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Plan of the lectures:

Lecture 1
Black holes: astrophysical evidence and a theory (brief) timeline

Lecture 2
Spherical black holes: the Schwarzschild solution

Lecture 3
Spinning black holes: the Kerr solution

Lecture 4
Exotic compact objects: the example of bosonic stars

Lecture 5
Non-Kerr black holes



3) are these objects really black holes ?

“In my entire scientific life, extending over forty-five years, the most shattering 
experience has been the realization that an exact solution of Einstein’s field 

equations of general relativity, discovered by the New Zealand mathematician, 
Roy Kerr, provides the absolutely exact representation of untold numbers of 

massive black holes that populate the Universe.”

S. Chandrasekhar, in Truth and Beauty (1987)

1) are these untold numbers of massive black holes exactly represented by the Kerr metric ?

The Kerr hypothesis 

2) are these black holes all of the same type ?

Testing the Kerr hypothesis is to keep some healthy skepticism:



The Kerr hypothesis 
is a very economical scenario:

the very same “object” spans (at least) 10 orders of magnitude!
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1963: Kerr’s solution
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rate for different masses of the intermediate
boson. The end point of the neutrino spectrum
from the 184-in. cyclotron is -250 MeV, and
neutrinos with this energy in collision with a
stationary proton would produce a boson of mass
equal to 2270m~. However, with the momentum
distribution in the nucleus, higher boson masses
may be attained, but only a small fraction of the
protons can participate, so the rate of events
falls off rapidly.
Because of the low energy of the neutrinos pro-

duced at the 1S4-in. cyclotron, only a rather con-
servative limit of 2130m can be placed on the
mass of the intermediate boson.
We would like to thank Professor Luis Alvarez

for suggesting this measurement and showing a
keen interest in its progress, and also Profes-
sor Clyde Cowan for communicating his results
before their publication. Our thanks are due

Mr. Howard Goldberg, Professor Robert Kenney,
and Mr. James Vale and the crew of the cyclotron,
without whose full cooperation the run would not
have been possible. We are also grateful to
Mr. Philip Beilin, Mr. Ned Dairiki, and Mr. Rob-
ert Shafer for their help in running the experiment.

*This work was done under the auspices of the U. S.
Atomic Energy Commission
'Clyde L. Cowan, Bull. Am. Phys. Soc. 8, 383 (1963);

and (private communication).
2Toichino Kinoshita, Phys. Bev. Letters 4, 378 (1960).
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(19593.
4Hugo B. Rugge, Lawrence Radiation Laboratory

Report UCBL-10252, 20 May 1962 (unpublished).
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GRAVITATIONAL FIELD OF A SPINNING MASS AS AN EXAMPLE
GF ALGEBRAICALLY SPECIAL METRICS
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University of Texas, Austin, Texas and Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio
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Goldberg and Sachs' have proved that the alge-
braically special solutions of Einstein's empty-
space field equations are characterized by the
existence of a geodesic and shear-free ray con-
gruence, A&. Among these spaces are the plane-
fronted waves and the Robinson- Trautman metrics'
for which the congruence has nonvanishing diver-
gence, but is hypersurface orthogonal.
In this note we shall present the class of solu-

tions for which the congruence is diverging, and
is not necessarily hypersurface orthogonal. The
only previously known example of the general
case is the Newman, Unti, and Tamburino met-
rics, 'which is of Petrov Type D, and possesses
a four-dimensional group of isometrics.
If we introduce a complex null tetrad (t~ is the

complex conjugate of t), with
ds = 2tt*+ 2m'',

then the coordinate system may be chosen so that
t =P(r+f~)dg,
)t =du+2Re(Qdg),
I dr —2 Re[[(r —ie))) ~ ())ii]d([=+(rPi')'

+Re[P 'D(o*lnP h*)+] '+, +6

(m -D*D*DQ) = Is DQI',
Q

Im(m -D*D*DQ) =0,
D*m = 3mb. (4)

The second coordinate system is probably better,
but it gives more complicated field equations.
It will be observed that if m is zero then the

field equations are integrable. These spaces
correspond to the Type-III and null spaces with

where g is a complex coordinate, a dot denotes
differentiation with respect to g, and the operator
D is defined by

D = 8/st; - Qs/su.
P is real, whereas Q and m (which is defined to
be m, +im, ) are complex. They are all independ-
ent of the coordinate ~. L is defined by

6 =Im(P 'D~Q).

