Compatibility of beta functions during the squeeze in IR4 with ADT

Wolfgang Hofle

Some material taken from presentations for Run 1 and initial Run 2 situation:
W. Höfle: HL-TCC, 20 Aug. 2020
Run 1 ADT System

pick-ups are dedicated BPMCS integrated with cryostats of quadrupoles
Original Specifications (ADT)

- **Pick-ups**
 - two pick-ups per plane per beam (8 in total)
 - coupler type pick-ups BPMC provided by BI group
 - The modulated signal at 400 MHz is used
 - integrated with Q7 and Q9 cryostats left and right of point 4
 - minimum β functions of 100 m
 - low dispersion preferable (Q7LHB1 and Q7RHB1 very good)
 - higher than specified β functions allowed for better performance

- **Kickers**
 - Four kickers per beam and plane (16 in total)
 - minimum β functions 100 m
 - higher than specified values allowed for better than planned performance and allowed additional functionalities without upgrades
Pickups for ADT after LS1 (optics 6.5xx) make available four Q8 PU (LBOC 15.04.2014)

<table>
<thead>
<tr>
<th></th>
<th>B1 horizontal</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q10L</td>
<td>Q9L</td>
<td>Q7L</td>
<td>Q8R</td>
<td>Q9R</td>
<td>Q10R</td>
</tr>
<tr>
<td>β</td>
<td>32 m</td>
<td>111 m</td>
<td>106 m</td>
<td>133 m</td>
<td>19 m</td>
<td>153 m</td>
</tr>
<tr>
<td>run</td>
<td>run 1</td>
<td>new run 2</td>
<td>run 1</td>
<td>new run 2</td>
<td>run 1</td>
<td>run 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B1 vertical</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q10L</td>
<td>Q9L</td>
<td>Q8L</td>
<td>Q7R</td>
<td>Q9R</td>
<td>Q10R</td>
</tr>
<tr>
<td>β</td>
<td>175 m</td>
<td>54 m</td>
<td>155 m</td>
<td>161 m</td>
<td>142 m</td>
<td>46 m</td>
</tr>
<tr>
<td>run</td>
<td>new run 2</td>
<td>new run 2</td>
<td>run 1</td>
<td>run 1</td>
<td>run 1</td>
<td>run 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B2 horizontal</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q10L</td>
<td>Q9L</td>
<td>Q8L</td>
<td>Q7R</td>
<td>Q9R</td>
<td>Q10R</td>
</tr>
<tr>
<td>β</td>
<td>158 m</td>
<td>22 m</td>
<td>96 m</td>
<td>150 m</td>
<td>101 m</td>
<td>29 m</td>
</tr>
<tr>
<td>run</td>
<td>new run 2</td>
<td>new run 2</td>
<td>run 1</td>
<td>run 1</td>
<td>run 1</td>
<td>run 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B2 vertical</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q10L</td>
<td>Q9L</td>
<td>Q7L</td>
<td>Q8R</td>
<td>Q9R</td>
<td>Q10R</td>
</tr>
<tr>
<td>β</td>
<td>44 m</td>
<td>160 m</td>
<td>167 m</td>
<td>151 m</td>
<td>56 m</td>
<td>180 m</td>
</tr>
<tr>
<td>run</td>
<td>run 1</td>
<td>run 1</td>
<td>new run 2</td>
<td>new run 2</td>
<td>new run 2</td>
<td>new run 2</td>
</tr>
</tbody>
</table>

All PUs are couplers (BPMCS type) that already exist, high beta preferable. Agreement in 2014 with BI on the usage of the Q8’s.
HL squeeze – ADT

Squeeze from 50 cm to 15 cm, 36 twiss files from R. de Maria script for extraction by D. Valuch
Horizontal Beam 1

large increase of β_x for Q10R \rightarrow 15 cm kickers: only small change
Vertical Beam 1

- significant increase of β_y for Q9R \rightarrow 15 cm
- decreasing β_y for Q7R and Q8L
- kickers: significant increase, making B1 and B2 more equal
Horizontal Beam 2

- significant increase of β_x for Q9R \Rightarrow 15 cm
- decreasing β_x for Q7R
- kickers: only small change
Vertical Beam 2

- significant increase of β_y for Q10R \rightarrow 15 cm
- decreasing β_y for Q8R
- kickers: only small change
ADT kickers run 1, initial run2 and HL-squeeze

- **Kickers: improvement proportional to $\beta^{1/2}$**

<table>
<thead>
<tr>
<th>Damper</th>
<th>Run 1: β</th>
<th>Run 2: β (initial)</th>
<th>HL-squeeze</th>
<th>Improvement Factor cf run 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.B1 (L4)</td>
<td>253 m</td>
<td>271 m</td>
<td>265 m</td>
<td>1.02</td>
</tr>
<tr>
<td>V.B1 (R4)</td>
<td>160 m</td>
<td>268 m</td>
<td>332 m</td>
<td>1.44</td>
</tr>
<tr>
<td>H.B2 (R4)</td>
<td>204 m</td>
<td>263 m</td>
<td>265 m</td>
<td>1.02</td>
</tr>
<tr>
<td>V.B2 (L4)</td>
<td>306 m</td>
<td>336 m</td>
<td>359 m</td>
<td>1.08</td>
</tr>
</tbody>
</table>

