3 3 6,00 3 3 6,00 3 3 6,00 3 3 6,00 3 3 6,00 3 3 6,00	2,000,000 9 8,000,000 2,000,000 8,000,000 000,000 (00,000 (0 00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0 0 (0.0))))))))))))))))))))))))))))))))))	39,200,00 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 766,000,0 (0.0%) 276,000,0 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00	000 Offsets: 2 000 Offsets: 1 000 Offsets: 2 000 Offsets: 2 000 Offsets: 4 000 Offsets: 6 000 Offsets: 6 000 Offsets: 6 000 Offsets: 6 000 Offsets: 5 00.0 Offsets: 5 00.0 Offsets: 5 00.0 Offsets: 5
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0044ff80 ▶ 0x0044ff80 ▶ 0x0042f880 ▶ 0x0042f380 ▶ 0x0042380 ▶ 0x0042380 ▶ 0x0042g80 ▶ 0x0042g90	Function Collected Data 1,959,600,000 764,000,000 764,000,000 276,000,000 14,000,000 (14,000,000 (14,000,000 (12,000,000 (12,000,000 (00 400,000 (100 (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%)	3 6,25; 3 2,504 3 2,29; 3 1,094 3 828,(3 42,00 3 42,00 3 42,00 3 3 6,00 3 3 6,00 3 3 6,00 3 3 6,00 3 3 6,00 3 3 6,00	2,000,000 99 8,000,000 8,000,000 000,000 (00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 0 (0.0° 0 (0.0°	39,200,00 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 276,000,0 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00	000 Offsets: 1 000 Offsets: 2 000 Offsets: 2 000 Offsets: 4 000 Offsets: 4 000 Offsets: 6 000 Offsets: 6 000 Offsets: 4 000 Offsets: 4 000 Offsets: 5 000 Offsets: 5 000 Offsets: 5 000 Offsets: 5
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0042a3c0 ▶ 0x0064ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x0044f80 ▶ 0x0042e580 ▶ 0x0042e580 ▶ 0x00422580 ▶ 0x004227c0 ▶ 0x0042e9c0 ▶ 0x0042e9c0 ▶ 0x0042e9c0 ▶ 0x004396c0	Function Collected Data 1,959,600,000 836,000,000 764,000,000 276,000,000 14,000,000 (14,000,000 (14,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 (00 400,000 (100 (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0	3 6,25 3 2,504 3 2,29 3 1,094 3 828,4 3 42,00 3 42,00 3 36,00 3 36,000 3 36,0000 3 36,0000 3 36,0000 3 36,0000 3 30	2,000,000 9 8,000,000 8,000,000 8,000,000 (000,000 (00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 0 (0.0° 0 (0.0°)	39,200,00 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 276,000,0 (0.0%) 276,000,0 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00	000 Offsets: 2 000 Offsets: 1 000 Offsets: 1 000 Offsets: 1 000 Offsets: 1 000 Offsets: 2 000 Offsets: 2 000 Offsets: 2 000 Offsets: 2 000 Offsets: 4 000 Offsets: 5 000 Offsets: 4 000 Offsets: 5
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0042a3c0 ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042580 ▶ 0x0042f380 ▶ 0x0045f560 ▶ 0x004560 ▶ 0x00560 ▶ 0x00560 ▶ 0x00560 ▶ 0x00560 ▶ 0x00560 ▶ 0x00560	Function Collected Data 1,959,600,000 836,000,000 276,000,000 276,000,000 14,000,000 (14,000,000 (12,000,000 (12,000 (12,000 (12,000 (12,00	00 400,000 (100 (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0 0 (0.0%) (0	3 6,25; 3 2,50; 3 2,29; 3 1,094; 3 828, 3 42,00; 3 42,00; 3 42,00; 3 42,00; 3 3 6,00; 3 6	2,000,000 9 8,000,000 2,000,000 8,000,000 000,000 00,000 (00,000 (00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 0 (0.0° 0 (0.0°)	39,200,00 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 276,000,0 (0.0%) 276,000,0 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00	000 Offsets: 2 000 Offsets: 1 0000 Offsets: 2 0000 Offsets: 2 0000 Offsets: 6 0000 Offsets: 6 0000 Offsets: 5 0000 Offsets: 5
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0042a3c0 ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042780 ▶ 0x0042780 ▶ 0x0042780 ▶ 0x00427c0 ▶ 0x00427c0 ▶ 0x00429c0 ▶ 0x004399c0 ▶ 0x004399c0 ▶ 0x004399c0 ▶ 0x004399c0	Function Collected Data 1,959,600,000 836,000,000 764,000,000 276,000,000 14,000,000 (14,000,000 (14,000,000 (14,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 ($\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 6,25; 3 2,50(3 2,29; 3 1,094 3 828(, 3 42,00 3 42,00 3 42,00 3 42,00 3 36,00 3 3	2,000,000 91 8,000,000 2 2,000,000 2 000,000 (0 000,000 (0 00,000 (0 0 00,000 (0 0 00,000 (0 0 00,000 (0 0 00,000 (0 0 00,000 (0 0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100., 0 (0.0° 0 (0.0°)	39,200,00 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 766,000,0 (0.0%) 766,000,0 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00	000 Offsets: 2 000 Offsets: 1 000 Offsets: 2 000 Offsets: 2 000 Offsets: 4 00.0 Offsets: 6 00.0 Offsets: 5 00.0 Offsets: 5
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / F ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x0042ff80 ▶ 0x0042ff80 ▶ 0x0042f880 ▶ 0x0042f880 ▶ 0x0042f880 ▶ 0x0042f880 ▶ 0x0042f80 ▶ 0x0042f80 ▶ 0x0042f80 ▶ 0x004327c0 ▶ 0x004327c0 ▶ 0x004396c0 ▶ 0x004396c0 ▶ 0x004396c0 ▶ 0x00430280	Function Collected Data 1,959,600,000 836,000,000 764,000,000 276,000,000 14,000,000 (14,000,000 (14,000,000 (14,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 (12,000,000 ($\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 6,25; 3 2,50(3 2,29; 3 1,094 3 828(, 3 42,00 3 42,00 3 42,00 3 42,00 3 36,00 3 3	2,000,000 91 8,000,000 8,000,000 8,000,000 00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 0 (0.0° 0 (0.0°)	39,200,00 %) 0	00 (8 1,920,000 (0.0%) 836,000,0 (0.0%) 764,000,0 (0.0%) 276,000,0 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 14,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00 (0.0%) 12,000,00	000 Offsets: 2 000 Offsets: 1 000 Offsets: 2 000 Offsets: 2 000 Offsets: 4 00.0 Offsets: 6 00.0 Offsets: 5 00.0 Offsets: 5

Expanding the "arrow" we see the 2 threads access the line at Different Offsets...This is False Sharing

