Dark photon oscillations in our inhomogeneous Universe

Sidding with with a strain of the second states of

Center for Cosmology and Particle Physics

BSM PANDEMIC October 13, 2020

Collab

Hongwan Liu (NYU/Princeton)

Papers

- 1. Caputo, Liu, SM, Ruderman, "Dark Photon Oscillations in Our Inhomogeneous Universe," PRL [arXiv:2002.05165]

Josh Ruderman (NYU)

Alfredo Urbano (INFN Trieste)

Maxim Pospelov (Minnesota)

2. Caputo, Liu, SM, Ruderman, "Modeling Dark Photon Oscillations in Our Inhomogeneous Universe," PRD [arXiv:2004.06733] 3. + Pospelov, Urbano, "Edges and Endpoints in 21-cm Observations from Resonant Photon Production," [arXiv:2009.03899]

Outline

Dark photons and resonant conversions

Dark photon oscillations with inhomogeneities

Dark photon signatures in 21-cm

Outline

Dark photons and resonant conversions

Dark photon oscillations with inhomogeneities

Dark photon signatures in 21-cm

Standard Model

Dark Sector

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

(Some) Canonical portals:

Scalar
 Higgs portal

 $\lambda H^2 S^2 + \mu H^2 S$

• Fermion Neutrino portal

y(HL)N

Vector
 Kinetic mixing portal

 $\epsilon F^{\mu
u}F'_{\mu
u}$

(Some) Canonical portals:

• Scalar Higgs portal $\lambda H^2 S^2 + \mu H^2 S$

• Fermion Neutrino portal y(HL)N

• Vector Kinetic mixing portal

 $\epsilon F^{\mu
u}F'_{\mu
u}$

Kinetic mixing portal U(1)'

$$\Delta \mathscr{L} = -\frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu} + \frac{m_{A'}^2}{2} A'^2$$

Holdom, PLB (1986)

Kinetic mixing portal U(1)'

$$\Delta \mathscr{L} = -\frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu} + \frac{m_{A'}^2}{2} A'^2$$

$\gamma \sim \chi \sim \chi \sim \chi \sim \chi$

Holdom, PLB (1986)

 $\epsilon - m_{A'}$ plane

 $\epsilon - m_{A'}$ plane

 $\epsilon - m_{A'}$ plane: "ultralight" dark photons

 $\epsilon - m_{A'}$ plane: "ultralight" dark photons

Vacuum and resonant (in-medium) oscillations

Oscillations in vacuum $\omega^2 = k^2$

 M_{A}

Vacuum and resonant (in-medium) oscillations

Oscillations in vacuum $\omega^2 = k^2$

 M_{A}

$$m_{\gamma}^2(z) \approx \frac{4\pi\alpha n_{\rm e}(z)}{m_{\rm e}} \approx \frac{4\pi\alpha}{m_{\rm e}} x_{\rm e}(z) n_{\rm H}(z)$$

z) $n_{\rm H}(z)$

Resonant oscillations in plasma: Landau-Zener formalism

Resonant oscillations in plasma: Landau-Zener formalism

$$\omega(z_{\rm res}) = \omega_{\rm obs}(1 + z_{\rm res})$$

$$\implies \text{Later resonances typically dominate}$$

Resonant oscillations in plasma: Landau-Zener formalism

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

$$\omega(z_{\rm res}) = \omega_{\rm obs}(1 + z_{\rm res})$$

$$\implies \text{Later resonances typically dominate}$$

Similar formalism for neutrino oscillations (MSW effect)

Nonadiabatic Level Crossing in Resonant Neutrino Oscillations

Stephen J. Parke Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (Received 27 May 1986)

Resonant oscillations in photon plasma

Resonant oscillations in photon plasma

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

12/41

Resonant oscillations in photon plasma

CMB spectral distortions due to $\gamma \rightarrow A'$

$$I_{\omega} \left(m_{A'}, \epsilon; T_{\rm CMB} \right) = B_{\omega}$$

Blackbody spectrum
$$B_{\omega} = \frac{\omega^{3}}{2\pi^{2}} \left[\exp\left(\frac{\omega}{T_{\rm CMB}}\right) - 1 \right]^{-1}$$

CMB spectral distortions due to

$$\gamma \rightarrow A'$$

$$I_{\omega}\left(m_{A'}, \epsilon; T_{\rm CMB}\right) = B_{\omega}\left(1 - P_{\gamma \to A'}\right)$$

