

# Beam-beam DA simulations with new operational scenario

R. De Maria, G. Iadarola, S. Kostoglou, Y. Papaphilippou, G. Sterbini

181<sup>th</sup> Hi-Lumi WP2 meeting 29/09/2020

### **Overview**

DA studies with beam-beam at:

- 1) Start of collisions for B1 & B2
  - r=1, β\*=1 m, CC OFF, I<sub>oct</sub>=+510 A
  - $r=1/2, \beta^*=1 \text{ m}, \text{ CC OFF, } I_{oct}=-490 \text{ A}$
  - r=1/2, β\*=1 m, CC OFF, I<sub>oct</sub>=+470 A



/afs/cern.ch/eng/lhc/optics/HLLHCV1.5/ramp/opt\_ramp\_1000\_1500\_thin.madx /afs/cern.ch/eng/lhc/optics/HLLHCV1.5/ats/opt\_ats\_1000\_500\_thin.madx

### **Overview**

DA studies with beam-beam at:

- 1) Start of collisions for B1 & B2
  - r=1, β\*=1 m, CC OFF, I<sub>oct</sub>=+510 A
  - r=1/2, β\*=1 m, CC OFF, I<sub>oct</sub>=-490 A
  - r=1/2, β\*=1 m, CC OFF, I<sub>oct</sub>=+470 A
- 2) End of  $\beta^*$ -leveling for B1 & B2
  - β\*=15 cm, CC ON, I<sub>oct</sub>=-300 A
  - β\*=15 cm, CC ON, I<sub>oct</sub>=+300 A
  - Chromaticity & octupole scan.



### **Overview**

DA studies with beam-beam at:

- 1) Start of collisions for B1 & B2
  - r=1, β\*=1 m, CC OFF, I<sub>oct</sub>=+510 A
  - r=1/2, β\*=1 m, CC OFF, I<sub>oct</sub>=-490 A
  - r=1/2, β\*=1 m, CC OFF, I<sub>oct</sub>=+470 A

2) End of  $\beta^*$ -leveling for B1 & B2

- β\*=15 cm, CC ON, I<sub>oct</sub>=-300 A
- β\*=15 cm, CC ON, I<sub>oct</sub>=+300 A
- Chromaticity & octupole scan.

Simulation setup:

■HL-LHC v1.5

New pythonic masks (preliminary results for B2 & beambeam)

■C<sup>-</sup>=10<sup>-3</sup>

HILLER PROJECT  $2_{IP1/5}$  = 250 μrad, δp/p=27x10<sup>-5</sup>, 5 angles, 15 chroma

# Start of collisions



# r=1, $\beta^*$ =1 m, positive octupoles

#### **DA target**: Minimum DA> 6 $\sigma$ for $\Delta Q \ge 5 \times 10^{-3}$ .









# r=1/2, $\beta^*=1$ m, positive octupoles



Slight DA reduction with anti-telescope (although lower octupoles).



# r=1/2, $\beta^*$ =1 m, negative octupoles



Beneficial impact from negative octupoles.



# r=1/2, $\beta^*$ =1 m, negative octupoles



✓ For all 3 cases: several working points that meet the DA target.



> DA of B2 slightly worse (~0.5  $\sigma$ ) than B1.

# End of β\*-leveling



# **β\*=15 cm, negative octupoles**



Best working points throughout the whole collision process for B1 are (62.315 60.320), (62.316, 60.321), (62.317, 60.322).



# **β\*=15 cm, positive octupoles**



 1 working point for B2, marginal for B1 (without IP1-IP5 phase advance optimizations).



More pronounced DA asymmetry between the two beams around coupling resonance.

# **Chromaticity & octupoles scan**



For optimized working point (B1, EOL, negative octupoles, DA<sub>min</sub>=6.21 σ).



# Summary

- Meeting DA target for all three scenarios at start of collisions including coupling and beam-beam both for B1 and B2.
- Preliminary DA results of B2 slightly worse than B1 (~0.5 σ), to further understand origin of asymmetry.
- Best working points for the whole collision process for B1 is (62.315 60.320), (62.316, 60.321), (62.317, 60.322).
- No working point for B2 at the end of leveling with negative octupoles & 1 working point for positive octupoles with the present configuration.
- EOL & optimized working point, optimal regime for B1 I<sub>oct</sub>=-250 to 150 A.



# Summary

- Meeting DA target for all three scenarios at start of collisions including coupling and beam-beam both for B1 and B2.
- Preliminary DA results of B2 slightly worse than B1 (~0.5 σ), to further understand origin of asymmetry.
- Best working points for the whole collision process for B1 is (62.315 60.320), (62.316, 60.321), (62.317, 60.322).
- No working point for B2 at the end of leveling with negative octupoles & 1 working point for positive octupoles with the present configuration.
- EOL & optimized working point, optimal regime for B1 I<sub>oct</sub>=-250 to 150 A.

#### Next steps:

- 1. Further sanity checks and verification for Beam 2.
- 2. To identify origin of DA asymmetry between the two beams (especially around the coupling resonance at EOL).
- 3. Phase advance optimizations with beam-beam & complement no

# Backup



# **Chromaticity & octupoles scan**





#### **Phase advance optimization**



**F. Plassard et al**: Sextupole scheme optimization for HL–LHC.