There are two natural choices that can be made
for the coordinate system. Either (A) P can be
chosen to be unity, in which case 0 is complex,
or (B) Q can be taken pure imaginary, with P dif-
ferent from unity. In case (A), the field e(luations
are

ds2 = � (�� a2 sin2 ✓)

⌃
dt2 � 2a sin2 ✓

(r2 + a2 ��)

⌃
dtd�

+
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(r2 + a2)2 ��a2 sin2 ✓
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◆
sin2 ✓d�2 +
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dr2 + ⌃d✓2

⌃ = r2 + a2 cos2 ✓

� = r2 � 2GMr + a2

(in the coordinates introduced by Robert H. Boyer and Richard W. Lindquist, in 1967, 
J. Math. Phys. 8 (1967) 265)

Phys. Rev. Lett. 11 (1963) 237-238

Roy P. Kerr 
(1934-)



Derivation of the Kerr metric.

One could try a direct “attack” to the Einstein equations 
using a sufficiently general ansatz in some “spheroidal” coordinate system.

Impose invariance under:

The most generic ansatz adapted to axial symmetry and stationarity is:
(Carter CMP 17 (1970) 233 showed no generality is loss in assuming these fields commute)

ds2 = gtt(r, ✓)dt
2 + gtr(r, ✓)dtdr + gt✓(r, ✓)dtd✓ + gt'(r, ✓)dtd'

+grr(r, ✓)dr
2 + gr✓(r, ✓)drd✓ + gr'(r, ✓)drd'

+g✓✓(r, ✓)d✓
2 + g✓'(r, ✓)d✓d'

+g''(r, ✓)d'
2

t ! �t and ' ! �'

gauge freedom

grr(r, ✓)r
2d✓2

Still, 3 unknown functions of two variables. 
Einstein equations are prohibitively complicated... extra structure needed....

vacuum
Papapetrou, Annals de l’I.H.P. Physique théorique, 4 (1966)

See e.g.
Herdeiro and Oliveira

Class. Quant. Grav. 36 (2019) 105015



A hint: Kerr-Schild form for the Schwarzschild solution

Consider the Schwarzschild metric in outgoing Eddington-Finkelstein (EF)
coordinates,

ds2 = �
✓
1� 2M

r

◆
du2 � 2dudr + r2d⌦2

Kerr-Schild 
form of the 

Schwarzschild 
solution

Its inverse is,
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Which can be written simply as,

gµ⌫ = ⌘µ⌫ � 2M

r
lµl⌫

where,

⌘µ⌫ =

2

66664

0 �1
�1 1

1

r2
1

r2 sin2 ✓

3

77775

is the Minkoswki metric in retarded null coordinates, and l = @
@r is null, lµlµ = 0.

<latexit sha1_base64="Iv94x45XNvRR1xyhcxW6mvf7GUo="></latexit>



The null vector in the Kerr-Schild form

gµ⌫ = ⌘µ⌫ � 2M

r
lµl⌫

has some special properties:

lµ@µ =
@

@r

1) It is an affinely parameterised null geodesic:

lµDµl
⌫ = 0

2) It is “shear-free”:

D(µl⌫)D
(µl⌫) � 1

2
(Dµl

µ)2 = 0

Exercise 3.1

Verify these properties.

⌘µ⌫ =

2

66664

0 �1
�1 1

1

r2
1

r2 sin2 ✓

3

77775

<latexit sha1_base64="frBEabT5w7kiFIzoUd3YPHqD0yA="></latexit>



A crucial result for the derivation of the Kerr solution was:
J Goldberg, R Sachs, Acta Phys. Polon. Suppl. 22 (1962) 13

Goldberg-Sachs Theorem (1962): A vacuum solution of the Einstein field
equations will admit a shear-free null geodesic congruence if and only if the
Weyl tensor is algebraically special.