<u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp									
8 ∎ • 🗄 🗢 • ⇔ ∗									🗈 🔀 Inte
2007-12-15-08-22-51	2007-12-15-08-33-2								
Function	Module Colle	cted Data Refs (%Total)	LLC Misses (%Total)	Avg. Latency	Total Latency (%	Total)	Cachelines #	Pages # (%Total)	MEM_LOAD_RETIRED.
sort		3,594,000,000 (100.0%)			3 26,186,000,000		1,029		
Total Selected:									
Granularity Fiction V Pro	ocess main_share.exe	✓ Thread 📶	Module 📕	~	Filter by selecti	ion 🕄 🟦	×		
								Top by	Collected P
Experimer Summary Console	Cachelines View 🔀 🔪							TOP Dy	
Experimer Summary Console	Cachelines View X							TOP By	
2007-25-08-33-27		LLC Misses (%T A	Avg. Latency Total	Latency (ontention (%	MEM LOAD RE	Mem Loai		
	ad / Function Collected Data					MEM_LOAD_RE		D_RE INST_RET R	ED Contributors
2007-25-08-33-27 Cacheline Address / Offset / Three	ad / Function Collected Data 1,959,600,00	0 400,000 (100	3 6,252	2,000,000 90	09,100,000 (400,000 (100	39,200,00	D_RE INST_RET.R 00 (8 1,920,0 0,0	ED Contributors
2007- 15-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4)	ad / Function Collected Data 1,959,600,00 1,050,500,000	0 400,000 (100 (100,000 (25.0%)	3 6,252 3 3,319	2,000,000 90	0 9,100,000 (0 (N/A)	400,000 (100 100,000 (25.0	 39,200,00	D_RE INST_RET R 00 (8 1,920,0 0,0 0 (46 1,030,00 0)	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1
2007-05-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1	0 400,000 (100 (100,000 (25.0%) 1 300,000 (75.0%)	3 6,252 3 3,319 3 2,933	2,000,000 90 9,000,000 (3,000,000 (0 9,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0	39,200,00 0%) 20,400,000 0%) 18,800,000	D_RE INST_RETAR 00 (8 1,920,0 0,0 0 (46 1,030,00 0) 0 (42 890,000,00	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1
2007: \$-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0064ff40	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000	0 400,000 (100 (100,000 (25.0%) 1 300,000 (75.0%) (0 (0.0%)	3 6,252 3 3,319 3 2,933 3 2,508	2,000,000 90 9,000,000 (3,000,000 (8,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0	39,200,00 0%) 20,400,000 0%) 18,800,000 0%) 0	D_RE INST_RET R 00 (8 1,920,0 0,0 0 (46 1,030,000 0) 0 (42 890,000,00 (0.0%) 836,000,00	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 10 (Offsets: 1 Th
2007: 5-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0)	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,500 3 2,292	2,000,000 90 9,000,000 (3,000,000 (8,000,000 2,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0	39,200,00 0%) 20,400,000 0%) 18,800,000 0%) 0 0%) 0	D_RE INST_REFR 00 (8 1,920,0 0,0 0 (46 1,030,00 0) 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 10 (Offsets: 1 Th 10 (Offsets: 1 Th
2007- 5-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0064ff40 ▶ 0x0054ff40	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 366,000,000	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,508 3 2,293 3 2,293 3 1,098	2,000,000 90 3,000,000 (8,000,000 (8,000,000 2,000,000 8,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 0%) 20,400,000 0%) 18,800,000 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (4c 1,030,000 0) 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 366,000,00	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 00 (Offsets: 1 Th 00 (Offsets: 2 Th 00 (Offsets: 2 Th
2007: \$-08-33-27 Cacheline Address / Offset / Three • 0x0042a3c0 • Offset:0x00(4) • Offset:0x00(0) • 0x0054ff40 • 0x0054ff40 • 0x0054ff80	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 366,000,000 276,000,000	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,508 3 2,293 3 2,293 3 1,098 3 828,4	2,000,000 90 3,000,000 (8,000,000 (8,000,000 2,000,000 8,000,000 000,000 (09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	39,200,00 0%) 20,400,00 0%) 18,800,00 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (46 1,030,000 0) 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00 (0.0%) 276,000,00 (0.0%) 276,000,00	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 00 (Offsets: 1 00 (Offsets: 1 00 (Offsets: 2 Th 00 (Offsets: 2 Th
2007: \$-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x004(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80	ad / Function Collected Data 1,959,600,00 1,050,500,000 (1 836,000,000 764,000,000 366,000,000 276,000,000 14,000,000 (1	0 400,000 (100 (100,000 (25.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,506 3 2,293 3 2,293 3 2,293 3 2,293 3 2,293 3 2,294 3 2,295 3 2,29	2,000,000 9(3,000,000 (3,000,000 (8,000,000 2,000,000 8,000,000 000,000 (09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	39,200,00 0%) 20,400,00 0%) 18,800,00 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0	D_RE INST_REFR 00 (8 1,920,0 0,0 0 (4c 1,030,00 0) 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 366,000,00 (0.0%) 276,000,00 (0.0%) 14,000,000	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 14 Threads: 1 10 (Offsets: 1 Th 10 (Offsets: 1 Th 10 (Offsets: 2 Th 10 (Offsets: 2 Th 10 (Offsets: 7 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x0064ff80	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 366,000,000 276,000,000 14,000,000 (1 14,000,000 (1	0 400,000 (100 (100,000 (25.0%) 1 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,500 3 2,293 3 2,500 3 2,293 3 1,094 3 828,0 3 42,00 3 42,00 3 42,00	2,000,000 9(9,000,000 (8,000,000 (8,000,000 8,000,000 8,000,000 (000,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	39,200,00 0% 20,400,00 0% 18,800,00 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (46 1,030,00 00 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00 (0.0%) 366,000,00 (0.0%) 276,000,00 (0.0%) 14,000,000	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 10 (Offsets: 1 Th 10 (Offsets: 1 Th 10 (Offsets: 2 Th 10 (Offsets: 2 Th 10 (Offsets: 7 Th 10 (Offsets: 6 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0064ff80 ▶ 0x004369c0 ▶ 0x0043e580 ▶ 0x0042e580 ▶ 0x0042f380	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 14,000 (1),000 (0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,500 3 2,293 3 1,094 3 2,293 3 1,094 3 42,00 3 42,00 3 42,00 3 42,00 3 42,00	2,000,000 9(,000,000 (,000,000 (8,000,000 8,000,000 8,000,000 (000,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	39,200,00 3% 20,400,000 3% 18,800,000 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0	D_RE INST_REP.K 00 (8 1,920,0 0,0 0 (46 1,030,00 00 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00 (0.0%) 276,000,00 (0.0%) 14,000,000 (0.0%) 14,000,000	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 10 (Offsets: 1 Th 00 (Offsets: 1 Th 00 (Offsets: 2 Th 00 (Offsets: 2 Th 00 (Offsets: 6 Th 0 (0 Offsets: 6 Th 0 (0 Offsets: 6 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0064ff80 ▶ 0x0064ff80 ▶ 0x004369c0 ▶ 0x0042e580	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 ((14,000,000 ((14,000,000 ((12,000,000 ((0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,500 3 2,293 3 1,090 3 828,4 3 828,4 3 42,00 3 42,00 3 42,00 3 3 6,00 3 3 6,00	2,000,000 9(,000,000 (8,000,000 8,000,000 8,000,000 8,000,000 (000,000 (00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 3% 20,400,000 3% 18,800,000 3% 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (4 1,030,000 0 0 (4 800,000,00 0 (4 836,000,00 (0.0%) 836,000,00 (0.0%) 366,000,00 (0.0%) 276,000,00 (0.0%) 14,000,000 (0.0%) 14,000,000 (0.0%) 12,000,000	ED Contributors D00 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 00 (Offsets: 1 Th 00 (Offsets: 2 Th 00 (Offsets: 2 Th 00 (Offsets: 7 Th 00 (Offsets: 6 Th 00 (Offsets: 4 Th 00 (Offsets: 4 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x00(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042e580 ▶ 0x00432f380 ▶ 0x004327c0 ▶ 0x004327c0	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 14,000,000 (1 12,000,000 (1 14,000,000 (1 14,000,000 (1 14,000,000 (1 14,000,000 (1 12,000,000 (1 12,000 (1),000 (1 12,000,000 (1),000 (1	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,500 3 2,293 3 1,096 3 828,0 3 42,00 3 42,00 3 42,00 3 42,00 3 36,00 3 36,00 3 36,00	2,000,000 9(,000,000 (8,000,000 8,000,000 8,000,000 000,000 (000,000 (0 00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 0% 20,400,000 0% 18,800,000 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (46 1,030,000 0 0 (46 1,030,000 0 0 (46 836,000,000 (0.0%) 836,000,000 (0.0%) 764,000,000 (0.0%) 276,000,000 (0.0%) 14,000,000 (0.0%) 14,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 100 (Offsets: 1 Th 00 (Offsets: 1 Th 00 (Offsets: 2 Th 00 (Offsets: 7 Th 00 (Offsets: 6 Th 00 (Offsets: 6 Th 00 (Offsets: 6 Th 00 (Offsets: 5 Th 00 (Offsets: 5 Th 00 (Offsets: 5 Th
2007- \$-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x004(4) ▶ Offset:0x00(0) ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x004369c0 ▶ 0x0042c580 ▶ 0x0042c580 ▶ 0x004327c0	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 12,000,000 (1 14,000,000 (1 14,000,000 (1 12,000,000 (1 12,000 (1),000 (1 12,000,000 (1),000 (1	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,504 3 2,293 3 1,094 3 828,4 3 42,00 3 42,00 3 42,00 3 36,00 3 36,00 3 36,00 3 36,00	2,000,000 9(,000,000 (8,000,000 (2,000,000 2,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 20,400,00 9%) 20,400,00 9%) 20,400,00 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0	D_RE INST_REPR 00 (8 1,920,0 0,4 0 (46 1,030,000 0 0 (42 890,000,00 0 (0.0%) 836,000,00 0 (0.0%) 764,000,000 0 (0.0%) 764,000,000 0 (0.0%) 766,000,000 0 (0.0%) 14,000,000 0 (0.0%) 14,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 1 Threads: 1 1 Threads: 1 1 Offsets: 1 1 Offsets: 1 1 Offsets: 2 Th 0 Offsets: 2 Th 0 Offsets: 4 Th 0 Offsets: 6 Th 0 Offsets: 5 Th 0 Offsets: 5 Th 0 Offsets: 5 Th 0 Offsets: 5 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042e580 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 12,000,000 (1))	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,508 3 2,508 3 2,508 3 2,508 3 2,508 3 2,508 3 2,508 3 2,508 3 42,00 3 42,00 3 42,00 3 42,00 3 3 6,00 3 3 6,000 3 3 6,0000 3 3 6,000 3 3 6,0000 3 3 6,0000 3 3 6,0000 3 3 6,0000 3 3	2,000,000 9(,000,000 (),000,000 (8,000,000 2,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 3% 20,400,000 3% 20,400,000 3% 38,800,000 % 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (46 1,030,00 0 0 (42 \$90,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00 (0.0%) 276,000,00 (0.0%) 276,000,00 (0.0%) 14,000,000 (0.0%) 14,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 1 Offsets: 1 Th 00 (Offsets: 1 Th 00 (Offsets: 1 Th 00 (Offsets: 2 Th 00 (Offsets: 2 Th 0 (Offsets: 6 Th 0 (Offsets: 6 Th 0 (Offsets: 6 Th 0 (Offsets: 5 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042c580 ▶ 0x0042c580 ▶ 0x0042c580 ▶ 0x0042c580 ▶ 0x0042c50 ▶ 0x0042c50 ▶ 0x0042e9c0 ▶ 0x004399c0	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 12,000,000 (0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,506 3 2,293 3 2,506 3 2,293 3 2,506 3 2,293 3 2,506 3 2,293 3 42,00 3 42,00 3 42,00 3 42,00 3 42,00 3 3 6,00 3	2,000,000 9(,000,000 (8,000,000 2,000,000 8,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0) 0 (0.0 0 (0.0) 0 (0	39,200,00 20,400,000 3% 20,400,000 3%	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (4 1,030,00 00 0 (4 890,000,00 (0.0%) 836,000,00 (0.0%) 836,000,00 (0.0%) 366,000,00 (0.0%) 366,000,00 (0.0%) 366,000,000 (0.0%) 366,000,000 (0.0%) 14,000,000 (0.0%) 14,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000	ED Contributors 000 Offsets: 2 TH 00 (Threads: 1 11 Threads: 1 10 Offsets: 1 TH 100 (Offsets: 1 TH 100 (Offsets: 2 TH 100 (Offsets: 2 TH 100 (Offsets: 4 TH 100 (Offsets: 6 TH 100 (Offsets: 5 TH
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042e580 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 12,000,000 (1))	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,506 3 2,293 3 2,506 3 2,293 3 2,506 3 2,293 3 2,506 3 2,293 3 42,00 3 42,00 3 42,00 3 42,00 3 42,00 3 3 6,00 3	2,000,000 9(,000,000 (),000,000 (8,000,000 2,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 20,400,000 3% 20,400,000 3%	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (46 1,030,00 0 0 (42 \$90,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00 (0.0%) 276,000,00 (0.0%) 276,000,00 (0.0%) 14,000,000 (0.0%) 14,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000	ED Contributors 000 Offsets: 2 TH 00 (Threads: 1 11 Threads: 1 10 Offsets: 1 TH 100 (Offsets: 1 TH 100 (Offsets: 2 TH 100 (Offsets: 2 TH 100 (Offsets: 4 TH 100 (Offsets: 6 TH 100 (Offsets: 5 TH

