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● PanDA server - Harvester - Pilot paradigm
● Motivation for native K8s batch integration
● Implementation details
● CVMFS on K8s clusters
● Resource overview
● Examples on commercial clouds
● Demo

Outline
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● PanDA: Production and Distributed Analysis system
○ Data-driven workload management system designed to meet ATLAS production and analysis 

requirements at LHC scale. All production and users’ tasks are submitted to PanDA
● Harvester: A service to interface any compute resource
● Pilot: An execution environment to monitor and execute payload on a compute node

● PanDA server - Harvester - Pilot paradigm:

All ATLAS 
analysis and 
production 
tasks
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Harvester: universal resource interface



ATLAS Grid scale
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(includes CERN P1)



Background for Harvester K8s integration
● ATLAS using a heterogeneous computing infrastructure (Grid, HPC, Cloud) 

for batch workloads
○ Integration historically done by various teams and in various ways

● PanDA team developed Harvester universal resource interface ~3 years ago, 
more or less at the same time as first ATLAS-Google PoC phase

○ Looking for lightweight, generic cloud integration

● In the first PoC we implemented direct GCE VM lifecycle management
○ :) It worked
○ :( VM creation overhead
○ :( Specific to GCE

● Harvester team came up with the native K8s integration idea
○ :) It also works and has less overhead
○ :) Generic: available in many major cloud providers and some HEP institutes
○ :) Can also be used to host services: easy to deploy a lightweight/opportunistic site
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● Native container environment
● In theory standard interface across major cloud providers and WLCG clusters

○ CRITICAL!!!

● Massive infrastructure simplification compared to Grid-batch sites
○ However also losing Grid features/experience
○ Discovering many new behaviours

● Since early 2020 mini Kubernetes-grid with central Harvester growing
○ Couple hundred cores in each site:

■ Academia Sinica (Taiwan)
■ CERN (Switzerland)
■ University of Chicago (US)
■ University of Victoria (Canada)

○ And projects with commercial clouds:
■ Google
■ Amazon
■ Oracle project being set up

Advantages and possibilities of K8s integration
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● Harvester submits K8s Jobs (job controller) as workloads on K8s cluster
○ “A Job creates one or more Pods and ensures that a specified number of them successfully 

terminate” (official doc)
○ “As pods successfully complete, the Job tracks the successful completions. When a specified 

number of successful completions is reached, the task (ie, Job) is complete” (official doc) 

● One K8s Job <=> one batch job
○ Harvester submits jobs
○ Each job runs one pod. Pilot runs in the pod
○ Harvester monitors jobs and pods
○ After jobs finish, Harvester deletes them

● K8s job retry mechanism is not used
○ If container fails, then pod will fail and job will fail

(.spec.backoffLimit = 0 and .spec.template.spec.restartPolicy = "Never")
○ We manage retries on PanDA side

Harvester K8s integration - Job
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Harvester K8s integration - Jobs https://github.com/HSF/harvester
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https://github.com/HSF/harvester


Harvester K8s integration - Jobs https://github.com/HSF/harvester
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kind: Job
...
  backoffLimit: 0
...
    restartPolicy: Never
    containers:
      - args:
    - -c
    - cd; wget 
https://raw.githubusercontent.com/HSF/harvester/mast
er/pandaharvester/harvestercloud/pilots_starter.py; 
chmod 755 pilots_starter.py; 
./pilots_starter.py || true
    command:
    - /usr/bin/bash
    env:
    - name: computingSite
        value: $computingSite
    - name: pandaQueueName
        value: $pandaQueueName
    - name: proxySecretPath
        value: /proxy/x509up_u25606_prod
    ...
    image: atlasadc/atlas-grid-centos7

    resources:
      limits:
          cpu: "8"
      requests:
          cpu: 7200m
          memory: 12G
    ...
    volumeMounts:
    - mountPath: /cvmfs/atlas.cern.ch
        name: atlas

