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Plan of the lectures:

Lecture 1
Black holes: astrophysical evidence and a theory (brief) timeline

Lecture 2
Spherical black holes: the Schwarzschild solution

Lecture 3
{Spinning black holes: the Kerr solution e S '.;

Lecture 4

Exotic compact objects: the example of bosonic stars

Lecture 5
Non-Kerr black holes



The Kerr hypothesis

“In my entire scientific life, extending over forty-five years, the most shattering
experience has been the realization that an exact solution of Einstein’s field
equations of general relativity, discovered by the New Zealand mathematician,

Roy Kerr, provides the absolutely exact representation of untold numbers of
massive black holes that populate the Universe.”

S. Chandrasekhar, in 7ruth and Beauty (1987)

Testing the Kerr hypothesis is to keep some healthy skepticism:
1) are these untold numbers of massive black holes exactly represented by the Kerr metric ?
2) are these black holes all of the same type ?

3) are these objects really black holes ?



The Kerr hypothesis

1s a very economical scenario:
the very same “object” spans (at least) 10 orders of magnitude!
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1963: Kerr’s solution
Phys. Rev. Lett. 11 (1963) 237-238

GRAVITATIONAL FIELD OF A SPINNING MASS AS AN EXAMPLE
OF ALGEBRAICALLY SPECIAL METRICS

Roy P.

Kerr*

University of Texas, Austin, Texas and Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio
(Received 26 July 1963)

Goldberg and Sachs® have proved that the alge-
braically special solutions of Einstein’s empty-
space field equations are characterized by the
existence of a geodesic and shear-free ray con-
gruence, k e Among these spaces are the plane-
fronted waves and the Robinson-Trautman metrics?
for which the congruence has nonvanishing diver-
gence, but is hypersurface orthogonal.

where ¢ is a complex coordinate, a dot denotes
differentiation with respect to ¥, and the operator
D is defined by
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(in the coordinates introduced by Robert H. Boyer and Richard W. Lindquist, in 1967,

J. Math. Phys. 8 (1967) 265)



Derivation of the Kerr metric.

One could try a direct “attack” to the Einstein equations
using a sufficiently general ansatz in some “spheroidal” coordinate system.

The most generic ansatz adapted to axial symmetry and stationarity 1s:

(Carter cMP 17 (1970) 233 showed no generality 1s loss in assuming these fields commute)
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Impose invariance under: ¢ — —¢ and (s

See e.g.

gauge freedom Herdeiro and Oliveira
Class. Quant. Grav. 36 (2019) 105015

vacuuln
Papapetrou, Annals de I'l.LH.P. Physique théorique, 4 (1966)

Still, 3 unknown functions of two variables.
Einstein equations are prohibitively complicated... extra structure needed....



A hint: Kerr-Schild form for the Schwarzschild solution

Consider the Schwarzschild metric in outgoing Eddington-Finkelstein (EF)
coordinates,
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is the Minkoswki metric in retarded null coordinates, and [ = % is null, ¥, = 0.



The null vector in the Kerr-Schild form
e e 5
; r

r2 sin? 0-

has some special properties:

1) It 1s an atfinely parameterised null geodesic:

I*D,lY =0

2) It is “shear-free”:

1
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Verity these properties.



A crucial result for the derivation of the Kerr solution was:
J Goldberg, R Sachs, Acta Phys. Polon. Suppl. 22 (1962) 13

Goldberg-Sachs Theorem (1962): A vacuum solution of the Einstein field
equations will admit a shear-free null geodesic congruence if and only if the
Weyl tensor is algebraically special.

The Schwarzschild solution is therefore algebraically special.
[t could be that its rotating generalization
would also be algebraically special.

[Let us therefore look for an ansatz that reflects this.

The Kerr-Schild form 1s particularly appropriate.



- Has two (macroscopic) degrees of freedom:
Mass “M” and Angular Momentum (per Mass) “a”

- It has remarkable mathematical properties:

a) Hidden symmetries, that allow separability of
geodesic motion and of different types of
perturbation;

O AA b) An elegant geometrical structure: it is algebraically
A RS special.