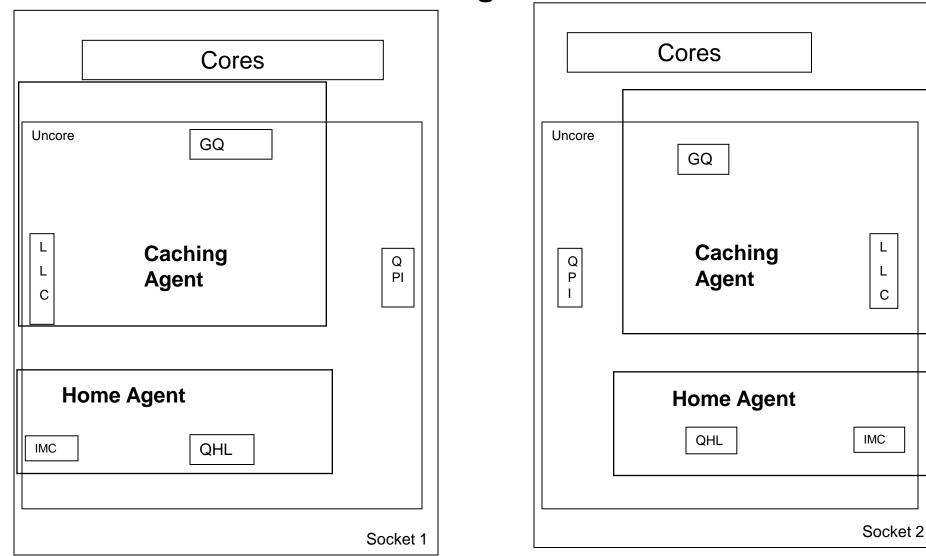
Select the falsely shared cacheline (now blue) and Filter the Hotspot view to only Display Accesses to that Line (multiple lines also work)