The Schwarzschild solution is therefore algebraically special. 
It could be that its rotating generalization 

would also be algebraically special. 

Let us therefore look for an ansatz that reflects this. 
The Kerr-Schild form is particularly appropriate. 



Vacuum, axially symmetric, 
stationary black hole

Kerr 1963

ds2 = � (�� a2 sin2 ✓)

⌃
dt2 � 2a sin2 ✓
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dtd�

+
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⌃ = r2 + a2 cos2 ✓

� = r2 � 2GMr + a2

- Has two (macroscopic) degrees of freedom:
Mass “M” and Angular Momentum (per Mass) “a”

- It has remarkable mathematical properties: 

a) Hidden symmetries, that allow separability of 
geodesic motion and of different types of 
perturbation;

b) An elegant geometrical structure: it is algebraically 
special. 



Singularities:

ds2 = � (�� a2 sin2 ✓)

⌃
dt2 � 2a sin2 ✓

(r2 + a2 ��)
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1) Metric coefficients diverge when:

� = r2 � 2Mr + a2 = 0 , r = r± ⌘ M ±
p
M2 � a2

Outer or event horizon

Inner or Cauchy horizon

⌃ = r2 + a2 cos2 ✓ = 0 , r = 0 and ✓ =
⇡

2

These are mere coordinate singularities that can be eliminated in EF type coordinates;

This is a physical curvature singularity; the Kretschmann scalar diverges:

Rµ⌫↵�R
µ⌫↵� =

8

⌃6

�
6M2(r6 � 15a2r4 cos2 ✓ + 15a4r2 cos4 ✓ � a6 cos6 ✓)

 

2) The metric determinant is: det g = �⌃2 sin2 ✓

ring type
singularity



Carter-Penrose diagram
for the eternal Schwarzschild spacetime.



P. Townsend, arXiv:9707012



outer horizon

ergo-region
The Kerr solution has another remarkable property:

r+ = M +
p

M2 � a2

rergo = M +
p

M2 � a2 cos2 ✓

ergo-surface

The Killing vector field         becomes spacelike outside the event horizon, 
in the “ergo-region”

@/@t



It is possible to (classically!) extract
energy from a rotating black hole

(Penrose 1969)

Electric circuit fed by the spin of a black hole

Brito et al. (2015)



The ability to extract 
energy from a rotating 

black hole will play an important role 
in the existence of “hairy” black holes.

To know more, do not miss lecture 5 !!



Probing the Kerr black hole
with 
light



Kerr space-time:
BH with mass M and angular momentum J
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Geodesics are Liouville integrable due to the existence of hidden symmetry (Killing tensor)

Convenient to use the Hamilton-Jacobi formalism Carter 1968
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separation of variables



Convenient to use the Hamilton-Jacobi formalism Carter 1968
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Four first-order differential equations:

⌃ṙ = ±
p
R ,
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p
⇥ ,
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�
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◆
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Given suitable initial conditions for a photon (m=0), the trajectory can be 
obtained by numeric integration.



What is the form of the BH shadow ? 

In the Schwarzschild case, the shadow edge is determined by the light ring. 
All test motions are planar. 

Null geodesic motion is determined by a single impact parameter:

⌘ =
j

E

x/Mp
27

For the light ring:

⌘ =
p
27M



⌘ =
j

E

For the Kerr case, test motions are not planar. Null geodesic motion is determined by 
two impact parameters:

� =
Q

E2

Using the geodesic equations, the impact parameters of a spherical photon orbit at a
certain radial coordinate R=r/M obeys:

⌘ = �R3 � 3R2 + a2R+ a2

a(R� 1)
, � = �R3(R3 � 6R2 + 9R� 4a2)

a2(R� 1)2
.

�     Spherical photon orbits exist for                  where these radii are defined as the roots of    :   R 2 [r1, r2]

r1 = 2
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� |a|
M

�◆�
, r2 = 2

⇢
1 + cos

✓
2

3
arccos


|a|
M

�◆�
.

