
ATLAS Compute Sites using native Kubernetes
Fernando Barreiro Megino, FaHui Lin

University of Texas at Arlington

CERN IT Container Service Webinar Series
21 Oct 2020

1

● PanDA server - Harvester - Pilot paradigm
● Motivation for native K8s batch integration
● Implementation details
● CVMFS on K8s clusters
● Resource overview
● Examples on commercial clouds
● Demo

Outline

2

PanDA, Harvester, Pilot

Harvester

PanDA Server Compute Node

Pilot

batch
scheduler

Pilot communicates with PanDA
(getJob, updateJob, Kill pilot)

Submit pilot
(batch job)

Update status of
batch job on
scheduler Submit to

compute nodes
Monitor batch
jobs/nodes

Pilot runs
on compute
node

Get information
about PanDA jobs
to submit

3

● PanDA: Production and Distributed Analysis system
○ Data-driven workload management system designed to meet ATLAS production and analysis

requirements at LHC scale. All production and users’ tasks are submitted to PanDA
● Harvester: A service to interface any compute resource
● Pilot: An execution environment to monitor and execute payload on a compute node

● PanDA server - Harvester - Pilot paradigm:

All ATLAS
analysis and
production
tasks

4

PanDA Server

subset of pilot
components

compute nodes

HPC center

Edge node

submit,
monitor,
kill pilot

Harvester

get, update, kill job
request job or pilot

pilot

pilot scheduler
or CEsubmit pilot

Grid site

increase or throttle or
submit pilots

request job
or pilot

get/update job
kill pilot

Cloud

pilot
VM/container

request job
or pilot

Harvester

spin-up

get/update job
kill pilot

VObox

VOboxHarvester

Worker = pilot, VM,
 MPI worker,
 batch worker

scheduler

spin-up

submit
job+pilot

Harvester

VObox

CE

submit,
monitor,
kill pilot

Harvester uses whatever
available at the resource
→ No requirement or
constraint for Harvester

Harvester: universal resource interface

ATLAS Grid scale

5

(includes CERN P1)

Background for Harvester K8s integration
● ATLAS using a heterogeneous computing infrastructure (Grid, HPC, Cloud)

for batch workloads
○ Integration historically done by various teams and in various ways

● PanDA team developed Harvester universal resource interface ~3 years ago,
more or less at the same time as first ATLAS-Google PoC phase

○ Looking for lightweight, generic cloud integration

● In the first PoC we implemented direct GCE VM lifecycle management
○ :) It worked
○ :(VM creation overhead
○ :(Specific to GCE

● Harvester team came up with the native K8s integration idea
○ :) It also works and has less overhead
○ :) Generic: available in many major cloud providers and some HEP institutes
○ :) Can also be used to host services: easy to deploy a lightweight/opportunistic site

6

● Native container environment
● In theory standard interface across major cloud providers and WLCG clusters

○ CRITICAL!!!

● Massive infrastructure simplification compared to Grid-batch sites
○ However also losing Grid features/experience
○ Discovering many new behaviours

● Since early 2020 mini Kubernetes-grid with central Harvester growing
○ Couple hundred cores in each site:

■ Academia Sinica (Taiwan)
■ CERN (Switzerland)
■ University of Chicago (US)
■ University of Victoria (Canada)

○ And projects with commercial clouds:
■ Google
■ Amazon
■ Oracle project being set up

Advantages and possibilities of K8s integration

7

● Harvester submits K8s Jobs (job controller) as workloads on K8s cluster
○ “A Job creates one or more Pods and ensures that a specified number of them successfully

terminate” (official doc)
○ “As pods successfully complete, the Job tracks the successful completions. When a specified

number of successful completions is reached, the task (ie, Job) is complete” (official doc)

● One K8s Job <=> one batch job
○ Harvester submits jobs
○ Each job runs one pod. Pilot runs in the pod
○ Harvester monitors jobs and pods
○ After jobs finish, Harvester deletes them

● K8s job retry mechanism is not used
○ If container fails, then pod will fail and job will fail

(.spec.backoffLimit = 0 and .spec.template.spec.restartPolicy = "Never")
○ We manage retries on PanDA side

