Impact of collimator geometric impedance on tuneshift measurements the case of **TCP.C6L7.B1**

N. Mounet, D. Amorim, S. Antipov, N. Biancacci, X. Buffat, E. Métral and B. Salvant

Acknowledgements: G. Arduini, R. Bruce, E. Carideo, F. Carra, L. Carver, L. Gentini, A. Mereghetti, S. Redaelli.

The issue – tuneshift measurements variability

The discrepancy between model and tuneshift measurement for the horizontal, primary collimator TCP.C6L7 in beam 1, seems to have doubled between 2016 and 2018:

(a) Ratios B1H

During the WP2 meeting, *R. Bruce* mentioned that "the TCP.C6L7.B1 collimator was changed in the 2016-17 EYETS, when a new collimator with BPM buttons was installed. The hardware used in the measurements was thus not the same."

\Rightarrow what is the (theoretical) impact of this change of hardware?

Contribution of TCP.C6L7 to the impedance

Approximate **cumulative** contribution of each element to the total octupole threshold (horizontal instabilities, negative polarity, 2018 impedance):

~8% of total octupole threshold (~10A without factor 2).

Design of TCP.C6L7 after 2016-2017 EYETS

From *L. Gentini / F. Carra / S. Redaelli*: this is a specific design, "TCPP"

 \Rightarrow same BPM button design as TCSP...

... but it has RF-fingers instead of ferrite \rightarrow no high order mode at ~100 MHz (the so-called "TCTP mode").

Impact of geometric impedance

Using Sacherer formula (dip+quad), normalizing some of the parameters (bunch length 1ns, 1e11 p+/b): horizontal tune shift vs chromaticity

Checking again theoretical values

Ratio of horizontal tune shift measured vs theoretical (Sacherer formula or DELPHI Vlasov solver), vs chromaticity:

 \Rightarrow I cannot recover the reported discrepancy factor (~2) of 2016 MD.

 \Rightarrow Instead one finds a similar one as from 2018 MD (~3).

One possible explanation: change of model in-between.

Measurement improvements

All along Run 2 the quality of tuneshift measurements has continuously improved (D. Amorim, S. Antipov, N. Biancacci, L. Carver, B. Salvant):

Conclusion

- The change of design of TCP.C6L7 has slightly increased the geometric impedance (from tapers).
- But it cannot explain an increase of discrepancy between 2016 & 2018 MDs and impedance model as even with the new design, the impedance is largely dominated by the resistive-wall contribution (>85%).
- Furthermore, calculations with an updated impedance do not show a strong discrepancy anymore between the two measurements.

 \Rightarrow any remaining difference can probably be explained by the strong improvements in the MD procedure & conditions over Run 2,

 \Rightarrow this also confirms that the **discrepancy between measurements** & model is very high for the TCP.C6L7 (~factor 3).

Possible explanations:

- Collimator misalignment during MD (to be studied in MDs)
- Radiation damage leading to resistivity change ٠
- WP2, 02/06/2020) Non-conformity? Collimator has been taken out, endoscopy performed \rightarrow • to be followed-up.

Seem unlikely (see

Mereahetti. 176th

- ➤ We need more data points → tuneshift measurements in Run 3 – they have improved a lot during Run 2 (precision down to a few 10⁻⁵).
- ➤ The TCP.C6L7 is out now, and replaced by a Mo-graphite primary for Run 3 → whatever issue that could have been there, will probably disappear.

TCPP vs. TCSP design – RF fingers

> From *L. Gentini*:

TCPP TCSP