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Linearized
Einstein equations



® Physical principles: must relate the distribution of
energy and momentum with the spacetime curvature,
must be covariant equations valid in any coordinate
system, must reduce to Newton’s equations for weak
gravitational fields and low velocities, and must satisfy
the energy and momentum conservation law.
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GHY = THY
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® The Einstein tensor is the only second-order tensor
field that can be constructed with the components of
the metric and their partial derivatives up to the

second order.

V,G" =0,Vg,,,V,T" =0




® We want to obtain the equations of the gravitational
field in the curved space-time framework. These
equations should give us the geometry of space-time,
that is, the metric.

® In Newton's theory the gravitational field is
represented by a single function, the gravitational
potential ®.The equation that allows us to find the
gravitational potential generated by a certain
distribution of matter is the Poisson equation on

V20 = 42Gp



® Since the source is a tensor, we look for a tensor
equation in which the left-hand side depends on the

metric and its derivatives up to the second order.We
will then have the following equation

® We then look for a tensor G such that its divergence
IS Zzero.
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e Einstein equations constitute a system of |10 second-order
partial differential equations, coupled and nonlinear. Solving
Einstein's equations consists in finding the elements of the
metric as a function of their coordinates.

e Einstein's equations admit an evolution formalism in which
arises a well-posed initial value problem, or Cauchy problem.
This means that given some initial and boundary conditions,
we can evolve in time the metric (and its derivatives). The

initial instant of time allows to define a 3-spatial surface X
characterized by having a normal time vector and some
coordinates(x, X;), such that x, = = 0 and x; are the spatial
coordinates over X, In this way, a family of 3-spatial surfaces
(or hypersurfaces) will be represented by

= {(%x)/x" =1 e R}



® FEinstein's equations can be seen as:

e G, = kT 6 evolution equations containing time
derivatives.

® G,, = kT, 4 constraint equations on each

hypersurface X. The implication of these equations is
that the initial conditions cannot be arbitrary.

® The evolution of the stress-energy tensor - the right
hand side of Einstein's equations - is obtained using
the conservation equation

V-T=0 = V,I%=0.
T W

f=(p+p)%®—+p§ p = p(Py: €)
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Weak field approximation.
Linearized Einstein’s
equations



The gravitational field outside a spherical object or an object with
slow rotation like the Earth or the Sun, can be approximated by the
Schwarzschild metric:

2GM 26M\ ! A
ds* = — (l - )dlz - (1 - ) dr? + r*(d@* + sin? Hd(f)z).

rel re2

For such weak gravitational fields, we can use approximations that
greatly simplify Einstein's equations:

M
Vacuum, without including terms like ="

Newtonian gravity, where in the dynamics of the system only appear

M
terms like —.
R

Post-Newtonian gravity of order 1, where in the dynamics of the

M n
system only appear terms like (E) .
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® |na weak gravitational field, we can linearize the field
equations, making the hypothesis that the metric of
space-time is a small perturbation of the Minkowski
metric, choosing a system of coordinates in which the
metric is written in the form

ga/} — ’70:/)’ T haﬁ

e where 7, is the Minskowski metric and /,; is a small
correction.VVe will have then

® Next, we are going to obtain Einstein's equations for
this metric, remaining in linear order in A.



The Christoffel symbols:

1
I“p'.' - 590“(9413.7 + Guy,8 — 98v.u)s

1
Enau(huﬁn + hyy g = hgy )

The Riemann tensor:
Rys =Ty s —Thys+To,Tgs =Ty s — Ty s+ O(h?).
The Ricci tensor:

Ras

R%s0s =850 = ga s
1 1
= 1" (hupsa + houpa = hgsua) = 51" (hup.as + hap,ss — hga,us)

1
5')"" (hsu,sa — hpspa = hap,ss + hgaus) + O(h?).

The Ricei sealar:

1 1 1 1
R = n*Rgs= 5')”')“" hspga = E'r‘”n"" hgs ua = 5')”'1“" hay,ss + 5'7“')"" hgaus
1 1 s 1

_ s IR P
- §" ‘.’ﬂo“ih 6.::_5"”5:.64'5"‘.‘6#

= W, -kt 4 O(h?).

The Einstein tensor:

i

1 1
Gap = Rop — 2Rﬂop = iwu(hpy,ap e hoﬂ.vu o "pu,op + hop,uﬁ) B §(h“‘,;w = N““t)')oﬂ

1
b -5("";"“ + h“!"aﬁ . hﬂp.au —hy st W nag — ""u::'kxﬂ) + O(h?).