Vacuum, axially symmetric,
stationary black hole
Kerr 1963
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Singularities:
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1) Metric coefhicients diverge when: .
Outer or event horizon

A=r’—2Mr+a*°=0 < T:TiEM:E\/M2—CL2

Inner or Cauchy horizon

These are mere coordinate singularities that can be eliminated in EF type coordinates;

Y =r24+a°cos’0=0 < r:()&de:Z 1."1ngtype
2 smgularlty

This 1s a physical curvature singularity; the Kretschmann scalar diverges:

8
RWQBRW‘J‘ﬁ =5 {GM2 (r® — 15a*r* cos® @ + 15a*r? cos* 6 — a® cos® 9)}

2) The metric determinantis: detg = —3?sin’ 6



Carter-Penrose diagram

for the eternal Schwarzschild spacetime.
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The Kerr solution has another remarkable property:

ergo-region

ergo-surface

Tergo = M S \/M2 — a? cos? 0

r =M+ /M2 — a2

outer horizon

The Killing vector field 9/0t becomes spacelike outside the event horizon,
in the “ergo-region”



[t 1s possible to (classically!) extract

energy from a rotating black hole
(Penrose 1969)

(

» shaft

Brito et al. (2015)
» spinning black hole




The ability to extract
energy from a rotating
black hole will play an important role
in the existence of “hairy” black holes.

To know more, do not miss lecture 5 !!



Probing the Kerr black hole
with
hight



Kerr space-time:
BH with mass M and angular momentum J
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Geodesics are Liouville integrable due to the existence of hidden symmetry (Killing tensor)

Convenient to use the Hamilton-Jacobi formalism Carter 1968
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separation of variables
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Convenient to use the Hamilton-Jacobi formalism Carter 1968
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“Non-obvious”
“Obvious” 1, . separation of variables
separation of variables S = §m A—Et+jo+ f(r,0) Hr ) = P % Al
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Four first-order differential equations:
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Given suitable initial conditions for a photon (m=0), the trajectory can be
obtained by numeric integration.



What is the form of the BH shadow ?

In the Schwarzschild case, the shadow edge 1s determined by the light ring.

All test motions are planar.
Null geodesic motion 1s determined by a single impact parameter:

77:i
b

For the light ring:

n=v2IM




For the Kerr case, test motions are not planar. Null geodesic motion 1s determined by
two 1mpact parameters:
=) =0
e

Light rings only exist on the equatorial plane (y = 0). More generically there are
“spherical” orbits, that have “r=constant” in Boyer-Lindquist coordinates. Teo, GRG 35 (2003) 1909

Using the geodesic equations, the impact parameters of a spherical photon orbit at a
certain radial coordinate R=r/M obeys:
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. Exercise 3.3 |
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Spherical photon orbits exist for R € [ry, ro] where these radu are defined as the roots of X:

2 2
Prr—2, {1 + cos <§ arccos [—%1)}, " {1 + cos (§ arccos [%l)}

Co-rotating light ring Counter-rotating light ring



In the Kerr case the spherical orbits (including the light rings)
determine the shadow edge, as we shall see next.

In a more generic stationary black hole spacetime,

where the geodesic motion 1s not necessarily integrable
the shadow edge 1s determined by a set of bound photon orbits dubbed
fundamental photon orbits (FPOs)

Cunha, C.H., Radu, PRD 96 (2017) 024039

[t 1s possible to classify the different types of FPOs.

Cunha, C.H., Radu, PRD 96 (2017) 024039

In the Kerr case, the spherical orbits are the FPOs.
Teo, GRG 35 (2003) 1909

As we shall see in Lecture 5, more complex structures are possible.






ow of an extremal Kerr black
atorial plane observation, spin upwa



We can now assess the contribution

of the FPOs to the shadow’s edge.
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Illustration of the Fundamental Photon Orbits

which are the Spherical Photon Orbits

in the Kerr case

Cunha,

C.H., Radu, PRD 96 (2017) 024039




Illustration of the Fundamental Photon Orbits
which are the Spherical Photon Orbits

in the Kerr case
Cunha, C.H., Radu, PRD 96 (2017) 024039
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in the Kerr case
Cunha, C.H., Radu, PRD 96 (2017) 024039

3.5

rperi (M)

2.5
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Illustration of the Fundamental Photon Orbits
which are the Spherical Photon Orbits

in the Kerr case
Cunha, C.H., Radu, PRD 96 (2017) 024039
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Lensing - Setup of ray tracing



The most naive approach would be to evolve the light rays directly from the
source and detect which ones reach the observer. However this procedure 1s
inefficient since most rays would not reach.

