Utilizing the causal spectrum of GWs to probe free streaming particles and the cosmological expansion with Anson Hook, Gustavo Marques-Tavares (U. of Maryland) arXiv: 2010.03568

Davide Racco

Perimeter Institute for Theoretical Physics

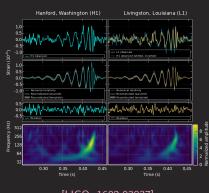
BSM Pandemic

4th Dec. 2020

The era of Gravitational Wave astronomy

- 2015 marked the beginning of the era of GW astronomy.
- GW150914: first measurement of GWs from a Binary Black Hole merger!

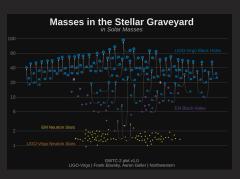
VIRGO

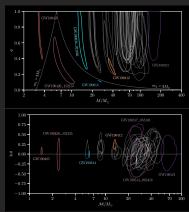


[LIGO, 1602.03837]

The era of Gravitational Wave astronomy

 The detection of many more mergers of compact objects allows us to study the properties of black holes, neutron stars in an unprecedented way.

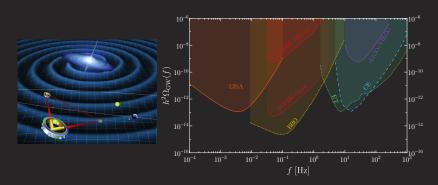




• Exciting prospects regarding astrophysical BHs, binary formation, H_0 measurements, BH superradiance, astro vs primordial BHs, . . .

Stochastic Gravitational Wave Background

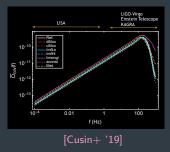
- One of the next frontiers in this exciting era is the search for a stochastic GW background, analogous to the CMB.
- Present upper limit from LIGO on stochastic GW background: $\Omega_{\rm GW}(10-100~{\rm Hz}) < 1.7\cdot 10^{-7}~[1612.02029]$
- Future space-based experiments will extend the reach in GW frequencies down to $0.1\ \mathrm{mHz}.$

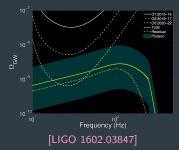


Stochastic GW Backgrounds in SM + Λ CDM

Astrophysical background: binary BH mergers

Unresolved sources lead to a stochastic background. From stellar-mass BBHs: within reach of LIGO-VIRGO.





Distinguishing features: tilt +2/3 at low f, and peculiar frequency dep. of anisotropy spectrum. [Bartolo+ '19; Cusin+ '19; Hotinli+ '19]

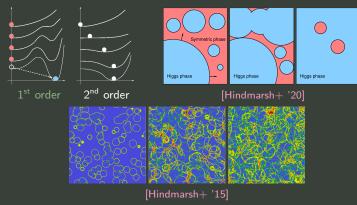
Primordial GWs from inflation

The primordial tensor modes generated by inflation are below $\Omega_{\rm GW} \lesssim 10^{-15}$ for the presently allowed value of r (and flat spectrum) \Longrightarrow unobservable.

Stochastic GW Backgrounds: BSM

Phase transitions

Cosmological phase transitions of the $1^{\rm st}$ order source GWs.



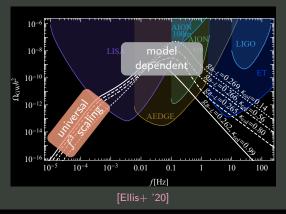
In the SM, both EW and QCD phase transitions are of 2^{nd} order, but new physics can generically display 1^{st} order phase transitions.

Stochastic GW Backgrounds: BSM

First Order Phase transitions

GWs can be generated by three sources:

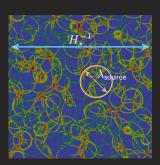
- bubble collisions (dynamics of the scalar field);
- sound waves in the plasma;
- turbulences in the plasma.



