Topological Gravity as the Early Phase of our Universe

Georges Obied

Harvard University

Based on arXiv: 2009.10077 [hep-th]

With Prateek Agrawal, Sergei Gukov and Cumrun Vafa

Outline

- Motivation
 - Dualities
 - String Gas Cosmology
- Topological Scenario
- Phenomenology: Comparison With Inflation
- An Analogy With QCD

Motivation: Dualities

- Ubiquitous in string theory
- Essential when parameters are taken to extreme limits
- No effective theory is valid in all of parameter space
- New light modes appear in extreme limits

Early Universe is an extreme limit

 $T \to \infty, \quad a \to 0$

Therefore:

It is natural to expect that there is a dual description for early universe

Motivation: String Gas Cosmology

[Brandenberger, Vafa '89] [Tseytlin, Vafa '92] ...

Motivated by T-duality:

$$p = n/L, w = mL$$

 $L \leftrightarrow 1/L, n \leftrightarrow m$

p

Motivation: String Gas Cosmology

The early universe is x-independent (i.e. topological) from the point of view of the operators relevant today.

Duality in the Early Universe

- This holds more generally than in the T-duality
- Suppose we have two phases/frames (call them I and II)
- We do not know the nature of phase I but we know it is topological from our perspective

Topological Theory

- Even gravity is topological since the graviton of phase I is different from the graviton of phase II
- Horizon problem (homogeneity) is automatically solved but because the topological theory is not sensitive to positions
- For other aspects we need to know more about the topological phase
- Consider Witten's 4d topological gravity as one realization [Witten '88]

Comparison with Inflation

	Inflation	Topological Scenario
Homogeneity/Isotropy/ Flatness	dS bkg	Topological phase
(Near) Scale-inv.	(quasi-)dS bkg	(Weakly-broken) Topological phase
Red Tilt	Decreasing Hubble parameter	Positivity of conformal anomaly coefficient <i>c</i> (due to unitarity)
Non-Gauss.	$O(\epsilon)$ in simple models*	<i>O</i> (1) for four- and higher-point functions*
Tensor modes	Present due to massless graviton	Absent since graviton is not dynamical in topological phase

No spin-1 gauge bosons

2 spin-1 gauge bosons

(cf. EFT of inflation)

[Cheung et al. '08]

Conclusions

String theory dualities lead us to believe that the early universe is described by a dual theory

Early universe looks topological from our perspective; in particular it is not sensitive to our position variable

Taking Witten's 4d topological gravity as a realization, we addressed the puzzles of cosmology

Future directions:

- Other realizations of topological gravity in 4D
- Deeper understanding of the breaking of topological invariance
- Non-Gaussianities: develop tools to more systematically compute them.

Thank You!