The separate universe from low to high densities

Drew Jamieson

C. N. Yang Institute for Theoretical Physics Stony Brook University

D. J. and M. Loverde arXiv:1812.08765
D. J. and M. Loverde arXiv:1909.05313
D. J. and M. Loverde (in preparation)

 $\overline{\text{BSM}}$ Pandemic, 2020

Goals for large scale structure

Challenges for large scale structure

What we predict	What we observe
\rightarrow matter field	\rightarrow galaxies
\rightarrow perturbation theory	\rightarrow volds
\rightarrow simulations	\rightarrow intesity maps

For example, for the power spectrum

 $\left< \delta(\vec{k}) \delta(\vec{k}') \right> = (2\pi)^3 \delta_D^3(\vec{k} + \vec{k}') P(k)$

Drew Jamieson, Stony Brook University

The matter field

Halos in the matter field

Matter + halos

Voids in the halo field

Matter + halos + voids

Local observables in the matter field

Underdense region:

- \rightarrow Fewer massive halos
- \rightarrow More large voids
- \rightarrow Lower power

Overdense region:

- \rightarrow More massive halos
- \rightarrow Fewer large voids
- \rightarrow Higher power

Separate universe simulations

Linear mode \rightarrow shift in background, Run p

Run pairs of simulations,

$$\bar{\rho}_{su} = \bar{\rho} \left(1 + \delta_L \right)$$

 $a_{su} = a\left(1 - \frac{1}{3}\delta_L\right)$

 $H_{su}(a_{su}|\pm\delta_L)$

Measure the response of small-scale observables,

Li, Hu, Takada arXiv:1401.0385 Wagner, Schmidt, Chiang, Komatsu arXiv:1409.6294

Local halo mass function \rightarrow halo bias

Li, Hu, Takada arXiv:1511.01454 Baldauf, Seljak, Senatore, Zaldarriaga arXiv:1511.01465

Local void size function \rightarrow void bias

D. J. and M. Loverde arXiv:1909.05313 Chan, Li, Biagetti, Hamaus arXiv:1909.03736

Advantages of the separate universe

- \rightarrow Only need to know evolution of linear mode δ_L
- \rightarrow Small scale physics is simulated using standard N-body codes
- \rightarrow Include beyond $\Lambda {\rm CDM}$ physics through effects on δ_L

Massive neutrino cosmologies

Chiang, Hu, Li, Loverde arXiv:1609.01701

Dynamical dark energy fluctuations

Chiang, Hu, Li, Loverde arXiv:1710.01310

D. J. and M. Loverde arXiv:1812.08765

Radiation

C. Shiveshwarkar, D. Jamieson, M Loverde (in preparation)

Dark energy perturbations and scale dependent growth

Gordon, Hu arXiv:0406496

Scalar field dark energy with sound speed c_Q ,

$$\mathcal{L}_Q = \frac{2c_Q^2 \Lambda}{1 + c_Q^2} \left(-\frac{1}{2\Lambda} g^{\mu\nu} \nabla_\mu Q \nabla_\nu Q \right)^{\frac{1 + c_Q^2}{2c_Q^2}} - V(Q)$$

Drew Jamieson, Stony Brook University

Scale dependent bias from quintessence isocurvature

Clustering dark energy perturbations \rightarrow scale dependent matter growth \rightarrow scale dependent bias

Can predict k-dependence of bias from effect on <u>linear</u> power spectrum

Drew Jamieson, Stony Brook University

Effects of new physics on large scale structure may be small

- 1) How do we obtain optimal constraints?
- 2) Which regions/features/environments are most sensitive?

3) How do long wavelength modes affect the small scale density field?

The matter density PDF

 $\rho(\vec{x})/\bar{\rho} = 1 + \delta(\vec{x})$

Density field smoothed over radius R.

Estimate probability distribution function (PDF),

$$\mathscr{P}(1+\delta)$$

Underdense region: \rightarrow Reduced clustering \rightarrow Narrower distribution

Overdense region:

- \rightarrow Enhanced clustering
- \rightarrow Broader distribution

D. J. and M. Loverde (in preparation)

Drew Jamieson, Stony Brook University

PDF response from separate universe simulations

Model from,

Ivanov, Kaurov, Sibiryakov arXiv:1811.07913

 10^{0} z = 0.0 $z \pm 0.5$ z = 1.0 $\otimes 10^{-1}$ Simulations 10^{-4} Model 10 $R_{\mathscr{P}}$ 10^{-1} 10^{0} $10^{h}0^{-1}$ 10^{0} $10^{h}10^{-1}$ 10^{0} 10^{1} $1 + \delta$ $1 + \delta$ $1 + \delta$ Drew Jamieson, Stony Brook University 17/17

D. J. and M. Loverde (in preparation)

 \rightarrow Effects of beyond ACDM physics may be detectable on large scales through scale dependent bias

 \rightarrow These effects can be characterized using separate universe simulations

 \rightarrow We have made the first measurement of the separate universe response of the matter density PDF in simulations

 \rightarrow This new observable may be useful for obtaining optimal constraints on cosmological parameters

Thank you!