® The Einstein equations are:

1
-t i I - T N I [T N N e "
9 (h'a,B,u. + h g3 h’B Naq7] h'u- I + h ,;w”aﬂ h [TR% ’]aﬂ) - h'ij’-

® We can simplify this equation defining:

ha/} = ha/} o Eh”a/}

e Where h = h},‘. Moreover

) o 1 | | R
h = h", = 'r)“”jh.(,g = 7')”‘-‘3 hag — =hnag|= h™, — —/z.'r')""i"r)ag
/ / 2 i 2 {
1

= h— 5411, —h—-—2h=—-h = h=—-h

- 1 - 1-
® Therefore hag = hap + §h’ Nas = hap — ih T



® With these definitions, we can write the different
terms that appear in the left-hand side

|

h ﬁp - I—?aiﬁ o §h 7]03a
h'#;t.aﬁ = _il-,a;ﬂﬁ
h 3,‘,(1;1. = h’_:'BN,u;l %’—2 e 7’_:’3“ = h;‘BI‘,a;t B %’—l,m%
hu“ In ,—l(r“,Bu o %]_l Bacs
h’“,/uu - l_l',“,/u.u o %}_l\l“’ ",, hlu/;ux o %,_l,;c.”*
R N
° We have



® The Einstein's equations in linear order in h are
written
1

b oH_p M _h M J, v g
5 (h - hﬁ h,, gu Tt " 1)(,,3)— K1lng.

o, Naq7) C

® This last expression can be considerably simplified if
we carry out a coordinate transformation compatible
with the linearized approximation, that is, a
transformation that does not change equations

new new

GJap = TNap + haﬁ — 9o = Nap + h’aﬂ

® Gauge transformation.



® Coordinate change:
x(l — :Z,CX — :ECI’. + 5(1’(:[;)’

® where £“ represents a very small (infinitesimal)
change in the x“ coordinates, in the sense that
|¢§/‘).’ | << |.Under this transformation, the metric is

transformed as follows

aT“ afl/ p— \ L ) ~
9z 9B Guw (0%, + f",a)(()uﬁ +&" 5)

— g(u’_'}’ + gMV gu,aduﬁ + gul/ 5“(3 gu,'ﬁ + 0(62)
= Gap + Guv &m.‘a + Gav gu,‘B T 0(62)
— gm’i’ = fﬁ,a + ga,ﬁ + 0(52)

Jap = ,(T/p.u

® Therefore

gaﬁ — Tap T h(xﬁ = (gaz,ﬂ I 5{3,&)-



e We have redefined /1,
new __
hap = hag = hap = &a,8 — £8,a-
e and the metric g,

Jap — g(r)lé%w = Nap i hnew

® We define the following tensor

1

[new hnew _ _pnew

16%5; 2 T]Cxﬁ?

e With

PROV = BRIV =y gH € M= h — 26H



1

- haﬁ o ga,,ﬁ o 66,0{ o §(h o 2611,/1,)770,3
1

hag — &a,8 — €B,a — 5’”7&,6 + f”’,,,ﬁa,ﬁ

’_? new
‘o3

hab’ — 5(1,,8 — §B,a + Sﬂ,pncx,{)’-

® |f we impose the following condition

new pv
h v

= (0 (Lorenz gauge)
® We have

v



(h Z — hﬁ e }_?O Bu T h“f’w 77(_,:5): KT g

® We can use the previous condition (Lorenz gauge) to
simplify the Einstein equations to linear order in A

1. _
—5 af, H — haﬁ — —2KZTQ5.

Gas =

® These equations are the linearized Einstein equations
and represent a wave equation for the perturbations,
h,z whose solution are the so-called gravitational

waves.



Newtonian limit of the
equations



Let us now study the Newtonian limit of linearized
Einstein equations. At this limit, the gravitational field is
so weak that it can only produce speeds that are small
compared to the speed of light. The energy-momentum
tensor of matter in this case will satisfy that

T > |T%| > |T"],

These inequalities imply that
h%° > || > |n¥|.

Therefore the dominant equation will be

hOO —QK,TOO




oo _ 1 0?

h + V2R = V2hY + O(v*V?),

2 Ot2
® We have

V2R = —2¢kp.
® Since
T% = p+ O(pv?),

® (non-relativistic matter, small rest speeds and energy
density and furthermore, p = /)Ocz).