Blackbody spectrum γ disappearance probabil
$$B_{\omega} = \frac{\omega^{3}}{2\pi^{2}}\left[\exp\left(\frac{\omega}{T_{\rm CMB}}\right) - 1\right]^{-1} P_{\gamma \to A'} \simeq \frac{\pi\epsilon^{2}m_{A'}^{2}}{\omega\left(z_{\rm res}\right)}\left|\frac{d\ln m_{\gamma}^{2}(t_{\rm res})}{dt}\right|$$

CMB spectral distortions due to $\gamma \rightarrow A'$

$$I_{\omega}\left(m_{A'}, \boldsymbol{\epsilon}; T_{\text{CMB}}\right) = B_{\omega}\left(1 - P_{\gamma \to A'}\right)$$

Blackbody spectrum γ disappearance probabil
$$B_{\omega} = \frac{\omega^{3}}{2\pi^{2}}\left[\exp\left(\frac{\omega}{T_{\text{CMB}}}\right) - 1\right]^{-1} P_{\gamma \to A'} \simeq \frac{\pi \boldsymbol{\epsilon}^{2} m_{A'}^{2}}{\omega\left(z_{\text{res}}\right)}\left|\frac{d\ln m_{\gamma}^{2}(\boldsymbol{\epsilon})}{dt}\right|$$

$\epsilon - m_{A'}$ constraints from COBE/FIRAS

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Mirizzi, Redondo, Sigl [0901.0014]

Outline

Dark photons and resonant conversions

Dark photon oscillations with inhomogeneities

Dark photon signatures in 21-cm

$$m_{\gamma}^2(z) \approx \frac{4\pi \alpha \, \overline{n_{\rm e}(z)}}{m_{\rm e}}$$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

17/41

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

17/41

Computing conversion probability

Analytic approach

$$P_{\gamma \to A'} \simeq \pi \epsilon^2 m_{A'}^2 \left\langle \sum_i \frac{1}{\omega_i \left(z_{\text{res},i} \right)} \left| \frac{d \ln m_{\gamma}^2(t)}{dt} \right|_{z=z_{\text{res},i}}^{-1} \right\rangle$$

Compute average of stochastic process

Computing conversion probability

Computing conversion probability

Numerical approach

Bondarenko, Pradler, Sokolenko [2002.08942] Garcia et al [2003.10465]

1. Conversion probability along line of sight

$$\frac{\mathrm{d}P_{\gamma \to A'}}{\mathrm{d}t} = \frac{\pi m_{A'}^2 \epsilon^2}{\omega(t)} \delta_{\mathrm{D}} \left(m_{\gamma}^2(t) - m_{A'}^2 \right) m_{\gamma}^2(t)$$

1. Conversion probability along line of sight

$$\frac{\mathrm{d}P_{\gamma \to A'}}{\mathrm{d}t} = \frac{\pi m_{A'}^2 \epsilon^2}{\omega(t)} \delta_{\mathrm{D}} \left(m_{\gamma}^2(t) - m_{A'}^2 \right) m_{\gamma}^2(t)$$

2. Average conversion probability along l.o.s., weighted by PDF $f(m_{\gamma}^2)$

$$\frac{\mathrm{d}\left\langle P_{\gamma \to A'} \right\rangle}{\mathrm{d}z} = \frac{\pi m_{A'}^2 \epsilon^2}{\omega(z)} \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \int \mathrm{d}m_{\gamma}^2 f\left(m_{\gamma}^2\right) \delta_{\mathrm{D}}\left(m_{\gamma}^2 - m_{A'}^2\right) dz$$

 m_{γ}^2

1. Conversion probability along line of sight

$$\frac{\mathrm{d}P_{\gamma \to A'}}{\mathrm{d}t} = \frac{\pi m_{A'}^2 \epsilon^2}{\omega(t)} \delta_{\mathrm{D}} \left(m_{\gamma}^2(t) - m_{A'}^2 \right) m_{\gamma}^2(t)$$

2. Average conversion probability along l.o.s., weighted by PDF $f(m_{\gamma}^2)$

$$\frac{\mathrm{d}\left\langle P_{\gamma \to A'} \right\rangle}{\mathrm{d}z} = \frac{\pi m_{A'}^2 \epsilon^2}{\omega(z)} \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \int \mathrm{d}m_{\gamma}^2 f\left(m_{\gamma}^2\right) \delta_{\mathrm{D}}\left(m_{\gamma}^2 - m_{A'}^2\right)$$