Co-rotating light ring Counter-rotating light ring

Light rings only exist on the equatorial plane (          ). More generically there are 
“spherical” orbits, that have “r=constant” in Boyer-Lindquist coordinates. Teo, GRG 35 (2003) 1909

� = 0

Exercise 3.3
Obtain these expressions.



In a more generic stationary black hole spacetime,
where the geodesic motion is not necessarily integrable

the shadow edge is determined by a set of bound photon orbits dubbed 
fundamental photon orbits (FPOs)

Cunha, C.H., Radu, PRD 96 (2017) 024039

It is possible to classify the different types of FPOs.
Cunha, C.H., Radu, PRD 96 (2017) 024039

In the Kerr case, the spherical orbits are the FPOs.
Teo, GRG 35 (2003) 1909

As we shall see in Lecture 5, more complex structures are possible.

In the Kerr case the spherical orbits (including the light rings)
determine the shadow edge, as we shall see next.



Animation: Pedro Cunha



Shadow of an extremal Kerr black hole
(equatorial plane observation, spin upwards)



We can now assess the contribution 
of the FPOs to the shadow’s edge.
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Lensing - Setup of ray tracing



The most naive approach would be to evolve the light rays directly from the 
source and detect which ones reach the observer. However this procedure is 

inefficient since most rays would not reach. 

A better approach is to evolve the light rays from the observer backward in time 
and identify their origin: backward ray-tracing. 

The information carried by each ray is then assigned to a pixel in a final image, 
which embodies the optical perception of the observer.



Technique: backwards ray-tracing 
(animation: Pedro Cunha)

camera



Ray tracing - Schwarzschild and Kerr examples



To study lensing, 
the integration from the observer position ends on some chosen 

“far away” light source (or on the black hole).

This could be a sky full of stars.

But academic “celestial spheres” are interesting for observing 
lensing patterns.



4

set. The final vector, e3, is found by calculating the
generalized cross product of the other three; explicitly,

e3⌅ = ⇥�µ⇤⌅e0
�e1

µe2
⇤ , (7)

where ⇥�µ⇤⌅ is the Levi-Civita tensor (see [24, p. 202] for
more details).

Given the four orthonormal unit vectors, we can con-
struct a null vector ⇤ tangent to the geodesic that enters
the camera from a given direction. The vector ⇤ will be
proportional to the four-momentum of a photon following
the geodesic; that is, p = q⇤ for some positive constant
q. We define ⇤ by

⇤�(a,b) = Ce �
0 � e �

1 � [(2b� 1) tan(�v/2)]e
�

2

� [(2a� 1) tan(�h/2)]e
�

3 ,
(8)

where a, b ⌅ [0, 1] give the ray’s arrival direction in terms
of fractions of the image’s horizontal and vertical lengths,
respectively, and �v,�h are the angular sizes of the cam-
era aperture (field of view angles) in the vertical and hor-
izontal directions. For the sign convention chosen in (8),
(a, b) = (0, 0) corresponds to a photon seen at the bottom
left corner of the image. We find C by requiring that ⇤
is null, i.e., ⇤ · ⇤ = 0:

C =
�
1 + (2b� 1)2 tan2(�v/2) + (2a� 1)2 tan2(�h/2).

(9)
We then use the metric to lower the index on ⇤, and
we compute the initial value of our evolution variable �i

using �i = pi/(�p0) = ⇤i/(�⇤0). Note that �i is inde-
pendent of the proportionality constant q relating ⇤ and
the actual photon momentum p; physically, this is be-
cause the photon trajectory is independent of the photon
energy. The only place where q enters is in the initial
value of �p0 in (5). We fix the value of q by demand-
ing that the energy of the photon in the frame of the
camera be unity when the photon strikes the camera, so
Ecamera = 1 in (6).

C. Image generation

We create our image of the physical system by dividing
the image plane into rectangular regions corresponding to
the pixels of the output image and assigning an appro-
priate color to each region. Because each region has an
extended size, there is no single source point we can look
at to obtain its color, so we must adopt some prescrip-
tion for assigning a single color to each pixel. We use two
di⇥erent prescriptions, based on the nature of the light
source illuminating the system.