Causality-limited GWs

- The scaling as f^3 at low frequencies is a universal feature (assuming RD). [Caprini+ '09]
- What is the physical origin of this general behaviour?

Causality prevents local phenomena from being correlated beyond H^{-1} .



• Source $\Pi_{ij}(x)$ of GWs has a correlation length $\lambda_{\text{source}} \ll H_{\star}^{-1}$:

$$\begin{split} \langle \Pi(0) \; \Pi(d \gg \lambda_{\text{source}}) \rangle &= 0 \; \Rightarrow \\ \langle \widetilde{\Pi}(k) \; \widetilde{\Pi}(-k) \rangle &\stackrel{k \ll \lambda_{\text{source}}^{-1}}{\Longrightarrow} \; \text{constant} \end{split}$$

- The spectral tilt at low f does not depend on the source.
- Wavelengths which were super-horizon are not sensitive to the details of the generation, but only to the universe expansion and the GW propagation.

Causality-limited GWs $\Longrightarrow k^3$ scaling

We consider GWs for which

wavelength $k^{-1} \gg$ corr. length of the source λ_{source}

period $f^{-1}\gg$ duration of the phase transition eta^{-1}

• Eq. of motion for the GW $h_{ij}^{(+, imes)}(k, au)\equiv h$:

$$\partial_{\tau}^{2}h + 2\mathcal{H}\,\partial_{\tau}h + k^{2}h = 4\mathcal{H}^{2}\Pi(k,\tau) = J_{\star}\delta(\tau - \tau_{\star})$$

approximating the source as instantaneous and constant at small k.

The solution in a radiation-dominated universe is

$$h(\tau) = \frac{a_{\star}}{a}$$
 $J_{\star} \sin k(\tau - \tau_{\star})$

• The spectrum of Ω_{GW} at low frequencies is

$$\frac{\mathrm{d}\,\Omega_{\mathrm{GW}}}{\mathrm{d}\ln k} \sim \underbrace{k^3}_{\mathrm{phase \; space}} \cdot \underbrace{k^2}_{\rho_{\mathrm{GW}} \sim h'^2} \cdot \underbrace{\frac{1}{k^2}}_{\mathrm{for \; RD}} \cdot \underbrace{P_{\Pi}(k)}_{k \; \mathrm{ind. \; from \; causality}} \sim k^3 \; .$$

Utilizing the causality-limited spectrum

- Causality (absence of correlation beyond Hubble for local processes) is precisely what makes the source J_\star independent from k for $k \ll \lambda_{\text{source}}^{-1}$.
- The universality of the spectrum at low frequencies for causality-limited processes makes it an exciting tool to study our universe.
 [Hook, Marques-Tavares, DR 2010.03568]
- Phase transitions are the key example, but also preheating and GWs at 2nd order from peaks in the scalar perturbations are possible causality-limited scenarios.
- What can we extract from it?
- How can we physically understand the f^3 scaling?
- What can alter the propagation of GWs and hence their causality-limited spectrum?
- How is the expansion history of the Universe influencing the causality-limited spectrum?

Causality-limited spectrum: physical understanding

 We investigate the physical origin of the k scaling of causality-limited GWs:

$$h(au) = rac{a_{\star}}{a}$$
 \int_{\star} $\sin k(au - au_{\star})$

• The eq. of motion right after τ_{\star} is

$$\partial_{\tau}^{2}h + 2\mathcal{H}\,\partial_{\tau}h + k^{2}h = 4\mathcal{H}^{2}\Pi(k,\tau) = J_{\star}\,\delta(\tau - \tau_{\star})$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

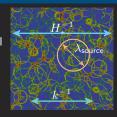
$$\partial_{\tau}^{2}h + 2\mathcal{H}\,\partial_{\tau}h + k^{2}h = 0, \qquad \begin{cases} h(\tau_{\star} + \epsilon) = 0\\ \partial_{\tau}h(\tau_{\star} + \epsilon) = J_{\star} \end{cases}$$

 The sudden beat given to the oscillator imprints a velocity and zero displacement to the wave, similarly to a hammer hitting on a string.