<u>Project R</u> un <u>W</u> indow <u>H</u> elp								
8∎ • 🕴 🗢 • ⇔ •								😭 🔀 Intel(R) Perf
2007-12-15-08-22-51	2007-12-15-08-33-27							
Function	Module Colle	cted Data Refs (%Total)	LLC Misses (%Total) A	vg. Latency	Total Latency (%Total)	Cachelines #	Pages # (%Total)	MEM_LOAD_RETIRED.L2_MISS
sort		,594,000,000 (100.0%)			26,186,000,000 (100			400,000
<								
Total Selected:								
		Thread 📶	Module 📶	~	Filter by staction	¥ 🗈 🗙		
Experiment Summary Console	Cachelines View 🗙						Top by	Collected Data Refs 💌 👔
	un n faithean	luor ar la			1 11 AN			
Cacheline Address / Offset / Three	ad / Function Collected Data 1,959.600.00						OAD_RE INST_RETIR	ED Contributors 000 Offsets: 2 Threads: 2
♦ 0x0042a3c0 ♦ Offset:0x04(4)	1,050,500,000		3 3,319,00				,000 (46 1,030,000,0	
Offset:0x00(0)	909,100,000 (1		3 2,933,00				,000 (42 890,000,000	
♦ 0x0064ff40	836,000,000		3 2,508,00		0 (N/A)	0 (0.0%)		00 (Offsets: 1 Threads: 1
♦ 0x0054ff40	764,000,000		3 2,292,00		0 (N/A)	0 (0.0%)	0 (0.0%) 764,000,00	
▶ 0x0054ff80	366,000,000		3 1,098,00		0 (N/A)	0 (0.0%)	0 (0.0%) 366,000,00	
	276,000,000	(0 (0.0%)	3 828,000	0,000 (0 (N/A)	0 (0.0%)	0 (0.0%) 276,000,00	00 (Offsets: 2 Threads: 1
♦ 0x0064ff80								0 Offsets: 7 Threads: 1
 ▶ 0x0064ff80 ▶ 0x004369c0 	14,000,000 (0) 0 (0.0%)	3 42,000,0	000 (0	0 (N/A)	0 (0.0%)	0 (0.0%) 14,000,000	(um onsees / intedus 1
	14,000,000 (0 14,000,000 (0		3 42,000,0 3 42,000,0		0 (N/A) 0 (N/A)	0 (0.0%) 0 (0.0%)	0 (0.0%) 14,000,000 0 (0.0%) 14,000,000	
▶ 0x004369c0		0 0 (0.0%)		0) 000			0 (0.0%) 14,000,000	0 (0 Offsets: 6 Threads: 1
 ◊ 0x004369c0 ◊ 0x0042e580 	14,000,000 (0	0 0 (0.0%)	3 42,000,0	.000 (0 ,000 (0	0 (N/A)	0 (0.0%)	0 (0.0%) 14,000,000 0 (0.0%) 14,000,000	0 (0 Offsets: 6 Threads: 1 0 (0 Offsets: 6 Threads: 1
 ◊ 0x004369c0 ◊ 0x0042e580 ◊ 0x0042f380 	14,000,000 (0 14,000,000 (0	0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 42,000,0 3 42,000,0	,000 (0 ,000 (0 ,000 (0	0 (N/A) 0 (N/A)	0 (0.0%) 0 (0.0%)	0 (0.0%) 14,000,000 0 (0.0%) 14,000,000 0 (0.0%) 12,000,000	0 (0 Offsets: 6 Threads: 1 0 (0 Offsets: 6 Threads: 1 0 (0 Offsets: 4 Threads: 1
 0x004369c0 0x0042e580 0x0042f380 0x004327c0 	14,000,000 (0 14,000,000 (0 12,000,000 (0	0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 42,000,0 3 42,000,1 3 36,000,0	000 (0 000 (0 000 (0 000 (0	(N/A) 0 (A/N) 0 (A/N) 0	0 (0.0%) 0 (0.0%) 0 (0.0%)	0 (0.0%) 14,000,000 0 (0.0%) 14,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000	0 (0 Offsets: 6 Threads: 1 0 (0 Offsets: 6 Threads: 1 0 (0 Offsets: 4 Threads: 1
 0x004369c0 0x0042e580 0x0042f380 0x0042f380 0x004327c0 0x00440900 	14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0	0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	42,000,0 42,000,0 36,000,0 36,000,0	000 (0 000 (0 000 (0 000 (0 000 (0	(A/N) 0 (A/N) 0 (A/N) 0 (A/N) 0	0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	0 (0.0%) 14,000,000 0 (0.0%) 14,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000	0 (0 Offsets: 6 Threads: 1 0 (0 Offsets: 6 Threads: 1 0 (0 Offsets: 4 Threads: 1 0 (0 Offsets: 5 Threads: 1 0 (0 Offsets: 5 Threads: 1
 > 0x004369c0 > 0x0042e580 > 0x0042f380 > 0x004327c0 > 0x00440900 > 0x0042e9c0 > 0x004396c0 > 0x004399c0 	14,000,000 ((14,000,000 ((12,000,000 ((12,000,000 ((12,000,000 ((0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 42,000, 3 42,000, 3 36,000, 3 36,000, 3 36,000, 3 36,000,	.000 (0 .000 (0 .000 (0 .000 (0 .000 (0	(N/A) 0 (N/A)	0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	0 (0.0%) 14,000,000 0 (0.0%) 14,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000	0 0 Offsets: 6 Threads: 1 0 0 Offsets: 6 Threads: 1 0 0 Offsets: 4 Threads: 1 0 0 Offsets: 5 Threads: 1
 0x004369c0 0x0042e580 0x0042f380 0x004327c0 0x00440900 0x0042e9c0 0x004396c0 	14,000,000 ((14,000,000 ((12,000,000 ((12,000,000 ((12,000,000 ((12,000,000 ((0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 42,000,0 3 42,000,0 3 36,000,0 3 36,000,0 3 36,000,0 3 36,000,0 3 36,000,0 3 36,000,0 3 36,000,0	.000 (0 .000 (0 .000 (0 .000 (0 .000 (0 .000 (0	0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	0 (0.0%) 14,000,000 0 (0.0%) 14,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000	0 (0 Offsets: 6 Threads: 1 0 (0 Offsets: 6 Threads: 1 0 (0 Offsets: 4 Threads: 1 0 (0 Offsets: 5 Threads: 1
 > 0x004369c0 > 0x0042e580 > 0x0042e580 > 0x004327c0 > 0x004327c0 > 0x00439c0 > 0x004396c0 > 0x004399c0 	14,000,000 ((14,000,000 ((12,000,000 ((12,000,000 ((12,000,000 ((12,000,000 ((12,000,000 ((0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 42,000, 3 42,000, 3 36,000, 3 36,000, 3 36,000, 3 36,000, 3 36,000, 3 36,000,	.000 (0 .000 (0 .000 (0 .000 (0 .000 (0 .000 (0	(N/A) 0 (N/A)	0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	0 (0.0%) 14,000,000 0 (0.0%) 14,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000	0 0 Offsets: 6 Threads: 1 0 0 Offsets: 6 Threads: 1 0 0 Offsets: 4 Threads: 1 0 0 Offsets: 5 Threads: 1

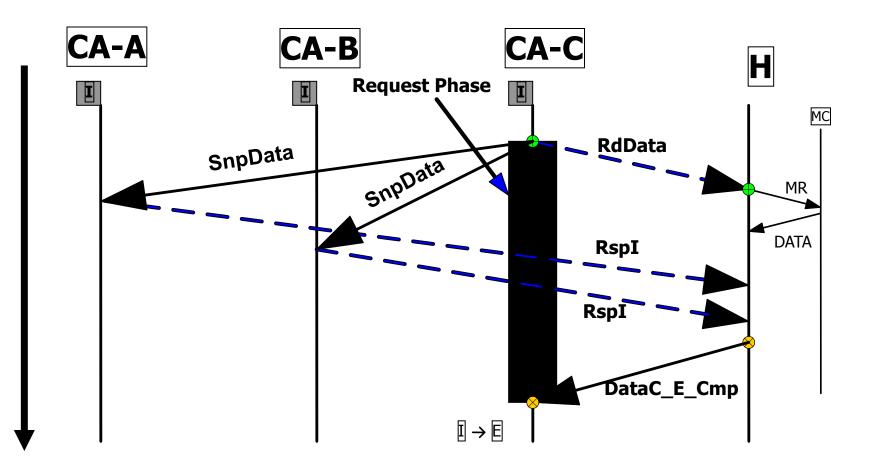
Only Events Referencing the Selected Line(s) are now in the Hotspot View Double Click to reach source/ASM view