3. Enforce resonance condition $m_{\gamma}^2 = m_{A'}^2$

$$\frac{\mathrm{d}\left\langle P_{\gamma \to A'} \right\rangle}{\mathrm{d}z} = \frac{\pi m_{A'}^4 \epsilon^2}{\omega(z)} \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| f\left(m_{\gamma}^2; z\right)$$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

 m_{γ}^2

1. Conversion probability along line of sight

$$\frac{\mathrm{d}P_{\gamma \to A'}}{\mathrm{d}t} = \frac{\pi m_{A'}^2 \epsilon^2}{\omega(t)} \delta_{\mathrm{D}} \left(m_{\gamma}^2(t) - m_{A'}^2 \right) m_{\gamma}^2(t)$$

2. Average conversion probability along l.o.s., weighted by PDF $f(m_{\gamma}^2)$

$$\frac{\mathrm{d}\left\langle P_{\gamma \to A'} \right\rangle}{\mathrm{d}z} = \frac{\pi m_{A'}^2 \epsilon^2}{\omega(z)} \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \int \mathrm{d}m_{\gamma}^2 f\left(m_{\gamma}^2\right) \delta_{\mathrm{D}}\left(m_{\gamma}^2 - m_{A'}^2\right)$$

3. Enforce resonance condition $m_{\gamma}^2 = m_{A'}^2$

$$\frac{\mathrm{d}\left\langle P_{\gamma \to A'} \right\rangle}{\mathrm{d}z} = \frac{\pi m_{A'}^4 \epsilon^2}{\omega(z)} \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| f\left(m_{\gamma}^2; z\right)$$

m_{ν}^2

Rice's Formula (1944)

Mathematical Analysis of Random Noise By S. O. RICE

INTRODUCTION

HIS paper deals with the mathematical analysis of noise obtained by passing random noise through physical devices. The random noise

PDF of plasma mass fluctuations

 $f(m_{\gamma}^2) = \frac{\mathrm{d}\delta_{\mathrm{e}}}{\mathrm{d}m_{\gamma}^2}\mathscr{P}$

$$m_{\gamma}^{2}(\overrightarrow{x},z) = \overline{m_{\gamma}^{2}}(z) \left(1 + \delta_{e}(\overrightarrow{x},z)\right)$$

$$\mathcal{P}(\delta_{\rm e}) = \frac{\mathcal{P}(\delta_{\rm e})}{\overline{m_{\gamma}^2}}$$

PDF of plasma mass fluctuations

$$f(m_{\gamma}^2) = \frac{\mathrm{d}\delta_{\mathrm{e}}}{\mathrm{d}m_{\gamma}^2} \mathscr{P}(\delta_{\mathrm{e}}) = \frac{\mathscr{P}(\delta_{\mathrm{e}})}{\overline{m_{\gamma}^2}}$$

Electron and baryon fluctuations

$$\bar{n}_{e}(1+\delta_{e}) = \bar{x}_{e}(1+\delta_{x_{e}}) \bar{n}_{H}(1+\delta_{b})$$
$$\implies \delta_{e} = \delta_{b} + \delta_{x_{e}} + \delta_{x_{e}}\delta_{b}$$

If
$$\delta_{x_e} \ll \delta_b \implies \delta_e \approx \delta_b$$

$$m_{\gamma}^{2}(\overrightarrow{x},z) = \overline{m_{\gamma}^{2}}(z) \left(1 + \delta_{e}(\overrightarrow{x},z)\right)$$

PDF of plasma mass fluctuations

$$f(m_{\gamma}^2) = \frac{\mathrm{d}\delta_{\mathrm{e}}}{\mathrm{d}m_{\gamma}^2}\mathcal{G}$$

 $\mathscr{P}\left(\delta_{\mathsf{b}} \right)$

Electron and baryon fluctuations

$$\bar{n}_{e}(1+\delta_{e}) = \bar{x}_{e}(1+\delta_{x_{e}}) \bar{n}_{H}(1+\delta_{b})$$
$$\implies \delta_{e} = \delta_{b} + \delta_{x_{e}} + \delta_{x_{e}}\delta_{b}$$
$$\text{If } \delta_{x_{e}} \ll \delta_{b} \implies \delta_{e} \approx \delta_{b}$$

$$m_{\gamma}^{2}(\overrightarrow{x},z) = \overline{m_{\gamma}^{2}}(z) \left(1 + \delta_{e}(\overrightarrow{x},z)\right)$$