Causality-limited spectrum: sub-horizon modes

Sub-horizon modes $\lambda_{\text{source}}^{-1} \gg k \gg \mathcal{H}_{\star}$

 Modes which are sub-horizon at generation (but still beyond the correlation length of the source) are under-damped



$$\partial_{\tau}^{2}h + 2\mathcal{H}\,\partial_{\tau}h + k^{2}h = 0$$

• The solution is a frictionless oscillation, whose amplitude red-shifts as 1/a:

$$h(\tau) pprox rac{a_{\star}}{a} \underbrace{rac{1}{k}}_{ ext{sub-hor.}} J_{\star} \sin k(\tau - \tau_{\star})$$

- Apart from the redshift, the eq. of state w of the universe does not enter.
- Sub-horizon modes are insensitive to the expansion rate.
- The corresponding Ω_{GW} is

$$rac{\mathrm{d}\,\Omega_{\mathrm{GW}}}{\mathrm{d}\ln k} \sim \underbrace{k^3}_{\mathrm{phase \ space}} \cdot \underbrace{k^2}_{
ho_{\mathrm{GW}}\sim h'^2} \cdot \underbrace{rac{1}{k^2}}_{\mathrm{sub-hor.}} \cdot P_{\Pi}(k) \sim k^3 \,.$$

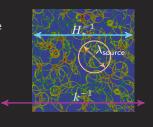
Causality-limited spectrum: super-horizon modes

Super-horizon modes $k \ll \mathcal{H}_{\star}$

Super-horizon modes are over-damped: Hubble friction prevails.

$$\partial_{\tau}^{2}h \left(+2\mathcal{H}\,\partial_{\tau}h \right) + k^{2}h = 0$$

$$\begin{cases} h = 0 \\ h' = J_{\star} \end{cases} \longrightarrow \begin{cases} h = \frac{J_{\star}}{\mathcal{H}_{\star}} \\ h' = 0 \end{cases} \longrightarrow \text{frozen}$$



- The dependence on ${\cal H}$ along the whole super-horizon phase explains why they are a tool to study the Universe expansion.
- After Hubble crossing at $\mathcal{H}(\tau_k) = k$, h starts redshifting and oscillating:

$$h \approx \frac{a(\tau_k)}{a} \frac{J_{\star}}{\mathcal{H}_{\star}} \sin k\tau$$

Causality-limited spectrum: super-horizon modes in RD and beyond

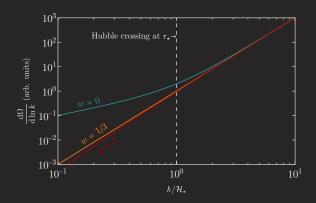
Two effects impact super-horizon modes.

 $\Omega_{\sf GW} \sim k^3$ (sub-horizon)

$$\Omega_{\sf GW} \sim k^{5-2n} = egin{cases} k^3 & {\sf RD} \ k & {\sf MD} \end{cases}$$
 (super-horizon)

Transition from sub-horizon to super-horizon

- To confirm these estimates, we solve the full eq. of motion, getting Bessel functions $j_{n-1}(k\tau)$, $y_{n-1}(k\tau)$.
- Notice the change in slope appearing at $k=\mathcal{H}_{\star}$, the conformal Hubble at the phase transition.



Propagation of GWs: effect of relativistic free-streaming particles

- What can alter the propagation of GWs and hence their causality-limited spectrum?
- An important effect for the GW spectrum, also known as Weinberg damping [Weinberg '04], concerns the impact of free-streaming (FS) particles on the GW propagation.