<u>Project Run Window H</u> elp									
8∎ • ∥ ⇔ • ⇔ ∗									🔛 🔀 Inte
2007-12-15-08-22-51	2007-12-15-08-33-27 🕱								
Function	Module	Data Refs (%Total)	C Misses (%Total)	Avg. Latency	Total Latency (%Total) Car	chelines # Pages	# (%Total) ME	M_LOAD_RETIRED.
sort		59,600,000 (22.8%				000 (23.9%)	1	1 (3.6%)	
		, , ,							
<									
Total Selected:						,			
Total Selected:									
Granularity Function Proce	ess main_share.exe 👻	Thread All	Module All	~	Filter by selec	tion 🕄 🟦 🕽	•		
Experiment Summary Console 📃 🛛	Cachelines View 🗙							Top by Colle	ected Data Refs
2007-12-15-08-33-27									
2007-12-15-08-33-27 Cacheline Address / Offset / Thread	/ Function Collected Data	LLC Misses (%T	Avg. Latency Total	Latency (C	ontention (%	MEM_LOAD_RE	MEM_LOAD_RE	INST_RETIRED	. Contributors
	/ Function Collected Data 1,959,600,000			Latency (Co		MEM_LOAD_RE		INST_RETIRED	
Cacheline Address / Offset / Thread		400,000 (100	3 6,25			400,000 (100		1,920,000,000	Offsets: 2 T
Cacheline Address / Offset / Thread	1,959,600,000	400,000 (100	3 6,252 3 3,319	2,000,000 90	09,100,000 (400,000 (100 100,000 (25.0%)	39,200,000 (8	1,920,000,000 . 1,030,000,000 (.	Offsets: 2 T Threads: 1
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (400,000 (100 100,000 (25.0%)	3 6,253 3 3,319 3 2,933	2,000,000 90	09,100,000 (0 (N/A)	400,000 (100 100,000 (25.0%)	39,200,000 (8) 20,400,000 (46)) 18,800,000 (42	1,920,000,000 . 1,030,000,000 (.	Offsets: 2 T Threads: 1 Threads: 1
Cacheline Address / Offset / Thread → 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0064ff40 ▶ 0x0054ff40	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%)	3 6,257 3 3,319 3 2,933 3 2,508 3 2,292	2,000,000 90 9,000,000 (3,000,000 (8,000,000 2,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (46 18,800,000 (42 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (1) 836,000,000 () 764,000,000 ()	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (366,000,000 (400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,933 3 2,504 3 2,29 3 1,094	2,000,000 9(,000,000 (,000,000 (8,000,000 2,000,000 8,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8)) 20,400,000 (46)) 18,800,000 (42)) 0 (0.0%)) 0 (0.0%)) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (1) 836,000,000 () 764,000,000 () 366,000,000 ()	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (366,000,000 (276,000,000 (400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,504 3 2,293 3 1,094 3 828,4	2,000,000 9(3,000,000 (8,000,000 2,000,000 8,000,000 000,000 (09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0% 300,000 (75.0% 0 (0.0% 0 (0.0% 0 (0.0%	39,200,000 (8) 20,400,000 (46) 18,800,000 (42) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (1) 836,000,000 () 764,000,000 () 366,000,000 () 276,000,000 ()	 Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 2 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (366,000,000 (276,000,000 (14,000,000 (0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,504 3 2,293 3 1,099 3 1,099 3 828,0 3 42,00	2,000,000 90 9,000,000 (8,000,000 (8,000,000 2,000,000 8,000,000 000,000 (09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0% 300,000 (75.0% 0 (0.0% 0 (0.0% 0 (0.0% 0 (0.0% 0 (0.0%	39,200,000 (8) 20,400,000 (46) 18,800,000 (42) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (1) 836,000,000 () 764,000,000 () 366,000,000 () 276,000,000 () 14,000,000 (0)	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 7 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (366,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,500 3 2,293 3 1,094 3 828,0 3 42,00 3 42,00 3 42,00	2,000,000 90 9,000,000 (8,000,000 (8,000,000 2,000,000 8,000,000 (000,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8) 20,400,000 (46) 18,800,000 (42) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (836,000,000 (764,000,000 (366,000,000 (276,000,000 (14,000,000 (0	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 7 T Offsets: 6 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 14,000,000 (0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,253 3 3,319 3 2,500 3 2,250 3 1,094 3 828,0 3 42,00 3 42,00 3 42,00	2,000,000 9 9,000,000 (3,000,000 (8,000,000 8,000,000 8,000,000 (000,000 (0 00,000 (0	09,100,000 ((N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8) 20,400,000 (45) 18,800,000 (42) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 () 886,000,000 () 366,000,000 () 366,000,000 () 276,000,000 () 14,000,000 (0) 14,000,000 (0)	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 2 T Offsets: 7 T Offsets: 6 T Offsets: 6 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 14,000,000 (0 12,000,000 (0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,933 3 2,504 3 2,295 3 1,094 3 828,0 3 42,00 3 42,000 3 42,0000 3 42,0000 3 42,0000 3 42,000000000000000000000000000000000000	2,000,000 9 9,000,000 (8,000,000 8,000,000 8,000,000 8,000,000 00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8) 20,400,000 (46) 18,800,000 (45) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (836,000,000 (366,000,000 (366,000,000 (366,000,000 (1,276,000,000 (1,4,000,000 (0 1,4,000,000 (0 1,2,000,000 (0	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 2 T Offsets: 5 T Offsets: 6 T Offsets: 4 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (366,000,000 (14,000,000 (0 14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,933 3 2,504 3 2,204 3 2,204 3 2,204 3 2,204 3 2,204 3 2,204 3 2,204 3 42,00 3 42,00 3 42,00 3 42,00 3 42,00 3 36,00 3 36,000 3 36,0000 3 36,0000 3 36,0000 3 36,0000 3 36,00000 3 36,00000 3 36,000000 3 36,00000000000000000000000000000000000	2,000,000 94 ,000,000 (8,000,000 8,000,000 9,000,000 000,000 (000,000 (0 000,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0% 300,000 (75.0% 0 (0.0% 0 (0.0% 0 (0.0% 0 (0.0% 0 (0.0% 0 (0.0% 0 (0.0% 0 (0.0% 0 (0.0%	39,200,000 (8) 20,400,000 (4) 18,800,000 (4) 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0%	1,920,000,000 1,030,000,000 (. 890,000,000 (836,000,000 (764,000,000 (366,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0	Offsets: 2 T Threads: 1 Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 2 T Offsets: 7 T Offsets: 6 T Offsets: 4 T Offsets: 5 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (366,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,93 3 2,293 3 2,295 3 3,6,00 3 3,6,0	2,000,000 94 ,000,000 (8,000,000 2,000,000 000,000 (000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0% 300,000 (75.0% 0 (0.0% 0 (0.0%)	39,200,000 (8) 20,400,000 (4) 18,800,000 (42) 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0% 0 0.0.0%	1,920,000,000 1,030,000,000 (890,000,000 (1) 836,000,000 () 764,000,000 () 365,000,000 () 365,000,000 () 14,000,000 (0) 14,000,000 (0) 14,000,000 (0) 14,000,000 (0) 12,000,000 (0) 12,000,000 (0)	Offsets: 2 T Threads: 1 Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 2 T Offsets: 6 T Offsets: 6 T Offsets: 4 T Offsets: 5 T Offsets: 5 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0) 12,000,000 (0)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,253 3 3,319 3 2,503 3 42,003 3 42,003 3 42,003 3 36,003 3	2,000,000 90 ,000,000 (),000,000 (2,000,000 8,000,000 8,000,000 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0% 300,000 (75.0% 0 (0.0% 0 (0.0%) 0 (0.0%	39,200,000 (8) 20,400,000 (45) 18,800,000 (45) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (830,000,000 (9836,000,000 (764,000,000 (366,000,000 (1366,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 5 T Offsets: 6 T Offsets: 5 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0) 12,000,000 (0) 12	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,504 3 2,504 3 2,295 3 1,094 3 828,0 3 42,00 3 42,00 3 42,00 3 36,00 3 3 3 36,00 3 3 3 3 3 3 5,000 3 3 3 5,000 3 3 3 5,000 3 3 5,0000 3 3 5,0000 3 3 5,0000 3 3 5,0000 3 3 5,0000 3 3 5,00000 3 3 5,00000 3 3 5,0000000000000000000000000000000000	2,000,000 90 ,000,000 (8,000,000 8,000,000 8,000,000 8,000,000 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0% 300,000 (75.0% 0 (0.0% 0 (0.0%) 0 (0.0% 0 (0.0%) 0 (0.0%) 0 (0.0% 0 (0.0%)	39,200,000 (8) 20,400,000 (45) 18,800,000 (45) 0 (0.0%)	1,920,000,000 1,030,000,000 (. \$80,000,000 (\$836,000,000 (\$836,000,000 (\$366,000,000 (\$366,000,000 (\$366,000,000 (\$366,000,000 (\$366,000,000 (\$14,000,000 (0 \$14,000,000 (0 \$12,000,000 (0 \$12,000,000 (0 \$12,000,000 (0)	Offsets: 2 T Threads: 1 Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 2 T Offsets: 6 T Offsets: 6 T Offsets: 5 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0) 12,000,000 (0)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,504 3 2,504 3 2,295 3 1,094 3 828,0 3 42,00 3 42,00 3 42,00 3 36,00 3 3 3 36,00 3 3 3 3 3 3 5,000 3 3 3 5,000 3 3 3 5,000 3 3 5,0000 3 3 5,0000 3 3 5,0000 3 3 5,0000 3 3 5,0000 3 3 5,00000 3 3 5,00000 3 3 5,0000000000000000000000000000000000	2,000,000 90 ,000,000 (),000,000 (2,000,000 8,000,000 8,000,000 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0% 300,000 (75.0% 0 (0.0% 0 (0.0%) 0 (0.0%	39,200,000 (8) 20,400,000 (45) 18,800,000 (45) 0 (0.0%)	1,920,000,000 1,030,000,000 (830,000,000 (9836,000,000 (764,000,000 (366,000,000 (1366,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0	Offsets: 2 T Threads: 1 Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 6 T Offsets: 6 T Offsets: 5 T
Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0) 12,000,000 (0) 12,0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,504 3 2,504 3 2,295 3 1,094 3 828,0 3 42,00 3 42,00 3 42,00 3 42,00 3 36,00 3 30,00 3 30,000 3 30,0000 3 30,0000 3 30,0000 3 30,000	2,000,000 94 ,000,000 (8,000,000 (8,000,000 8,000,000 8,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0% 300,000 (75.0% 0 (0.0% 0 (0.0%) 0 (0.0%	39,200,000 (8) 20,400,000 (45) 18,800,000 (45) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (.) 836,000,000 (.) 764,000,000 (.) 366,000,000 (.) 276,000,000 (.) 14,000,000 (0.) 14,000,000 (0.) 12,000,000 (0.) 12,000,000 (0.) 12,000,000 (0.) 12,000,000 (0.) 12,000,000 (0.	Offsets: 2 T Threads: 1 Threads: 1 Mreads: 1 Offsets: 1 Offsets: 1 Offsets: 2 Offsets: 4 Offsets: 5 Offsets: 5