PDF of plasma mass fluctuations: Gaussian toy example

PDF of plasma mass fluctuations: Gaussian toy example

PDF of plasma mass fluctuations: Gaussian toy example

Fluctuations at late times highly <u>non-Gaussian</u>, <u>non-linear</u>

Log-normal PDF

$$\mathscr{P}_{\rm LN}\left(\boldsymbol{\delta}_{\rm b};z\right) = \frac{\left(1+\boldsymbol{\delta}_{\rm b}\right)^{-1}}{\sqrt{2\pi\Sigma^{2}(z)}} \exp\left(-\frac{\left[\ln\left(1+\boldsymbol{\delta}_{\rm b}\right)+\Sigma^{2}(z)/2\right]^{2}}{2\Sigma^{2}(z)}\right)$$

Log-normal PDF

$$\mathscr{P}_{\rm LN}\left(\boldsymbol{\delta}_{\rm b};z\right) = \frac{\left(1+\boldsymbol{\delta}_{\rm b}\right)^{-1}}{\sqrt{2\pi\Sigma^{2}(z)}} \exp\left(-\frac{\left[\ln\left(1+\boldsymbol{\delta}_{\rm b}\right)+\Sigma^{2}(z)/2\right]^{2}}{2\Sigma^{2}(z)}\right)$$

The non-linear baryonic power spectrum

The non-linear baryonic power spectrum

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Non-linear baryonic power spectra from hydrodynamical simulations:

- Illustris
- IllustrisTNG
- BAHAMAS
- EAGLE

Foreman et al [1910.03597] van Daalen et al [1906.00968]

Alternative PDF prescriptions

Log-normal PDF

Log-normal PDF with nonlinear baryon power spectrum

$$\mathscr{P}_{\rm LN}\left(\boldsymbol{\delta}_{\rm b};z\right) = \frac{\left(1+\boldsymbol{\delta}_{\rm b}\right)^{-1}}{\sqrt{2\pi\Sigma^{2}(z)}} \exp\left(-\frac{\left[\ln\left(1+\boldsymbol{\delta}_{\rm b}\right)+\Sigma^{2}(z)/2\right]^{2}}{2\Sigma^{2}(z)}\right)$$

$\mathscr{P}_{\rm LN}\left(\boldsymbol{\delta}_{\rm b}; z\right) = \frac{\left(1 + \boldsymbol{\delta}_{\rm b}\right)^{-1}}{\sqrt{2\pi \Sigma^2(z)}} \exp_{\boldsymbol{\lambda}}$

Alternative PDF prescriptions

Log-normal PDF Log-normal PDF with nonlinear

baryon power spectrum

"Analytic" PDF Non-linear spherical collapse of linear matter field

Ivanov, Kaurov, Sibiryakov [1811.07913]

$$\mathscr{P}_{\rm an}\left(\boldsymbol{\delta}_{\rm b};z\right) = \frac{\hat{C}\left(\boldsymbol{\delta}_{\rm b}\right)}{\sqrt{2\pi\sigma_{R_{\rm J}}^2(z)}} \exp\left[\frac{-\frac{F^2\left(\boldsymbol{\delta}_{\rm b}\right)}{2\sigma_{R_{\rm J}}^2(z)}\right]$$

$$\operatorname{xp}\left(\frac{\left[\ln\left(1+\delta_{b}\right)+\Sigma^{2}(z)/2\right]^{2}}{2\Sigma^{2}(z)}\right)$$

Cosmic voids PDF

Log-normal PDF

"Analytic" PDF

linear matter field

baryon power spectrum

Log-normal PDF with nonlinear

PDF of matter underdensities

Ivanov, Kaurov, Sibiryakov [1811.07913]

Adermann et al [1703.04885, 1807.02938]

 $\mathscr{P}_{\text{voids}}\left(\delta_{\mathbf{b}};z\right) \sim \text{from simulations}$