• GWs are sourced by the anisotropic component π_{ij} of the stress tensor:

$$h_{ij}'' + 2\mathcal{H}h_{ij}' + k^2 h_{ij} = 4\mathcal{H}^2 \pi_{ij}$$

- FS particles travel distances $\sim H^{-1}$ along geodesics, and are affected by passing GWs.
- In turn, FS particles react on the GWs by acting as a small friction term: $\pi_{ij} \propto h'_{ij}$.
- The effect is active as soon as $h' \neq 0$ and decreases in time as the particles' momenta redshift.
- Only relativistic FS particles have an impact, $T_{ij} \sim p_i p_j$.

Weinberg damping in the SM

- In the SM, the only FS species are neutrinos after their decoupling around $T\sim 2$ MeV, and they contribute with $f_{\nu}=\frac{\rho_{\nu}}{\rho_{\rm tot}}=0.4.$
- In the case of primordial GWs, they were frozen (h'=0) until horizon-entry. The damping is effective as the mode crosses the horizon and starts oscillating.
- The eq. of motion is [Weinberg '04]

$$h'' + 2\mathcal{H}h' + k^2h = -24\int_{\tau} \mathcal{H}^2 \int_{\tau_0}^{\tau} K(k(\tau - \tilde{\tau})) h'(\tilde{\tau}) d\tilde{\tau}$$
$$K(s) = \frac{3\sin s}{s^5} - \frac{3\cos s}{s^4} - \frac{\sin s}{s^3}$$

 In the SM, this effect is frequency independent and reduces the GW amplitude by 0.8:

$$\Omega_{\mathsf{GW}}(k) \longrightarrow 0.64 \, \Omega_{\mathsf{GW}}(k)$$

Weinberg damping for phase transitions

- For phase transitions (fast GW source), there is a further effect at generation, if some new FS particles (f_{FS}) are present at early times $(T_{\star} \gg \text{MeV})$.
- Initial condition for fast sources: $egin{cases} h(au_\star) = 0 \\ h'(au_\star) = J_\star \end{cases}$
- In the super-horizon limit $k \to 0$, the eq. of motion simplifies: $K(s) \to \frac{1}{15}$, and the integral is solved to

$$h'' + 2\mathcal{H}h' + \left(k^2 + \frac{8f_{\text{FS}}}{5}\mathcal{H}^2\right)h = 0$$

Sub-horizon modes $k \gg \mathcal{H}_{\star}$ at generation: both Hubble friction and Weinberg damping are negligible.

$$h^{\prime\prime}+2\mathcal{H}h^{\prime}+\left(\boxed{\pmb{k^2}}+\frac{8f_{\rm FS}}{5}\mathcal{H}^2\right)h=0$$

These modes are unaffected by damping \Rightarrow feature at $k = \mathcal{H}_{\star}$.

Weinberg damping for phase transitions

Super-horizon modes $k \ll \mathcal{H}_{\star}$: these modes are damped by Hubble friction, and the Weinberg term determines whether they are over- or under-damped.

$$h'' + \underbrace{2\mathcal{H}h'}_{\text{friction}} + \underbrace{\left(k^2 + \underbrace{\frac{8f_{\text{FS}}}{5}\mathcal{H}^2}\right)h}_{\text{friction}} = 0$$

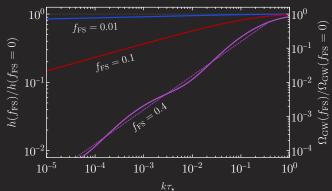
- Over-damped: (friction)² \gg (mass)², or $f_{\rm FS} \ll 1$. The mode does not oscillate while super-horizon, and its amplitude is dampened compared to the case $f_{\rm FS}=0$.
- **Under-damped**: $(friction)^2 < (mass)^2$, or $f_{FS} > 16\%$. The Weinberg term is so large to induce oscillations while super-horizon. On top of the damping, oscillations appear in the spectrum.