A better approach 1s to evolve the light rays from the observer backward in time
and 1dentity their origin: backward ray-tracing.

The information carried by each ray is then assigned to a pixel in a final image,
which embodies the optical perception of the observer.
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Ray tracing - Schwarzschild and Kerr examples



To study lensing,
the integration from the observer position ends on some chosen
“far away” light source (or on the black hole).

This could be a sky full of stars.

But academic “celestial spheres” are interesting for observing
lensing patterns.



[aght source 1s a “painted on” sphere at infinity:

- four colored quadrants with a superimposed grid;
- bright reference spot in the direction towards which we point the camera.

A. Bohn et al. COQG32(2015)065002



Visualization from camera (60° field of view): Minkowski

10° by 10° squares

- no deflection of light;
- bowing of the grid lines 1s an expected geometric effect
of viewing a latitude-longitude grid.



Visualization from camera (60° field of view): Schwarzschild

I

Regions inside
the Einstein
ring: photons
deflected by
larger angles
than Einstein
ring photons
==

inverted 1mage

White dot of reference
on grid at grid
“Infinity” ha
Second

been lensed

Into an Finstein ring

Einstein ring corresponding

-

to light from

[ ——

a source
behind the

camera

There will be

an infinite
number of
Einstein rings



Origin,
on the sphere at “infinity”,
of the camera 1mage.

... on this

geodesic plane




Point
outside of first

Einstein ring...

... on this

geodesic plane




Point on the first
Einstein ring

... on this

geodesic plane




Point inside
the first
Finstein ring

... on this

geodesic plane




Point on the
second
Finstein ring

... on this

geodesic plane

There 1s an 1image
of the whole
universe between
two consecutive

Finstein rings



Symmetric
points...

... on this

geodesic plane




Symmetric
points...

... on this

geodesic plane




Symmetric
points...

... on this

geodesic plane




3.4%1078
stars from

the Two
Micron All

Sky Survey
(2MASS)

/the-science-numerical-relativity/numerical-relativi ravitational-lensin


http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensing
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Rotation introduces frame dragging
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Animation: Gravity Probe B Team



Visualization from camera: Kerr (a=0.95M), spin axis along line of sight

! The spin of the

BH causes

“frame
dragging”; the
effect on the

photon
trajectories
produces an
apparent
White dot dragging of the
on grid at grid itself
“Infinity” ha

been lensed

The strength

. 1nt9 an of the frame
Einstein ring dragging
N Increases

-

closer to the

BH




Visualization from camera: Kerr (a=0.95M), spin perpendicular to the line of sight
r

|

A photon
traveling in
the direction
of the frame
dragging can
orbit closer to
the BH
without being
captured...

than a photon
traveling
opposite to the
frame

dragging...

This results in
an offset,
asymmetric
shadow




How about a truly dynamical black hole binary?

A. Bohn et al. COG32(2015)065002



Animation:
Last three orbits of a 3:1 mass ratio binary with arbitrarily chosen spins on both black holes.
The details of this merger can be found in Zaylor et al. (Phys. Rev. D 88 (2013) 124010).
The stars used are the same as the ones used in the single black hole image shown before.

The camera 1s located above the orbital plane of the binary looking down.

Source:
http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensing


http://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.124010
http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensing




11 February 2016

"Ladies and gentlemen, we have detected gravitational waves. We did 1t!"
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David Reitze

Executive Director
Laser Interferometer Gravitational-Wave Observatory (LIGO)
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Thank you for your attention!
Obrigado pela vossa atencio!
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