"Analytic" PDF Non-linear spherical collapse of $\mathscr{P}_{an}\left(\delta_{b};z\right) = \frac{\widehat{C}\left(\delta_{b}\right)}{\sqrt{2\pi\sigma_{R_{J}}^{2}(z)}} \exp \frac{1}{\sqrt{2\pi\sigma_{R_{J}}^{2}(z)}}$

$\mathscr{P}_{\rm LN}\left(\delta_{\rm b};z\right) = \frac{\left(1+\delta_{\rm b}\right)^{-1}}{\sqrt{2\pi\Sigma^2(z)}}\,{\rm ex}$

Alternative PDF prescriptions

$$xp\left(\frac{\left[\ln\left(1+\delta_{b}\right)+\Sigma^{2}(z)/2\right]^{2}}{2\Sigma^{2}(z)}\right)$$

$$p\left[-\frac{F^2\left(\delta_{\rm b}\right)}{2\sigma_{R_{\rm J}}^2(z)}\right]$$

Cosmic voids PDF

Log-normal PDF

"Analytic" PDF

linear matter field

baryon power spectrum

Log-normal PDF with nonlinear

Non-linear spherical collapse of

Ivanov, Kaurov, Sibiryakov [1811.07913]

PDF of matter underdensities

Adermann et al [1703.04885, 1807.02938]

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

 $\mathscr{P}_{\text{voids}}\left(\delta_{\rm b};z\right) \sim \text{from simulations}$

$\mathscr{P}_{\rm an}\left(\boldsymbol{\delta}_{\rm b};z\right) = \frac{\widetilde{C}\left(\boldsymbol{\delta}_{\rm b}\right)}{\sqrt{2\pi\sigma_{R_{\rm J}}^2(z)}} \exp\left[-\frac{F^2\left(\boldsymbol{\delta}_{\rm b}\right)}{2\sigma_{R_{\rm J}}^2(z)}\right]$

$\mathscr{P}_{\rm LN}\left(\boldsymbol{\delta}_{\rm b};z\right) = \frac{\left(1+\boldsymbol{\delta}_{\rm b}\right)^{-1}}{\sqrt{2\pi\Sigma^2(z)}}\,{\rm ex}$

Alternative PDF prescriptions

$$xp\left(\frac{\left[\ln\left(1+\delta_{b}\right)+\Sigma^{2}(z)/2\right]^{2}}{2\Sigma^{2}(z)}\right)$$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

 $\gamma \rightarrow A'$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

 $\gamma \rightarrow A'$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

$\gamma \rightarrow A'$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

 $\gamma \to A'$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Note: Additional constraints apply when A' is the DM; see papers, also Witte et al [2003.13698]

$\gamma \to A'$

Stronger constraints are possible with a better understanding of larger over/under-densities

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Outline

Dark photons and resonant conversions

Dark photon oscillations with inhomogeneities

Dark photon signatures in 21-cm

Hyperfine splitting of hydrogen 1s:

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Neutral hydrogen (HI) In the intergalactic medium (IGM)

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

 $\omega = \omega_{21}$

 T_{γ}

CMB Source of 21-cm photons

Spin temperature $T_{\rm s}$

$$\frac{n_{\rm t}}{n_{\rm s}} \equiv 3 \exp\left(-\frac{\omega_{21}}{T_{\rm s}}\right)$$

Observation

 $\checkmark T_{b}^{21}$

Neutral hydrogen (HI) In the intergalactic medium (IGM)

 $\omega_{\rm obs} = \frac{\omega_{21}}{1+z}$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

 $\omega = \omega_{21}$

 T_{γ}

CMB Source of 21-cm photons

Spin temperature T_s

$$\frac{n_{\rm t}}{n_{\rm s}} \equiv 3 \exp\left(-\frac{\omega_{21}}{T_{\rm s}}\right)$$

Observation

Neutral hydrogen (HI) In the intergalactic medium (IGM)

$$\omega_{\rm obs} = \frac{\omega_{21}}{1+z}$$

Brightness temperature ΔT_b^{21} $\Delta T_b^{21} \propto x_{\rm HI} \left(1 - \frac{T_{\gamma}}{T_{\rm s}} \right)$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

 $\omega = \omega_{21}$

 T_{γ}

CMB Source of 21-cm photons

Spin temperature T_s

$$\frac{n_{\rm t}}{n_{\rm s}} \equiv 3 \exp\left(-\frac{\omega_{21}}{T_{\rm s}}\right)$$