Harvester K8s integration - Job

8

K8s cluster

Core
K8s

Submitter

K8s
 Monitor

of Jobs
of types

Harvester

Create K8s jobs

Poll K8s job states

Clean up K8s jobs

Rucio Storage
Element

K8s m
aster

PanDA job

I/O

K8s
Sweeper

Pod

Pilot

Pod

Pilot

Pod

Pilot

Pod

Pilot

Pod

Pilot

K8s Cred
manager Share/update certs

through K8s secret

PanDA server

Harvester K8s integration - Jobs https://github.com/HSF/harvester

9

https://github.com/HSF/harvester

Harvester K8s integration - Jobs https://github.com/HSF/harvester

10

kind: Job
...
 backoffLimit: 0
...
 restartPolicy: Never
 containers:
 - args:
 - -c
 - cd; wget
https://raw.githubusercontent.com/HSF/harvester/mast
er/pandaharvester/harvestercloud/pilots_starter.py;
chmod 755 pilots_starter.py;
./pilots_starter.py || true
 command:
 - /usr/bin/bash
 env:
 - name: computingSite
 value: $computingSite
 - name: pandaQueueName
 value: $pandaQueueName
 - name: proxySecretPath
 value: /proxy/x509up_u25606_prod
 ...
 image: atlasadc/atlas-grid-centos7

 resources:
 limits:
 cpu: "8"
 requests:
 cpu: 7200m
 memory: 12G
 ...
 volumeMounts:
 - mountPath: /cvmfs/atlas.cern.ch
 name: atlas

...
- mountPath: /proxy

 name: proxy-secret
 ...
 volumes:
 - name: atlas
 persistentVolumeClaim:
 claimName: cvmfs-config-atlas
 readOnly: true
 ...
 - name: proxy-secret
 secret:
 defaultMode: 420
 secretName: proxy-secret

https://github.com/HSF/harvester
https://raw.githubusercontent.com/HSF/harvester/master/pandaharvester/harvestercloud/pilots_starter.py
https://raw.githubusercontent.com/HSF/harvester/master/pandaharvester/harvestercloud/pilots_starter.py

● Two resource types of ATLAS job:
○ SCORE (1 core) vs MCORE (usually 8 cores = whole node, sometimes 4 cores or else)
○ Each pod has label about resource type (# of pods of either type is according to ATLAS jobs)

● K8s spreads out pods across nodes by default
○ May cause inefficient situation: Each node only runs 1 or 2 SCORE pods. The node still has plenty of

empty slots but MCORE pod cannot fit in the node and there may not be enough SCORE pods to fill the node

● We set pod affinity policies to fill the slots more efficiently
○ SCORE and MCORE have anti-affinity against each other
○ SCORE has affinity to SCORE itself

● Thus SCORE pods tend to gather on the same nodes

Harvester K8s integration - Pod Affinity

 affinity:
podAntiAffinity:

preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: resourceType
 operator: In
 values:
 - SCORE
 topologyKey: kubernetes.io/hostname
 weight: 100

 labels:
controller-uid: a59104f5-b8e1-4666-8abc-7e407bbe8ebb
job-name: grid-job-2035575
pq: CERN-EXTENSION_KUBERNETES
prodSourceLabel: managed
resourceType: MCORE

11

● Kubernetes site CERN-EXTENSION_KUBERNETES with 320 slots
● Slots are almost kept full during SCORE and MCORE transition

Harvester K8s integration - Pod Affinity

12

(MCORE)

(SCORE)

CVMFS & Squid setup on K8S clusters

Pod

Pilot

/cvmfs

13

In OutTransfor
mation

Rucio download
(or streamed) Rucio upload

● CVMFS: read-only hierarchically distributed read-only
file-system

○ ATLAS relies on CVMFS to distribute its
Software on all resources (Grid, HPC, Cloud)

○ Installed through daemonset + k8s volumes

● Frontier Squid: access to ATLAS run conditions
database and local CVMFS cache through squid cache

○ Installed on dedicated VM or as part of the K8s
cluster

Rucio Storage Element

Conditions data

13

CVMFS: installation methods for K8S
● Directly on the nodes through package manager: most stable solution, but not

always possible
● Through DaemonSets and volumes

○ DaemonSet: ensures all nodes run a copy of a pod
○ CVMFS CSI driver

■ CSI: Container Storage Interface
● Standard to expose storage volumes to the containers

■ Implemented by CERN IT and used initially in some of our clusters
■ Golang implementation of required methods
■ Complicated and some issues e.g. on restart

○ CVMFS PRP driver
■ PRP: Pacific Research Platform
■ CVMFS mount shared through local volume. Much simpler
■ Currently using ATLAS fork at CERN, Google and Amazon PanDA queues
■ My preferred option when direct installation not possible 14

https://github.com/cernops/cvmfs-csi
https://github.com/sfiligoi/prp-osg-cvmfs
https://github.com/PanDAWMS/prp-osg-cvmfs

CVMFS drivers: importance of CPU/mem requirements
● Our K8S nodes typically fully exploited: jobs submitted with “burstable” QoS
● Drivers installed at CERN Openstack clusters typically have no requirements
● No CPU and memory requirements for driver pods means “best effort” QoS