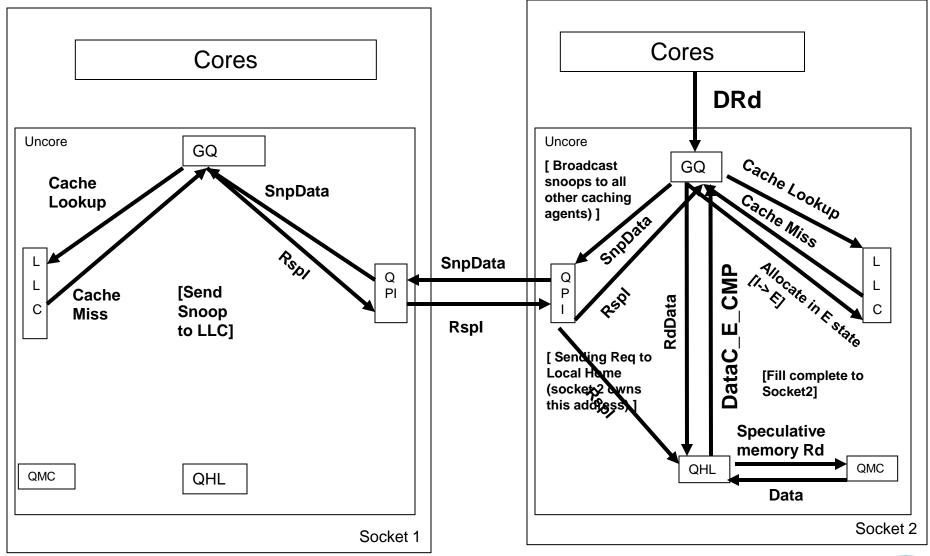
The Pointer "sum" is Causing the False Sharing


<u>E</u> dit <u>N</u> avigate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp												
• 📄 🖻 🕴 🚱 • 🗄 🗢 • 🔿 •											🔀 Intel(R) F	Perfo.
007-12-15-08-22-51												
ource Assembly Control Graph 🔠 🗮 🏹 🎲 🎲 🧐 🧐 🚺 Event	of Interest:	Collected Da	ta Refs	*								
Source	Collect	LLC Mis	Total	MEM L.	Address L.	Assembly			Collected D	LLC Mie	Total La	MEN
int sort(int* data, volatile int* sum, int size		220110111	10131111		0x1550 2		ebp		concetted offi	220110111	- Color Collin	
{					0x1551 2	-	ebp, esp					
					0x1553 2	push	ecx					
int i;					0x1554 2	push	esi					
<pre>for(i=0; i<size; +="data[i]*data[i];</pre" i++)*sum=""></size;></pre>	1,959,6	400,000	6,252	400,0	0x1555 5	mov	DWORD PTR [ebp-	4], 0x0h				
return *sum;					0x155C 5	jmp	sort+017h					
}						sort+0eh:						
					0x155E 5	mov	eax, DWORD PTR	[ebp-4]				
					0x1561 5		eax, 0x1h					
					0x1564 5		DWORD PTR [ebp-	4], eax				
					→ Block 2	sort+017h:						
					0x1567 5		ecx, DWORD PTR					
					0x156A 5	-	ecx, DWORD PTR	[ebp+010h]				
					0x156D 5		sort+040h					
					▼ Block 3 5				1,959,600,0	400,000	6,252,00	40
					0x156F 5		edx, DWORD PTR					
					0x1572 5		eax, DWORD PTR					
					0x1575 5		ecx, DWORD PTR					
					0x1578 5		esi, DWORD PTR					
					0x157B 5		edx, DWORD PTR					
					0x157E 5		edx, DWORD PTR					
					0x1582 5		eax, DWORD PTR			400.000	0.004.00	
					0x1585 5		ecx, DWORD PTR	[eax]	553,600,000	400,000	2,034,00	40
					0x1587 5		ecx, edx					
					0x1589 5		edx, DWORD PTR		1 405 000 000		4.010.00	
					0x158C 5		DWORD PTR [edx]	, ecx	1,406,000,000		4,218,00	
					0x158E 5		sort+0eh					
					⇒ Block 4	sort+040h:		[_b0_b]				
					0x1590 6	MOA	eax, DWORD PTR					
]		>	<]		3
Total Selected:						Total Select	ted (4 instructions):					