Observation

$\checkmark T_{b}^{21}$

Neutral hydrogen (HI) In the intergalactic medium (IGM)

$$\omega_{\rm obs} = \frac{\omega_{21}}{1+z}$$

Brightness temperature
$$\Delta T_b^{21}$$

$$\Delta T_b^{21} \propto x_{\rm HI} \left(1 - \frac{T_{\gamma}}{T_{\rm S}} \right)$$

 $T_{\rm s} > T_{\gamma} \implies \Delta T_{\rm b}^{21} > 0$ (emission) $T_{\rm s} < T_{\gamma} \implies \Delta T_{\rm b}^{21} < 0$ (absorption)

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

 $\omega = \omega_{21}$

 T_{γ}

CMB Source of 21-cm photons

Spin temperature T_s

$$\frac{n_{\rm t}}{n_{\rm s}} \equiv 3 \exp\left(-\frac{\omega_{21}}{T_{\rm s}}\right)$$

Observations of the (global) 21-cm signal

Observations of the (global) 21-cm signal

EDGES 21-cm signal (Experiment to Detect the Global EoR Signature)

Bowman et al, Nature (2018)

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

EDGES 21-cm signal (Experiment to Detect the Global EoR Signature)

Bowman et al, Nature (2018)

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Extra 21-cm absorption with new physics

$\Delta T_b^{21} \propto 1 - \frac{T_{\gamma}}{T_s}$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Extra 21-cm absorption with new physics

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Cool baryons

Muñoz & Loeb [1802.10094] Falkowski & Petraki [1803.10096] Barkana [1803.06698] Barkana et al [1803.03091] Berlin et al [1803.02804] Liu et al [1908.06986]

Extra 21-cm absorption with new physics

Heat photons

Pospelov et al [1803.07048] Moroi, Nakayama, Tang [1804.10378] Choi, Seong, Yun [1911.00532]

Cool baryons

Muñoz & Loeb [1802.10094] Falkowski & Petraki [1803.10096] Barkana [1803.06698] Barkana et al [1803.03091] Berlin et al [1803.02804] Liu et al [1908.06986]

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

 \sim

Heating the CMB with dark photon oscillations

Pospelov, Pradler, Ruderman, Urbano [1803.07048]

1. Decay of long-lived particle a (DM) to A'

Heating the CMB with dark photon oscillations

Pospelov, Pradler, Ruderman, Urbano [1803.07048]

1. Decay of long-lived particle a (DM) to A'

2. Resonant conversion of A' to γ

$$A' \sim 10^{-13} - 10^{-9} \,\mathrm{eV}$$

Features in 21-cm from dark photons

Features in 21-cm from dark photons

Features in 21-cm from dark photons

Benchmark 1: signal during cosmic dawn

$$m_{A'} = 10^{-11} \text{ eV}$$

$$m_a = 5 \times 10^{-4} \text{ eV}$$

$$z_{edge} \simeq 660$$

$$z_{end} \simeq 15$$

$$\epsilon = 5 \times 10^{-8}$$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

		_
		_
		-
		_
		-
		-
		-
		-

Benchmark 1: signal during cosmic dawn

$$m_{A'} = 10^{-11} \text{ eV}$$

$$m_a = 5 \times 10^{-4} \text{ eV}$$

$$z_{edge} \simeq 660$$

$$z_{edge} \simeq 15$$

$$\epsilon = 5 \times 10^{-8}$$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

		_
		_
		-
		_
		-
		-
		-
		-

21-cm from the moon?

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Benchmark 2: signatures during dark ages

 $m_{A'} = 3 \times 10^{-13} \,\mathrm{eV}$ $z_{\rm edge} \simeq 95$ $m_a = 2 \times 10^{-5} \,\mathrm{eV}$ $z_{\rm end} \simeq 65$ $\epsilon = 5 \times 10^{-10}$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

		-
		-
		_
		_
		_
		-
		-
		-
		-
		_
		-
		-

Benchmark 2: signatures during dark ages

 $m_{A'} = 3 \times 10^{-13} \,\mathrm{eV}$ $z_{\rm edge} \simeq 95$ $m_a = 2 \times 10^{-5} \,\mathrm{eV}$ $z_{\rm end} \simeq 65$ $\epsilon = 5 \times 10^{-10}$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