Free-streaming particles

In presence of rel. FS particles at the phase transition, the GW spectrum changes tilt below $k<\mathcal{H}_{\star}$:

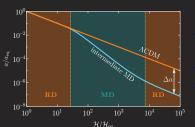
$$\frac{\Omega_{\rm GW}^{(f_{\rm FS})}}{\Omega_{\rm GW}} \sim \begin{cases} k^{\frac{16f_{\rm FS}}{5}} & f_{\rm FS} < \frac{5}{32} \\ k \Big[c_1 + c_2 \sin \left(\sqrt{\frac{32}{5} f_{\rm FS} - 1} \, \ln(k\tau_\star) + c_3 \right) \Big] & f_{\rm FS} > \frac{5}{32} \end{cases} \label{eq:gamma_GW}$$

 \bullet Current bounds $\Delta N_{\rm eff} < 0.3$ allow for $f_{\rm FS} \sim 9\%$ at early times.



Probing the cosmological expansion with causal GWs

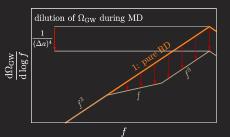
- 9 How is the expansion history of the Universe influencing the causality-limited spectrum?
- Alternative expansion histories imply two modifications:
 - Change the shape of the GW spectrum for modes which are super-horizon at generation;
 - 2 Change the rescaling between comoving modes k and physical frequencies f=k/a.



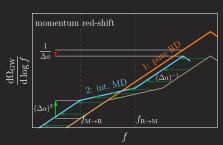
- We consider an intermediate MD era:
 - case 1: only RD
 - case 2: $RD \rightarrow intermediate MD \rightarrow RD$.
- The transition from RD to MD happens due to some non rel. species taking over.
- This species later decays into radiation.
- The scale factor has an overall difference

$$\Delta a = \left(\frac{T_{\mathsf{R} \to \mathsf{M}}}{T_{\mathsf{M} \to \mathsf{R}}}\right)^{1/3} > 1$$

Intermediate phase of MD



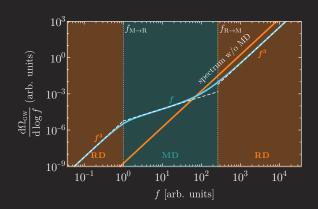
- GW modes that were sub-horizon during MD redshift more in case 2:
 a expands more.
- \Rightarrow suppression $(\Delta a)^{-4}$ at high f.
- Modes which enter after M→R have the same evolution in the two cases.
- The intermediate range interpolates between the two, with $\Omega_{\rm GW} \sim k$.



- The physical frequency f=k/a is moved to lower values in case 2, because of the larger redshift: $f \to f/(\Delta a)$.
- Given the tilt f^3 , this implies that low frequency modes have an overall boost of $(\Delta a)^3$.
- The net effect for high frequencies is a suppression $(\Delta a)^{-1}$.

Intermediate phase of MD

- The numerical solution confirms these scalings.
- The low-frequency range (which could be the only one potentially accessible for GWs from reheating) is made more visible by a MD phase.



Measuring $w(\tau)$?

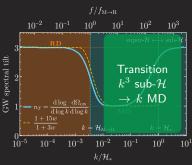
ullet The GW spectrum for super- ${\cal H}$ modes and ${\it constant}\ w$ is

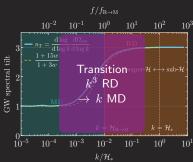
$$\Omega_{\rm GW}(k) \sim k^{5-2n} = k^{\frac{1+15w}{1+3w}}$$

• $w(\tau)$: for each k we identify w with its value at Hubble crossing. If $w'(\tau) \ll \mathcal{H}$,

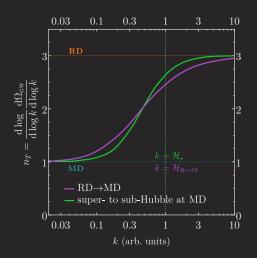
$$\text{GW tilt } = \frac{\mathrm{d} \log \Omega_{\text{GW}}(k)}{\mathrm{d} \log k} \approx \frac{1 + 15 w(\tau)}{1 + 3 w(\tau)} \,.$$

• The agreement ends up being quite good, although approximate.