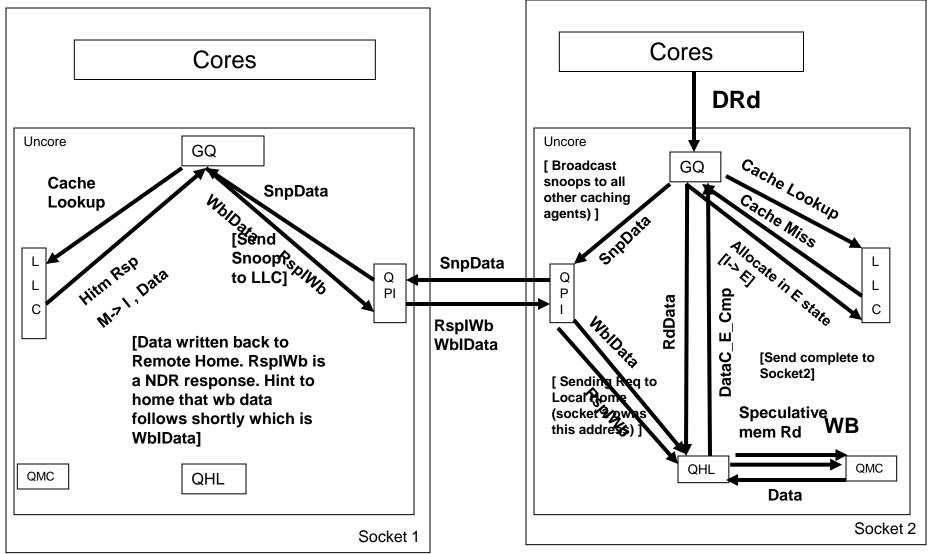
NUMA cacheline access



A NHM Socket is a Caching Agent and a Home Agent



Simple Data Read



RdData request after LLC Miss to Local Home (Clean Rsp)

RdData request after LLC Miss to Local Home (Hitm Response)

Uncore Opcode Match events

Match address, opcode using an MSR

- 37 bit address match
- 8 bit opcode match

Event	Event code	Umask
UNC_ADDR_OPCODE_MATCH.IOH_REQUEST_TRACKER	35	01
UNC_ADDR_OPCODE_MATCH.REMOTE_CORES_REQUEST_TRACKER	35	02
UNC_ADDR_OPCODE_MATCH.LOCAL_CORES_REQUEST_TRACKER	35	04

- Local Home data read, remote LLC hit
 - Ev=35, umask = 2, opcode = RspFwdS = 0001 1010, opcode only
- Local Home data read, remote LLC hitm
 - Ev=35, umask = 2, opcode = RspIWb = 0001 1101, opcode only
- RFO and perhaps other cases also (E->E problematic)

Summary

- Event based sampling performance analysis is extremely powerful on Intel® Core™ i7, XEON™ 5500 and 5600 Processor Families
- Correct methodology is essential
- Correct usage of events is essential
- Intel® PTU simplifies task

- PTU low level utilities can be invoked from the command line by adding the PTU bin directory to the path
- Low level PMU collector is SEP
 - -Invoked by vtsarun
 - -Data is stored in file called tbsXXXYYY.tb5
 - -sep -start -ex 16 -ec
 - "CPU_CLK_UNHALTED.THREAD:sa=200000,UOPS _RETIRED.ANY,UOPS_RETIRED.STALL_CYCLES" app ./myapp -args " arg1 arg2"
 - -:sa=VAL explicitly sets SAV value for the event preceding it
 - -ex 16 causes sep to add PEBS buffer to event record
 - Selecting data profile does the same thing

- sep -start -ex 16 -ec "CPU_CLK_UNHALTED.THREAD:sa=2000000,UOPS _RETIRED.ANY,UOPS_RETIRED.STALL_CYCLES,BR_ INST_RETIRED.NEAR_CALL:lbr=2" -app ./myapp args " arg1 arg2"
 - Event names must be upper case
 - :lbr=VAL turns on LBR capture with filter value determined by VAL
 - Filter values can be determined with profile editor and show command button

LBR Value	Filter Result
1	All Branches
2	All Calls
3	User Calls
4	All Calls & Ret
5	User Calls & Ret

- sfdump5 creates test output based on data in tb5 file
- sfdump5 tbsXXXZZZ.tb5 -modules > modules.txt
 - -Summary of data
 - Total number of samples and events=samples*SAV
 - Events ordered by "event number"
 - Total number of samples/module/event_type

Example sfdump5 output

Event Summary CPU_CLK_UNHALTED.THREAD 2396 = Samples collected due to t 2000000 = Sample after value used 4792000000 = Total events (samples* INST_RETIRED.ANY 1327 = Samples collected due to t 2000000 = Sample after value used 2654000000 = Total events (samples*	during collec SAV) his event during collec				
Module View (all values in decimal)					
Module Process					
Event	Events%	Samples	Events	Module Pa	ath
triad triad					
CPU_CLK_UNHALTED.THREAD		90.40%	2166	4332000000	/home/vtune/snb3/triad_src/triad
INST_RETIRED.ANY		89.98%	1194	2388000000	
vmlinux triad					
CPU_CLK_UNHALTED.THREAD		4.47%	107	214000000	vmlinux
INST_RETIRED.ANY		4.97%	66	132000000	

- Thus CPU_CLK_UNHALTED.THREAD is event 0 "ei-00"
- Thus Inst_RETIRED.ANY is event 1 "ei-01"

- Sfdump5 tbsXXXZZZ.tb5 /dumpsamples > samples.txt
 - -Text dump of all samples
 - -All sample records in a given file are same length
 - -Length = SUM of all required fields for all events
 - If PEBS record is collected for PEBS events, the corresponding fields exist for non PEBS event but are zero filled
 - Events with LBR collection are only collected with other events that have SAME LBR filter value
 - 33 X 64 bits are added

/dumpsamples example output

00000208 64--0033:0x00000000000000000 p-0x0000231C c-00 t-0x0000231C sgno-0x00000001 ei-00 tsc-0x0003C06F0CF15DD4 triad

•00000208 is the record number

•p-0x0000231C gives the process ID

•c-00 the core number of the interupt in this case 0

•t-0x0000231C the thread ID

•ei-00 the event number

•thus this is an record triggered by CPU_CLK_UNHALTED.THREAD

•See –modules output to determine event numbers for a particular collection •tsc-0x0003C06F0CF15DD4 the Time Stamp Counter •Triad the load module name

/dumpsamples example output LBRs

•Event number is 0

- •Extra_01 -> extra_16 are the branch source addresses
- •Extra_17 -> extra_32 are the branch target addresses
- •extra_00 points to the most recent LBR source entry
 - •In this case extra_06
- •Most recent target is extra_(extra_00+17)
 - •Thus last target is extra_23 = extra_23-0x00000000000400694
 - •And PEBS IP field is = 64--0033:0x0000000000400694-0

/dumpsamples example output PEBS

- •Event number is 0 (in this case the latency event)
- •Extra_01 is Event IP

IP of instruction after the instruction that caused the interupt ("IP+1")
Extra_02-> extra_17 are the register values at the completion of the offending instruction