		-
		-
		_
		_
		_
		-
		-
		-
		-
		_
		-
		-

Work in progress

Implications for axion-like particles

Mirizzi, Redondo, Sigl [0905.4865]

Work in progress

Implications for axion-like particles

Mirizzi, Redondo, Sigl [0905.4865]

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Effect on CMB and 21-cm anisotropy

Conclusions

$$\prime \rightarrow A'$$

Inhomogeneities can have significant observable effects for resonant photon-to-dark photon conversions

$$A' \to \gamma$$

Resonant dark photon-to-photon conversion can leave striking signatures in 21-cm observations

Conclusions

$$\prime \rightarrow A'$$

Inhomogeneities can have significant observable effects for resonant photon-to-dark photon conversions

$$A' \to \gamma$$

Resonant dark photon-to-photon conversion can leave striking signatures in 21-cm observations

More information

Papers:

- "Dark Photon Oscillations in Our Inhomogeneous" Universe," Caputo, Liu, SM, Ruderman [2002.05165]
- "Modeling Dark Photon Oscillations in Our Inhomogeneous Universe," Caputo, Liu, SM, Ruderman [2004.06733]
- "Edges and Endpoints in 21-cm Observations from Resonant Photon Production," + Pospelov, Urbano [2009.03899]

Codes:

- <u>https://github.com/smsharma/dark-photons-perturbations</u>
- https://github.com/smsharma/edges-endpoints-21cm
- <u>https://github.com/smsharma/twentyone-global</u>

Additional slides

$\epsilon - m_{A'}$ constraints on dark photon dark matter*

Additional constraints apply when the A' is the dark matter

McDermott & Witte [1911.05086]

- Anomalous heating of the IGM during He II reionization is constrained to be < 1 eV
- This constrains the energy injected due to $A' \rightarrow \gamma$ during $2 \leq z \leq 6$

See also Witte et al [2003.13698]

*Assumes energy is uniformly distributed among baryons

Local heating prescription for $A' \text{ DM} \rightarrow \gamma$

Comparison with numerical approach

Bondarenko, Pradler, Sokolenko [2002.08942] Garcia et al [2003.10465]

Resonant oscillations in plasma: Landau-Zener formalism

Non-adiabatic level crossings for two-level quantum system

Resonant oscillations in plasma: Landau-Zener formalism

Non-adiabatic level crossings for two-level quantum system

Similar formalism for neutrino oscillations (MSW effect)

Nonadiabatic Level Crossing in Resonant Neutrino Oscillations

Stephen J. Parke Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (Received 27 May 1986)

Resonant oscillations in plasma: Landau-Zener formalism

$P_{\gamma \rightarrow A'}$ in an inhomogeneous plasma

Conversion along a line of sight

$$P_{\gamma \to A'} \simeq \pi \epsilon^2 m_{A'}^2 \sum_{i} \frac{1}{\omega_i \left(z_{\text{res},i} \right)} \left| \frac{d \ln m_{\gamma}^2(t)}{dt} \right|_{z=z_{\text{res},i}}^{-1}$$

Perturbations in the Photon Plasma Mass

Averaged conversion $P_{\gamma \to A'} \simeq \pi \epsilon^2 m_{A'}^2 \left\langle \sum_i \frac{1}{\omega_i (z_{\text{res},i})} \right|^2$ $d\ln m_{\gamma}^2(t)$ d*t* $z = z_{\rm res.}$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

$P_{\gamma \rightarrow A'}$ in an inhomogeneous plasma

Conversion along a line of sight

$$P_{\gamma \to A'} \simeq \pi \epsilon^2 m_{A'}^2 \sum_{i} \frac{1}{\omega_i \left(z_{\text{res},i} \right)} \left| \frac{d \ln m_{\gamma}^2(t)}{dt} \right|_{z=z_{\text{res},i}}^{-1}$$

Perturbations in the Photon Plasma Mass

Averaged conversion $P_{\gamma \to A'} \simeq \pi \epsilon^2 m_{A'}^2 \left\langle \sum_i \frac{1}{\omega_i (z_{\text{res},i})} \right|^2$ $d\ln m_{\gamma}^2(t)$ d*t* $z = z_{\rm res.}$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Resonant oscillations in photon plasma

Photon plasma mass variance

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

PDF snapshots

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Baryon/electron fluctuations

