

ELENA LNE51 modifications for PUMA

M.A. Fraser

Summary of checks

- Baseline layout and optics from AEGIS ECR proposal:
 - EDMS #1891119 (obsolete)
 - <u>http://acc-models.web.cern.ch/acc-</u> <u>models/tls/2021/elena_extraction/lne51/line/</u>
- New layout proposal has been implemented in MADX
 - Integration verified by Damien
 - Option to switch to another line (LNE52) retained
 - Number of transfer line elements remains the same
 - Naming may need updating in second iteration
- Original optics requirements can be met with quite some flexibility within voltage limits (+-6 kV)
 - Strength of last 4 matching quadrupoles varied only

New layout implemented in MADX (1)

New layout implemented in MADX (2)

Quick checks made on flexibility of optics by varying matching quad strength only:

• ZQMF.5130, ZQMD.5131, ZQMD.5138, ZQMF.5139

Handover parameters

- ELENA experiment handover beam parameters:
 - Hard-focus to a small beam size
 - Typically, RMS beam size ~ 1 2 mm in both H and V
 - Dispersion made as small as possible
 - Twiss tables of beam parameters found attached
 - Comments:
 - Not ideal if matching to a downstream optical system
 - Once we agree on layout/parameters I will update the optics repository
 - Dispersion given by MADX needs multiplying by the relativistic velocity = 0.146

Optics: 1 mm focus

 $\left|\beta\varepsilon_{RMS} + \left(D\frac{\Delta p}{p}\right)_{RMS}\right|$ $\sigma =$

Optics: 2.5 mm focus $\sigma = \sqrt{\beta \varepsilon_{RMS} + \left(D \frac{\Delta p}{p} \right|_{RMS} \right)^2}$

Conclusion

- New LNE51 layout for PUMA can provide the beam parameters requested by typical ELENA experiments
- A range of beam parameters can be provided within the voltage limits of the HW
- In a next step, optics parameters could be matched to parameters requested by PUMA:
 - We can match not just to beam size but to specific Twiss parameters for PUMA's optical system...
 - e.g. no particular need to force dispersion to zero

