

Multidisciplinary Laboratory ECAL2 Data Analysis

Werner Florian

Overview

- DPP Strategy for high resolution amplitude measurements
- Ideal pulse model
 - Pulses classification criteria
 - Single pulse model
 - Pulse plus reflection model
 - Improved pulse model
- Noise analysis
 - Burst regime qualitative description
 - FFT
 - Autocorrelation

Digital Pulse Processing Strategy for High Resolution Amplitude Measurement

Data alignment

- Data is obtained by 2 ADCs interleaved
- Each ADC has a different offset

$$\overline{x_{odd}} - \overline{x_{even}} = d$$

d is subtracted form x_{even} and a new signal is created with its values aligned

International Centre for Theoretical Physics

Some Typical Pulses

• Triangular

Truncated

• Gaussian like

Multidisciplinary Laboratory

Pulses Selection Criteria

The Abdus Salam

CT

International Centre for Theoretical Physics

Run: 86372 Spill: 201 Event: 18951 Cell: 58 0 • Barycenter position: 65 60 Value must be between lower and higher 55 limits 15 25 $l_{inf} < B < lsup;$ where Baryceter $B = \frac{\sum i_j A_j}{\sum A_j}$ Run: 86372 Spill: 201 Event: 19155 Cell: 53 9 60.0 • Means difference: 57.5 X_0 55.0 52.5 This is used to reject negative pulses X_1 10 15 20

$$\overline{X_0[8:24]} - \overline{X_1[0:8,24:32]} > threshold$$

Fitting Model : CR-RC^N Shaper Single Pulse

•
$$F(t, t_0, \tau, off, a, N) = \begin{cases} off , t < t_0 \\ off + a \frac{e^N \left(\frac{(t-t_0)}{\tau}\right)^N e^{-\frac{(t-t_0)}{\tau}}}{N^N}, t \ge t_0 \end{cases}$$

off := offset $t_0 := time of arrival$ a := amplitude $\tau := exponential time$ N := order

Fitting results

Fitting Model: Main Pulse Plus Reflection

Fitting results

11

N value analysis

• Fit with fixed N: $\{1,..,12\}$ vs Accumulated x^2 of all fits

Multidisciplinary Laboratory

Tau vs N

10

15

7.5

5.0

2.5

0.0

5

Amp, Mean: 61.15

25

20

15

0.6

0.4

0.2

0.0

•

•

ò

15

Issues

- Not ideal data (muon runs)
- Poor fit on pulse rising time

Proposals

- New model
- New hadronic data

INFN International Centre for Theoretical Physics

Multidisciplinary Laboratory

Overlay Plots

Both plots on ADC counts vs sample

Trieste - Italy

Overlay plots from previously categorized channels

Both plots on ADC counts vs sample

Trieste - Italy

International Centre for Theoretical Physics

Multidisciplinary Laboratory

New model

INFN

New model hints:

• Consideration of non ideal charge sensitive amplifier:

New time constant

$$\tau_d = \tau_i = \tau ; \ \tau_r = \frac{\tau}{2}$$

Required normalization

$$norm(\tau) = e^{-\frac{4\left(\tau + \tau * ProductLog\left[\frac{1}{e}\right]\right)}{\tau}} \left(-2\tau^{2} + e^{\frac{2\left(\tau + \tau * ProductLog\left[\frac{1}{e}\right]\right)}{\tau}} \left(2\tau^{2} - 4\tau\left(\tau + \tau * ProductLog\left[\frac{1}{e}\right]\right) + 4\left(\tau + \tau * ProductLog\left[\frac{1}{e}\right]\right)^{2}\right)\right)$$

On red the reduced chi-square, green the Bayesian information criterion, yellow Akaike information criterion.

TO

Offset

Thanks for your attention

INFN INFN International Centre for Theoretical Physics

Multidisciplinary Laboratory

Experimental Setup at CERN

Oscilloscope connected to PMT output of ECAL2.

Oscilloscope connected to shaper output

Shaper board

Analog Persistence

SoC-FPGA Oscilloscope

LabView GUI Plot of acquired data from CIAA+ADC500.

Data is plotted in real time on a PC via Ethernet.

Pulses before Shaper

Signals sampled at 250MSPS

Time (ns)

Spectrum of Signal Before Shaper

Spectrogram of a Slice of the Signal before Shaper

Pulses After Shaper

Time (ns)

Spectrum of Signals after Shaper

Decimation factor: 2, Effective sampling frequency: 250 Mhz

Spectrogram of a Slice of the Signal after the Shaper

Noise Analysis after Shaper

Burst and Baseline noise Comparison

 $^{2.0 \}times 10^{7}$ 4.0×10^{7} 6.0×10^{7} 8.0 × 10⁷ 1.0×10^{8} 1.2×10^{8}

Burst Noise Comparison In Two Different Traces In Frequency Domain

Both are 15KS in length and 250MSPS effective

	RMS	STD	Peak-to-peak
Red	80.407	1.699	32
Blue	79.395	1.742	30

Frequency (MHz)

Comparison of Autocorrelation of Both Noise Regimes

Burst Noise Comparison In Two Different Traces

Both are 15KS in length and 250MSPS effective

Conclusions

- Satisfactory ideal pulse model identified
- Observed complex noise structures. It may need further analysis.
- Data analysis procedure has been defined:
 - Model parameters extraction
 - Noise autocorrelation function

Next Steps: Design of a reconfigurable digital pulse processor for amplitude measurement ECAL2 FIR optimization Pile-up rejection strategy implementation