...
- mountPath: /proxy

      name: proxy-secret
    ...
   volumes:
  - name: atlas
    persistentVolumeClaim:
      claimName: cvmfs-config-atlas
      readOnly: true
  ...
  - name: proxy-secret
    secret:
      defaultMode: 420
      secretName: proxy-secret

https://github.com/HSF/harvester
https://raw.githubusercontent.com/HSF/harvester/master/pandaharvester/harvestercloud/pilots_starter.py
https://raw.githubusercontent.com/HSF/harvester/master/pandaharvester/harvestercloud/pilots_starter.py


● Two resource types of ATLAS job:
○ SCORE (1 core) vs MCORE (usually 8 cores = whole node, sometimes 4 cores or else)
○ Each pod has label about resource type (# of pods of either type is according to ATLAS jobs)

● K8s spreads out pods across nodes by default
○ May cause inefficient situation: Each node only runs 1 or 2 SCORE pods. The node still has plenty of 

empty slots but MCORE pod cannot fit in the node and there may not be enough SCORE pods to fill the node

● We set pod affinity policies to fill the slots more efficiently
○ SCORE and MCORE have anti-affinity against each other
○ SCORE has affinity to SCORE itself

● Thus SCORE pods tend to gather on the same nodes

Harvester K8s integration - Pod Affinity

  affinity:
podAntiAffinity:

  
preferredDuringSchedulingIgnoredDuringExecution:
  - podAffinityTerm:
      labelSelector:
        matchExpressions:
        - key: resourceType
          operator: In
          values:
          - SCORE
      topologyKey: kubernetes.io/hostname
    weight: 100

  labels:
controller-uid: a59104f5-b8e1-4666-8abc-7e407bbe8ebb
job-name: grid-job-2035575
pq: CERN-EXTENSION_KUBERNETES
prodSourceLabel: managed
resourceType: MCORE
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● Kubernetes site CERN-EXTENSION_KUBERNETES with 320 slots
● Slots are almost kept full during SCORE and MCORE transition

Harvester K8s integration - Pod Affinity
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CVMFS & Squid setup on K8S clusters

Pod

Pilot

/cvmfs

13

In OutTransfor
mation

Rucio download 
(or streamed) Rucio upload

● CVMFS: read-only hierarchically distributed read-only 
file-system

○ ATLAS relies on CVMFS to distribute its 
Software on all resources (Grid, HPC, Cloud)

○ Installed through daemonset + k8s volumes

● Frontier Squid: access to ATLAS run conditions 
database and local CVMFS cache through squid cache

○ Installed on dedicated VM or as part of the K8s 
cluster

Rucio Storage Element

Conditions data
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CVMFS: installation methods for K8S
● Directly on the nodes through package manager: most stable solution, but not 

always possible
● Through DaemonSets and volumes

○ DaemonSet: ensures all nodes run a copy of a pod
○ CVMFS CSI driver 

■ CSI: Container Storage Interface
● Standard to expose storage volumes to the containers

■ Implemented by CERN IT and used initially in some of our clusters
■ Golang implementation of required methods
■ Complicated and some issues e.g. on restart

○ CVMFS PRP driver
■ PRP: Pacific Research Platform
■ CVMFS mount shared through local volume. Much simpler
■ Currently using ATLAS fork at CERN, Google and Amazon PanDA queues
■ My preferred option when direct installation not possible 14

https://github.com/cernops/cvmfs-csi
https://github.com/sfiligoi/prp-osg-cvmfs
https://github.com/PanDAWMS/prp-osg-cvmfs


CVMFS drivers: importance of CPU/mem requirements
● Our K8S nodes typically fully exploited: jobs submitted with “burstable” QoS
● Drivers installed at CERN Openstack clusters typically have no requirements
● No CPU and memory requirements for driver pods means “best effort” QoS 

(i.e. lowest priority)
○ No memory requirement: causes CVMFS driver pod to be killed first when OOM
○ No CPU requirements: causes CVMFS driver to be throttled, i.e. gets absolutely no CPU 

cycles when node is packed with jobs
○ Both end up with an extremely unstable cluster and unacceptable failure rates

● Requesting small amount of CPU and memory solves situation
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Current ATLAS K8S queues
10 August -10 October 2020
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US ATLAS - Google project