For extended sources, such as the artificial grid in fig-
ure 3, we use a subpixel sampling method. On each pixel
we construct an evenly spaced grid of points, and at each
of these points we determine where incident light rays
originate, either from one of the holes or a location at
infinity. We assign a color to each grid point based on

FIG. 3. An illustration of our artificial background grid
“painted on” a sphere at infinity. This background is used for
all the images with a grid in this paper. In the figure, we cut
a window out of the sphere to show the inside. In addition to
four colors di�erentiating the regions of the sphere, we include
a white reference spot in the direction in which the camera is
pointing.

that of the corresponding source point; the color of the
pixel is then the average of these. We find that a grid
of 4 ⇤ 4 sample points gives su⌅ciently smooth images
without too much computational cost. For these images,
we neglect the e⇥ects of redshift and focus on the spatial
distortions.
To create more astronomically relevant images, we

wish to use a collection of point sources (i.e., stars) as our
illumination. In this case we cannot determine a pixel’s
color using sampling, but must instead sum the contribu-
tions from all the point sources contributing light there.
For our list of sources, we use about 3.4⇤ 108 stars from
the Two Micron All Sky Survey (2MASS) [25]. To sim-
plify computations, we approximate each star as a ther-
mal source with temperature and brightness determined
by fitting to the photometric information in the catalog.
When we calculate the contribution of each star to the
light arriving at the camera, we must account not only
for its properties as a light source, but also for the e⇥ects
of the spacetime curvature encountered by the photon.
These e⇥ects come in two forms. First, the observed en-
ergies of photons at the camera will be modified by red-
shift e⇥ects, changing sources’ apparent brightnesses and
temperatures. Second, the spatial convergence or diver-
gence of nearby geodesics produces an overall adjustment
to each source’s apparent brightness without a⇥ecting its
spectrum. Both of these e⇥ects are discussed in detail in
Mollerach and Roulet [26]. After we have drawn the en-
tire image in this manner, we convolve it with a blurring
function to make the stars more visible. This has the
e⇥ect of transforming each star into a fuzzy circle with
size dependent on its brightness.
The result of this scheme can be seen in figure 1, which

shows the BBH image from figure 11 in front of a back-
ground of stars. Note that by generating our starfield
images from a catalog of point sources, we obtain a sub-
stantially more realistic image than would be generated
by applying the lensing deformation to a raster image

Light source is a “painted on” sphere at infinity:
- four colored quadrants with a superimposed grid;

- bright reference spot in the direction towards which we point the camera. 

A. Bohn et al. CQG32(2015)065002



Visualization from camera (60º field of view): Minkowski

5

of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The di�erence between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two di�erent configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from di�erent angles
produces the same lensing e�ects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to di�erent lensing e�ects
from di�erent viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60� field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin � = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric e�ect of viewing a latitude-longitude grid.
In the top right image, we see the lensing e�ects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.

Visualization from camera: Kerr (a=0.95M), spin perpendicular to the line of sight

BH
Shadow

A photon 
traveling in 

the direction 
of the frame 
dragging can 
orbit closer to 

the BH 
without being 

captured...

than a photon 
traveling 

opposite to the 
frame 

dragging...

This results in 
an offset, 

asymmetric 
shadow



How about a truly dynamical black hole binary?
A. Bohn et al. CQG32(2015)065002



Animation:

Last three orbits of a 3:1 mass ratio binary with arbitrarily chosen spins on both black holes.

  The details of this merger can be found in Taylor et al. (Phys. Rev. D 88 (2013) 124010).  

The stars used are the same as the ones used in the single black hole image shown before.

  The camera is located above the orbital plane of the binary looking down.

Source:
http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensing

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.124010
http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensing




11 February 2016

"Ladies and gentlemen, we have detected gravitational waves. We did it!" 

David Reitze 
Executive Director 

Laser Interferometer Gravitational-Wave Observatory (LIGO)



Black holes and exotic compact objects
C. Herdeiro

Departamento de Matemática and CIDMA, Universidade de Aveiro, Portugal

Thank you for your attention!
 Obrigado pela vossa atenção!