- design peak kick strength 7.5 kV is 2 μrad (450 GeV/c); assumed $\beta=100$ m
- Run1 impact on beam is factor 1.6 higher for H.B1, V.B1, H.B2, and 1.8 higher for V.B2 (because β’s much higher than 100 m)
- cf. to run 1 optics, the initial optics brought improvement for all beams and planes
- we need higher than 100 m values to keep the performance of all additional features invented and implemented along runs 1 and 2 (about gap cleaning, loss maps, excitations for measurement purposes and quench tests)
Reminder - Figure of merit for pick-ups

- motivated by S/N improvement for multiple pick-up usage compared to the reference case of a single pick-up @ $\beta = 100\ m$

$$\frac{S}{N} = 20\text{dB} \times \log_{10}\frac{\sum_{n=1}^{N} \sqrt{\beta_n / 100m}}{\sqrt{N}}$$

<table>
<thead>
<tr>
<th></th>
<th>Run 1 (2 PU) Q7,Q9</th>
<th>Run 2 (4 PU) Q7,Q9,Q10</th>
<th>Run 2 Q7,Q8,Q9,Q10</th>
<th>Improvement with BI swap</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.B1</td>
<td>3.8 dB</td>
<td>5.6 dB</td>
<td>7.0 dB</td>
<td>1.4 dB</td>
</tr>
<tr>
<td>V.B1</td>
<td>4.2 dB</td>
<td>7.4 dB</td>
<td>8.0 dB</td>
<td>0.6 dB</td>
</tr>
<tr>
<td>H.B2</td>
<td>4.4 dB</td>
<td>5.9 dB</td>
<td>8.0 dB</td>
<td>2.1 dB</td>
</tr>
<tr>
<td>V.B2</td>
<td>4.9 dB</td>
<td>6.6 dB</td>
<td>8.2 dB</td>
<td>1.6 dB</td>
</tr>
</tbody>
</table>

From LBOC 15.04.2014
PU Figure of Merit HL-squeeze

• general improvement during squeeze \rightarrow 15 cm, except V.B1
• similar starting value at $\beta=50$ cm as in initial run 2 optics except for HB2 which slightly worse
• V-plane β’s better than H-plane at $\beta=50$ for both beams
Preliminary Summary

- higher β at V.B1 kickers welcome
- PU figure of merit for combined set of pick-ups seems OK, however
 - achieved by large increase of β-functions at Q9R and Q10R
 - possibility to leverage on this large increase must be checked by ADT team experts
Spare
2016: ADT Digital Signal Processing Unit (mDSPU)

BeamPos receiver + coarse delay
Closed orbit suppression
Pickup β-function compensation
Phase advance compensation

Link receiver
Hold
Notch
Gain balance
Phase rotation
Pickup enable switch

Loop A
enable
Loop A
activity mask
Activity switch
Predis-tortion phase
Predis-tortion gain
DAC

Q7
ΔΣ
Link receiver
Hold
Notch
Gain balance
Phase rotation
Pickup enable switch

Loop A
enable
Loop B
activity mask
Activity switch
Predis-tortion phase
Predis-tortion gain
DAC

Q9
ΔΣ
Link receiver
Hold
Notch
Gain balance
Phase rotation
Pickup enable switch

Loop B
enable
Loop C
activity mask
Activity switch
Predis-tortion phase
Predis-tortion gain
DAC

Q8
ΔΣ
Link receiver
Hold
Notch
Gain balance
Phase rotation
Pickup enable switch

Loop C
enable
Loop D
activity mask
Activity switch
Predis-tortion phase
Predis-tortion gain
DAC

Q10
ΔΣ
Link receiver
Hold
Notch
Gain balance
Phase rotation
Pickup enable switch

Loop D
enable

DAC

ADT digital signal processing unit (mDSPU)
Pickups for ADT after LS1 proposal as presented at LMC: 5th Feb 2014

<table>
<thead>
<tr>
<th></th>
<th>B1 horizontal</th>
<th></th>
<th>B1 vertical</th>
<th></th>
<th>B2 horizontal</th>
<th></th>
<th>B2 vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q10L</td>
<td>Q9L</td>
<td>Q7L</td>
<td>Q7R</td>
<td>Q9R</td>
<td>Q10R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β = 28 m</td>
<td>β = 127 m</td>
<td>β = 112 m</td>
<td>β = 78 m</td>
<td>β = 16 m</td>
<td>β = 158 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>run 1</td>
<td>run 1</td>
<td>considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>β = 28 m</td>
<td>β = 127 m</td>
<td>β = 112 m</td>
<td>β = 78 m</td>
<td>β = 16 m</td>
<td>β = 158 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>run 1</td>
<td>run 1</td>
<td>considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>β = 172 m</td>
<td>β = 25 m</td>
<td>β = 52 m</td>
<td>β = 127 m</td>
<td>β = 138 m</td>
<td>β = 38 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>new</td>
<td>new</td>
<td>run 1</td>
<td>run 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>β = 164 m</td>
<td>β = 17 m</td>
<td>β = 60 m</td>
<td>β = 173 m</td>
<td>β = 106 m</td>
<td>β = 30 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>new</td>
<td>new</td>
<td>run 1</td>
<td>run 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>β = 36 m</td>
<td>β = 140 m</td>
<td>β = 169 m</td>
<td>β = 23 m</td>
<td>β = 34 m</td>
<td>β = 181 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>run 1</td>
<td>run 1</td>
<td>new</td>
<td>new</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All PUs are couplers (BPMC type) that already exist, high beta preferable