Measuring $w(\tau)$?



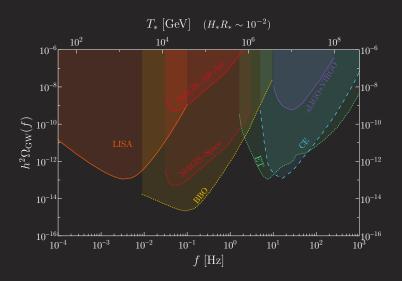
• It seems difficult in practice, but it could still be possible.

Conclusions

- GWs generated by causal phenomena (uncorrelated beyond H^{-1}), such as a phase transition, are insensitive to the details of the generation.
- The universal behaviour of the causal spectrum makes it an attracting tool to explore the cosmology of the early universe.
- Deviations from the prediction of f^3 would robustly signal new physics.
- Causal modes can be understood in simple physical terms, which highlight the impact of modifications of the cosmological model.
- lacktriangledown The presence of extra free-streaming species could be read off from the GW spectrum, and cross-checked with measurements of $\Delta N_{\rm eff}.$
- Intermediate phases of MD, which can arise in modifications of ΛCDM, amplify the GW signal at low frequencies.
- Various phenomena could imprint a change of tilt around $k=\mathcal{H}_{\star}$, potentially allowing to measure the conformal Hubble rate around the phase transition.

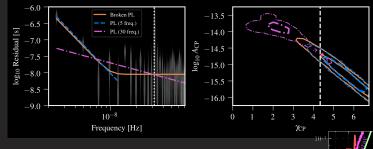
1. BACKUP SLIDES

Temperature of the phase transition

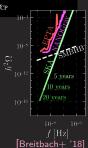


Stochastic Gravitational Wave Background

 At present there is a very interesting result from the NANOGrav collaboration (using Pulsar Timing). [NANOGrav 2009.04496]



- It's soon to tell the origin of this red-noise process:
 - Improperly modelled source of systematic noise;
 - SGWB from the mergers of supermassive BHs;
 - SGWB from new physics.
- Regardless, we could witness in the near future the discovery of a stochastic background of GWs!



Causality-limited spectrum: scaling during RD

Radiation domination

Super-horizon modes: $\mathcal{H}\sim rac{1}{ au}\sim rac{1}{a}$ and they enter the horizon at $\mathcal{H}(au_k)=k$, so

$$h \approx \frac{a(\tau_k)}{a} \frac{J_{\star}}{\mathcal{H}_{\star}} \sin k\tau = \frac{a_{\star}}{a} \frac{J_{\star}}{k} \sin k\tau$$

- They match precisely the sub-horizon solution!
- The reason is that two competing effects precisely cancel during RD:
 - Suppression $\frac{k}{\mathcal{H}_+}$ due to exciting over-damped mode;
 - $ext{@ Boost of } \overbrace{a_\star^{(au_k)}}^{a(au_k)} ext{ due to mode being frozen while super-horizon} \xrightarrow{ ext{RD}} \dfrac{\mathcal{H}_\star}{k}.$
- As a result, for the standard case of a phase transition during RD, there are no features around $k \sim \mathcal{H}_{\star}$.
- All modes have an amplitude $rac{1}{k}$, and $\Omega_{ extsf{GW}} \sim k^3.$

Causality-limited spectrum: scaling for generic \boldsymbol{w}

Generic equation of state $a \sim au^n$

- Generic equation of state: $a\sim au^n$ where $n=rac{2}{1+3w}$ is 1 for RD, 2 for MD.
- Super-horizon modes: $\mathcal{H} \sim rac{1}{ au} \sim rac{1}{a^{1/n}}$ so