PEBS Buffer field definitions

(x)->r_flags	//extra_00
(x)->linear_ip	//extra_01
(x)->rax	//extra_02
(x)->rbx	//extra_03
(x)->rcx	//extra_04
(x)->rdx	//extea_05
(x)->rsi	//extra_06
(x)->rdi	//extra_07
(x)->rbp	//extra_08
(x)->rsp	//extra_09
(x)->r8	//extra_10
(x)->r9	//extra_11
(x)->r10	//extra_12
(x)->r11	//extra_13
(x)->r12	//extra_14
(x)->r13	//extra_15
(x)->r14	//extra_16
(x)->r15	//extra_17
(x)->data_linear_address	//extra_18
(x)->data_source	//extra_19
(x)->latency	//extra_20

Precise Events

- Significant expansion of PEBS capability on Intel® Core[™] i7 Processors
 - 4 events simultaneously
 - Latency event = IPF data ear + bit pattern for data source
 - Branches retired by type
 - Calls retired + LBR gives call counts
 - Calls_retired + full PEBS gives function arguments on Intel64

Data Access Analysis and PEBS

- Data address profiling for loads and stores can be done as it is on Intel® Core[™]2 Processor Family
 - Full PEBS buffer + disassembly to identify registers with valid addresses at time of capture
 - Mem_inst_retired.load
 - Cannot deal with mov rax,[rax] type instruction
 - Mem_inst_retired.store
 - Not subject to constraint of loads
 - Inst_retired.any
 - Cannot deal with EIP+1 = first instr of Basic Block

Intel® Core™ i7 Processor PerfMon PEBS Buffer

63	BTS Buffer Base	0
	BTS Index	
	BTS Absolute Maximum	
	BTS Interrupt Threshold	
	PEBS Buffer Base	
	PEBS Index	
	PEBS Absolute Maximum	
	PEBS Interrupt Threshold	
	PEBS Counter Reset 0	
	PEBS Counter Reset 1	
	PEBS Counter Reset 2	
	PEBS Counter Reset 3	
	Merom/Penryn - Format 0000b	

Nehalem - Format 0001b

63	RFLAGS	0
	RIP	
	RAX	
	RBX	
	RCX	
	RDX	
	RSI	
	RDI	
	RBP	
	RSP	
	R8	
))		"
	R15	
	Global Perf Overflow MSR	
	Data Linear Address	
	Data Source (encodings)	
	Latency (core cycles)	

Load Latency Threshold Event:

Ability to trigger count on minimum latency

- Core cycles from load execute->data availability
- Linear address in PEBS buffer
 - Allows driver to collect physical address
 - Only total measurement of local/remote home access
- Data source captured in bit pattern
 - Actual NUMA source revealed

Only ONE latency event/min thresh can be taken per run

- Minimum latency programmed with MSR
- Global per core
 - 0x3F6 MS_PEBS_LD_LAT_THRESHOLD bits 15:0
- HW samples loads
 - EX: Sampling fraction for local dram= mem_inst_retired.latency_gt_128(DS= A or C) /mem_uncore_retired.local_dram

Front End/Decode Analysis

- Instruction decode BW has lower maximum
- Instruction flow interruption at RAT output
 - UOPS_ISSUED.STALL_CYCLES -RESOURCE_STALLS.ANY
 - HT ON
 - subtract half the cycles as well
 - Or UOPS_ISSUED.CORE_STALL_CYCLES-RESOURCE_STALLS.ANY
- ILD_STALL.LCP_STALL

NUMA, Intel® QuickPath Interconnect, and Intel ® Xeon 5500/5600 Processor DP systems

- Intel® QuickPath Interconnect (Intel® QPI) will greatly increase memory bandwidth of our platforms
- Integrated memory controllers on each socket access DIMMs
 - Intel® QPI provides cache coherency
 - Bandwidth improves by a lot
- Bandwidth improvement comes at a price
 - Non-Uniform Memory Access (NUMA)
 - -Latency to DIMMs on remote sockets is ~2X larger

Pealing away the Bandwidth layer reveals the NUMA Latency layer

NUMA Modes on DP Systems Controlled in BIOS

•Non-NUMA

- Even/Odd lines assigned to sockets 0/1
 - Line interleaving

•NUMA mode

- First Half of memory space on socket 0
- -Second half of memory space on socket 1

Non-Uniform Memory Access and Parallel Execution

- Parallel processing is intrinsically NUMA friendly
 - Affinity pinning maximizes local memory access
 - Message Passing Interface (MPI)
 - Parallel submission to batch queues
 - Standard for HPC
- Shared memory threading is more problematic
 - Explicit threading, OpenMP* product, Intel® Threading Building Blocks (Intel® TBB)
 - NUMA friendly data decomposition (page-based) has not been required
 - OS-scheduled thread migration can aggravate situation

(intel)

*Other names and brands may be claimed as the property of others.

HPC Applications will see Large Performance Gains due to Bandwidth Improvements

- A remaining performance bottleneck may be due to Non-Uniform Memory Access latency
- This next level in the performance onion was not really addressed
 - Other performance tools offered little insight
 - Default usage of Non-NUMA BIOS settings
 - Except for some HPC accounts
- Intel® PTU data access profiling feature was designed to address NUMA
 - NHM events were designed to provide the required data

Gather and OOO execution

	no prefetch	pref = 8	pref = 16	pref = 32	pref = 64	pref = 96
2 fp ops	34.5	34.9	34.2	37.2	38.7	38.9
4 fp ops	44.5	34.5	33.6	38	42.2	41.4
8 fp ops	74.8	34.8	34.1	38.7	42.7	41.7
16 fp ops	108.9	34.6	34	42.2	50.9	45.6

Data collected on Core[™] 2 processor, prefetchers on

- PMU: Performance Monitoring Unit
 - Assembly of counters and programmable crossbars that allow counting and profiling using user selectable events

• FE: core pipeline Front End

- Responsible for branch prediction, instruction fetch, decode to uops, allocation of OOO backend resources
- BE: core pipeline Backend
 - Stage uops waiting for inputs, execute upon availability, retire in order

• RS: reservation station

- Where uops are staged for execution waiting for availability of their inputs
- ROB: Reorder Buffer
 - -Where uops wait prior to retirement until all older uops have retired and execution path is confirmed. Second point corrects when uops are executed on a mispredicted path.
- RAT: Resource Allocation Table
 - Allocates BE resources for uops prior to issuing them from front end of pipeline to the backend

- Cachelines are 64 bytes
- LLC: Last level Cache
 - -L3 on these processors
- LFB: line fill buffer
 - Buffers used for transfering cachelines into and out of L1D

• WB: writeback

- Modified data is written back to higher level in memory subsystem on eviction
- RFO: Read for Ownership
 - -Stores require cachelines are in exclusive ownership state so they can be modified

- Prefetch, by hardware (HW) or by explicit instruction (SW)
 - Request cacheline prior to execution of consuming instruction (load/store) with intention of hiding latency
- BW: bandwidth
 - Data moved/unit time. I prefer cachelines/cycle as that is what is measured
- Latency: time required to transfer a single line from source to usage.

- SIMD: Single instruction multiple data
 - -SSE parallel execution mode
 - -AKA vectorization
- X87: legacy floating point computation mode. In contrast to SSE FP instructions
- NT: Non Temporal
 - Data store mode that writebacks data in 64 byte aligned contiguous 64 byte chunks directly to dram without RFO
- HITM: Hit Modified
 - Snoop response when line is found in modified state in another cache

- HT: Intel® Hyper-threading Technology
 - Execution mode allowing uops from two threads to be executed in an intermingled flow, without an OS context switch, through a single core pipeline.
- Turbo: Intel® Turbo Boost Technology
 - Adjusting core frequency upwards on active core when other cores are under utilized, while staying within required power envelope.
 Enhances performance of single threaded execution