Simulation-inferred baryon power spectra

Simulation vs analytics comparison

Conversion probabilities

Dependence of total probability on k_{\max}

Redshift and PDF systematics

Constraints on EDGES explanation of model

Pospelov, Pradler, Ruderman, Urbano [1803.07048]

1. Decay of long-lived particle a (DM) to A'

57/41

Constraints on EDGES explanation of model

Pospelov, Pradler, Ruderman, Urbano [1803.07048]

1. Decay of long-lived particle a (DM) to A'

2. Resonant conversion of A' to γ

$$A' \sim X \sim Y \sim Y \sim E$$

Power-law injection of CMB photons

$$T_{\gamma}^{21} = T_{\text{CMB}}(1+z) \left[1 + f_{\text{r}}A_{\text{r}} \left(\frac{\nu_{21}/(1+z)}{78\text{MHz}} \right) \right]$$

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

- Collisional coupling $T_{\rm k} \approx T_{\rm s}$
- Compton scattering effective, $T_{\rm k} \approx T_{\gamma}$
- $\Delta T_{\rm b}^{21} \approx 0$

- Gas adiabatically cools as $(1 + z)^{-2}$
- $T_{\rm s} < T_{\gamma} \implies \Delta T_{\rm b}^{21} < 0$ (absorption)
- Collisional coupling becomes ineffective

• $\Delta T_{\rm b}^{21} \approx 0$

- Collisional coupling $T_{\rm k} \approx T_{\rm s}$
- Compton scattering effective, $T_{\rm k} \approx T_{\gamma}$

• $\Delta T_{\rm b}^{21} \approx 0$

- Gas adiabatically cools as $(1 + z)^{-2}$
- $T_{\rm s} < T_{\gamma} \implies \Delta T_{\rm b}^{21} < 0$ (absorption)
- Collisional coupling becomes ineffective

• $\Delta T_{\rm h}^{21} \approx 0$

- Collisional coupling $T_{\rm k} \approx T_{\rm s}$
- Compton scattering effective, $T_{\rm k} \approx T_{\gamma}$
- $\Delta T_{\rm b}^{21} \approx 0$

- Gas adiabatically cools as $(1 + z)^{-2}$
- $T_{\rm s} < T_{\gamma} \implies \Delta T_{\rm b}^{21} < 0$ (absorption)
- Collisional coupling becomes ineffective
- $\Delta T_{\rm b}^{21} \approx 0$

21-cm temperature evolution

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

 $\Delta T_{\rm b}^{21} \propto x_{\rm HI} \left(1 - \frac{T_{\gamma}}{T_{\rm s}} \right)$

- First stars produce Ly- α photons, couples $T_{\rm s}$ to $T_{\rm k}$
- $\Delta T_{\rm b}^{21} < 0$ (absorption feature)

- X-ray sources (e.g. quasars) heat the gas
- $T_{\rm s} > T_{\gamma}$
- $\Delta T_{\rm b}^{21} > 0$ (emission feature)

21-cm temperature evolution

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

- First stars produce Ly- α photons, couples T_s to T_k
- $\Delta T_{\rm b}^{21} < 0$ (absorption feature)

- X-ray sources (e.g. quasars) heat the gas
- $T_{\rm s} > T_{\gamma}$
- $\Delta T_{\rm b}^{21} > 0$ (emission feature)

21-cm temperature evolution under perfect W-F coupling

21-cm public code

https://github.com/smsharma/twentyone-global

- Lightweight code to model global 21-cm signal
- Simple models of astrophysical (UV/X-ray) emission
- Easy to add extra sources of photons

•	smsharma Updated readme	4485578 on Sep 9	🕚 14 commits
	data	Basic repo structure and code	3 months ago
	notebooks	Updated to arXiv version	2 months ago
	twentyone	Merge branch 'master' of https://github.com/smsharma/twentyone	2 months ago
D	.gitignore	Basic repo structure and code	3 months ago
D	LICENSE	Initial commit	3 months ago
D	README.md	Updated readme	2 months ago
ß	environment.yml	Updated to arXiv version	2 months ago

README.md

twentyone-global

Simplified framework for modeling the global 21-cm absorption signal, with a focus on studying the implications of non-standard 21-cm CMB temperature evolution. For details about the modeling, see 2009.03899.

Siddharth Mishra-Sharma (NYU) | BSM PANDEMIC

Ø