CERN 
DATADISK

Input

Output

CERN Google EU West

GKE queue

GCS

Input Output

GKE queue

Stage 1: Simulation with storage at CERN
● Very light I/O jobs
● GKE setup and evaluation

Stage 2: End-user analysis with storage at Google
● I/O heavy jobs from volunteer analysis user
● Storage at Google possible thanks to 

Rucio/FTS/middleware integration
● VM/node tuning 

Asynchronous 
data transfers
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Tested various configurations and payloads during extensive periods, but at low scale



Stage 1: GKE simulation cluster with CERN storage

● Limited to Simulation jobs (low I/O), 
since storage at CERN

● Preemptible nodes
○ Causing most of the failures
○ Limiting job duration to <5 hours
○ Attractive deal: big cost reduction, 

slightly higher failure rate

● Autoscaled cluster
○ Cluster ramps down and lowers the 

cost when no jobs queued

● Costs with remote storage: 
~2kUSD/month for 150 cores 
including egress to CERN

240

80

40

240

Reduced cluster size to 
keep within budget

New 
budget 
allocation

14% 86%

No jobs available. 
Autoscaling ramps cluster 
down
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~2 months



GKE

● First ATLAS attempt to run a site (compute + storage) 
fully in the cloud

● Volunteer user analyzing 1TB dataset
○ 2.5 to 12.5 (=5 x 2.5) GB of input per job

● Side-condition: All input files need to be downloaded 
within 10 min (signed URL lifetime)

● Google throttles throughput to resources to balance 
usage across tenants

○ Found bottleneck in CPU→disk throughput on lower end VMs 
○ To improve you can upgrade storage type or over-allocate disks
○ Jobs required VMs with local SSD (~50% more expensive)

● Preemptible nodes confuses end users

Stage 2: GKE User Analysis and GCS storage
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Other commercial cloud projects
● More recently we started running K8s clusters at Amazon (Fresno State grant) and 

Oracle (Univ. of Oslo contract, setup in progress)
○ Rucio team also working with davix team to sort out issues for transfers to S3

● Basic compute integration is straightforward and no code changes required
● Effort mostly spent understanding different setups between cloud providers (network 

details, usage of Spot instances, setting up autoscaling, service accounts)
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Analysis and production queue running on Amazon Spot instances
with 0.1USD/hour bid



Demo
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● Show how simple it is to setup a PanDA queue in a commercial cloud with 
Kubernetes

● Google setup
○ Create GKE cluster: http://console.cloud.google.com/
○ Show service account: roles and permissions

● PanDA queue
○ Show AGIS (ATLAS central configuration service) queue configuration 
○ See if there are ‘activated’ jobs in PanDA monitoring

● Connect the GKE cluster to central Harvester instance
○ Download Kubeconfig via gcloud CLI
○ Install CVMFS
○ Add queue to Harvester configuration
○ See secrets, submitted pods and PanDA jobs changing status to ‘running’
○ See GCE monitoring

● Compare to a running cluster in AWS 

http://console.cloud.google.com/
http://atlas-agis.cern.ch/agis/pandaqueue/detail/GKE/full/
https://bigpanda.cern.ch/jobs/?computingsite=GKE&hours=12&display_limit=100
https://us-west-2.console.aws.amazon.com/console/home?region=us-west-2


Conclusions
● Straightforward, standard integration of major cloud providers

○ PanDA queues can be deployed quickly
○ This used to take weeks and custom code. No heavy middleware components

● Useful model for smaller Grid sites, but CE functionalities get lost
● It requires some experience, but we are starting to get it right

○ CVMFS setup still the weakest link, e.g. while cache gets warm
○ In ideal world we would use self contained SW images, but model needs to stay compatible to 

mainstream Grid

● Scale of our exercises has been hundreds to few thousand cores per cluster
○ Mostly limited by availability of resources
○ At these levels the system is quite relaxed
○ Interested to see which scale we could reach

● Slight worry on dockerhub policy changes next month
● Still potential for advanced features: User Analysis facilities, machine learning 

clusters, etc. 22



Questions?
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