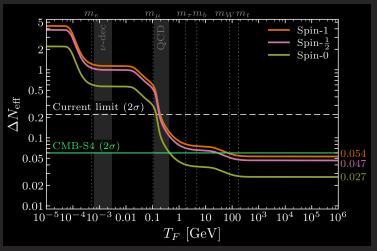
$$h pprox rac{a(au_k)}{a} rac{J_{\star}}{\mathcal{H}_{\star}} \sin k\tau = rac{a_{\star}}{a} \left(rac{\mathcal{H}_{\star}}{k}
ight)^{n-1} rac{J_{\star}}{k} \sin k au$$

- For $n \neq 1$ the scaling is not 1/k like sub-horizon modes.
- Physically, the boost in amplitude due to the mode being frozen is $\left(\frac{\mathcal{H}_*}{k}\right)^n$, which for MD is larger than the suppression $\frac{k}{\mathcal{H}_*}$ due to over-damping.
- The conformal time before horizon-entry is the same (from \mathcal{H}_{\star} to k), but the expansion of a during that time is different.
- The spectral tilt is then

$\Omega_{\sf GW} \sim k^3$ (sub-horizon)

$$\Omega_{\mathsf{GW}} \sim k^{5-2n} = egin{cases} k^3 & \mathsf{RD} \ k & \mathsf{MD} \end{cases}$$
 (super-horizon)

Measurement of $\Delta N_{ m eff}$



[CMB-S4 Science report 1907.04473]

Schematic derivation of Weinberg damping

[Weinberg '04; Watanabe, Komatsu '06]

ullet GWs are sourced by the anisotropic component π_{ij} of the stress tensor:

$$h''_{ij} + 2\mathcal{H}h'_{ij} + k^2 h_{ij} = 4\mathcal{H}^2 \pi_{ij}$$

$$T_{ij} = p g_{ij} + a^2 \pi_{ij}, \qquad T_{ij}^{(\nu)} = \frac{1}{\sqrt{-a}} \int \frac{\mathrm{d}^3 q}{a^0} q_i q_j F^{(\nu)}(q)$$

- The ν phase space distribution F(x,p) is obtained from the collisionless Boltzmann (i. e. Vlasov) equation.
- By decomposing $F(x,p)=\overline{F}(p)+\delta F(x,p)$ where $\overline{F}(p)$ is the equilibrium distribution, and keeping 1st order terms in perturbation theory:

$$0 = \frac{\mathrm{d}F}{\mathrm{d}t} = \frac{\partial F}{\partial \tau} + \frac{\mathrm{d}x^i}{\mathrm{d}t} \frac{\partial F}{\partial x^i} + \frac{\mathrm{d}p^0}{\mathrm{d}t} \frac{\partial F}{\partial p^0}$$

• The last term is obtained from the geodesic equation:

$$\frac{\mathrm{d}p^{\mu}}{\mathrm{d}\lambda} = -\Gamma^{\mu}_{\alpha\beta}p^{\alpha}p^{\beta} \implies \frac{1}{p^{0}}\frac{\mathrm{d}p^{0}}{\mathrm{d}t} = -H - \frac{1}{2}\left[\frac{\partial h_{ij}}{\partial t} \frac{p^{i}p^{j}}{(p^{0})^{2}}\right]$$

As ν 's propagate in a FRW universe with GWs, they lose (or gain) energy depending on the sign of h'.

 \bullet δF is computing by integrating the Boltzmann eq. over time, and the result is

$$h'' + 2\mathcal{H}h' + k^2 h = -24 f_{\nu} \mathcal{H}^2 \int_{\tau_0}^{\tau} d\tau' \frac{j_2 [k(\tau - \tau')]}{k^2 (\tau - \tau')^2} h'(\tau')$$