(i.e. lowest priority)
○ No memory requirement: causes CVMFS driver pod to be killed first when OOM
○ No CPU requirements: causes CVMFS driver to be throttled, i.e. gets absolutely no CPU

cycles when node is packed with jobs
○ Both end up with an extremely unstable cluster and unacceptable failure rates

● Requesting small amount of CPU and memory solves situation

15

Current ATLAS K8S queues
10 August -10 October 2020

16

CERN

UChicago

Google

ASGC

UVictoria

Amazon

CERN
quota
halved

UVic
cluster
migration

US ATLAS - Google project

CERN
DATADISK

Input

Output

CERN Google EU West

GKE queue

GCS

Input Output

GKE queue

Stage 1: Simulation with storage at CERN
● Very light I/O jobs
● GKE setup and evaluation

Stage 2: End-user analysis with storage at Google
● I/O heavy jobs from volunteer analysis user
● Storage at Google possible thanks to

Rucio/FTS/middleware integration
● VM/node tuning

Asynchronous
data transfers

17

Tested various configurations and payloads during extensive periods, but at low scale

Stage 1: GKE simulation cluster with CERN storage

● Limited to Simulation jobs (low I/O),
since storage at CERN

● Preemptible nodes
○ Causing most of the failures
○ Limiting job duration to <5 hours
○ Attractive deal: big cost reduction,

slightly higher failure rate

● Autoscaled cluster
○ Cluster ramps down and lowers the

cost when no jobs queued

● Costs with remote storage:
~2kUSD/month for 150 cores
including egress to CERN

240

80

40

240

Reduced cluster size to
keep within budget

New
budget
allocation

14% 86%

No jobs available.
Autoscaling ramps cluster
down

18

~2 months

GKE

● First ATLAS attempt to run a site (compute + storage)
fully in the cloud

● Volunteer user analyzing 1TB dataset
○ 2.5 to 12.5 (=5 x 2.5) GB of input per job

● Side-condition: All input files need to be downloaded
within 10 min (signed URL lifetime)

● Google throttles throughput to resources to balance
usage across tenants

○ Found bottleneck in CPU→disk throughput on lower end VMs
○ To improve you can upgrade storage type or over-allocate disks
○ Jobs required VMs with local SSD (~50% more expensive)

● Preemptible nodes confuses end users

Stage 2: GKE User Analysis and GCS storage

19

GCS

3rd party
Rucio/FTS
transfers

Grid
storage 1

Grid
storage 2

Local

Rucio
download/
upload

$ $$$

$$

Other commercial cloud projects
● More recently we started running K8s clusters at Amazon (Fresno State grant) and

Oracle (Univ. of Oslo contract, setup in progress)
○ Rucio team also working with davix team to sort out issues for transfers to S3

● Basic compute integration is straightforward and no code changes required
● Effort mostly spent understanding different setups between cloud providers (network

details, usage of Spot instances, setting up autoscaling, service accounts)

20

Analysis and production queue running on Amazon Spot instances
with 0.1USD/hour bid

Demo

21

● Show how simple it is to setup a PanDA queue in a commercial cloud with
Kubernetes

● Google setup
○ Create GKE cluster: http://console.cloud.google.com/
○ Show service account: roles and permissions

● PanDA queue
○ Show AGIS (ATLAS central configuration service) queue configuration
○ See if there are ‘activated’ jobs in PanDA monitoring

● Connect the GKE cluster to central Harvester instance
○ Download Kubeconfig via gcloud CLI
○ Install CVMFS
○ Add queue to Harvester configuration
○ See secrets, submitted pods and PanDA jobs changing status to ‘running’
○ See GCE monitoring

● Compare to a running cluster in AWS

http://console.cloud.google.com/
http://atlas-agis.cern.ch/agis/pandaqueue/detail/GKE/full/
https://bigpanda.cern.ch/jobs/?computingsite=GKE&hours=12&display_limit=100
https://us-west-2.console.aws.amazon.com/console/home?region=us-west-2

Conclusions
● Straightforward, standard integration of major cloud providers

○ PanDA queues can be deployed quickly
○ This used to take weeks and custom code. No heavy middleware components

● Useful model for smaller Grid sites, but CE functionalities get lost
● It requires some experience, but we are starting to get it right

○ CVMFS setup still the weakest link, e.g. while cache gets warm
○ In ideal world we would use self contained SW images, but model needs to stay compatible to

mainstream Grid

● Scale of our exercises has been hundreds to few thousand cores per cluster
○ Mostly limited by availability of resources
○ At these levels the system is quite relaxed
○ Interested to see which scale we could reach

● Slight worry on dockerhub policy changes next month
● Still potential for advanced features: User Analysis facilities, machine learning

clusters, etc. 22

Questions?

23