® From Poisson’s equation Vid = 4G po,

2
- ok
R0 = — P,
21
® From
_ 1- . L ~ _ _
hoP = poP — 5/7,7)“"’ y h=h% ~h" =h" = —h"
® We get
_ 1, - 1- C°K
hOO — hOO - _hOO 00 _ —hOO — (I),
o (ZhET =5 inG
| C’K
h.L.L — h.EL = —h/OO T _ (D,
( ) A G
2,.
o o= pE= Mg




e The metric ds* = g dx'dx" = (n,, + h, )dx"dx"

2 2
2 _ C"K 2 1,2 C"K 2
ds ( e )(. dt +( G >(d7 + dy® + dz*).

® From the geodesic equation

d2 ¢ a d? rt
B, _
— + 'z, u”u’ =0, 772 06 = 0.
7' 1 1 0P
Ioo = 59 / (9#0,0 + Gou,0 — gOOv“) i~ _59 79005 = 87rG'(5 Oz’
2.1
d®r? _ 5” od
dt2 87TG oxl
C4K/ 87TG

87G ct



Gravitational
radiation




® Gravitational waves are an example of weak gravitational fields.
Such waves are generated in the strong field regime - intense
gravity - by self-gravitating sources such as binary black hole
systems.When they propagate far from the sources that generate
them, in the so-called wave zone, they represent weak
disturbances in a Minkowski space-time and can be described
using the weak field formalism.

® Gravitational waves represent ripples in the fabric of space-time
that propagate at the speed of light and that induce, as we shall
see, variations in the length of the objects they pass through.

® The detection of gravitational waves opens a new window to the
detailed exploration of the universe and they will surely be the key
to answering many puzzles related to gravitation, astrophysics and
fundamental physics.



Properties of gravitational
waves



Consider the linearized Einstein equations obtained in
the previous section, in vacuum,

h*P =0,

Which is a wave equation. This equation admits a
plane wave solution:

Baﬁ _ Aaﬁeik“:p“’

Which can be written as

7 oxfl ‘ ¢ 1 exf AL 'j
Oh*® = 77"’\()”(),\11."‘*3 — 77“’\}1.(” A
f. 2 I oy 2 -
= p¥* AP [(.’.lk“‘l' 'z.k(,n“u] \

[» JENS FEY | o
A AP etku" kon” \ikon”,,

~ f gl M
= p'r AP ethu® (—1)k\k,
- T :
= —AP k" Vg, = 0.



.

® Lk must be an isotropic (null) vector

— —

k-k=kk™ =0.

® Furthermore, in the gauge that we have chosen to
write the wave equation we have

R =0 = AP ekrruifnty =0 = A kop =0,

.

.

e A% s orthogonal to k.



e The wave vector k), gives information about the

frequency of the wave w and its direction of
propagation n;

w=k=Vkki  n'= kz.

ko

® We can impose more restrictions on the amplitude
A% using a gauge transformation

® Where

Lo = To + &a,

¢, = 0 (Lorenz gauge). Let’s take

i1k, ™
604 _— Bae SN



® Under this change of coordinates we have

hozﬁ — haﬁ — ga,ﬁ — gﬁ,aa
e And

Baﬂ — Baﬁ - 'Saﬁ - gﬁ,(x + Uaﬁﬁ“,w

® |t is easy to obtain the expression of the amplitudes of
the wave, A 4, under the change of coordinates.VVe

have

Eaﬁ — Aaﬁeikuxu = Baﬂﬁ — ikﬁeikuxu Aaﬁ'



® Therefore

hnow II.aB o 50,3 - 63,0 =l 5,1',;1'77033
hags = hass—Eapp—Esap+E" ﬂgnaa

M I . . iy = M
= IA3A(,ngk E —ikgtk 38(,0 n z.A..gz.A.(,.B,,vc BT 'l-k?lg'l.k“B“Clk“m N3
T
= 'l'k,"_?ekum [A(I,B - 'l'kVBBa - z‘k'(t B,"f)’ + 'I-k‘,,Bu"I](‘,."rj].

® The transformation of the wave amplitudes under the
gauge transformation is

A aB — Ag%w = Aa'g — iBakg — iBBka -1 ?:T]Q@B“'k#



® On the other hand, it is possible to choose B so two
additional constraints can be imposed on A(’;;“’:

A% =0and A u’ =0,
W|th u being any unitary time vector.

® The first condition leads to
Aaﬁ — Ag%w = Aalg — iBak'/3 — ’iBﬁk‘a + i'r)aﬁB""k’#.
® While the second

A%, —iB% —1B%kq + 10" B"k, = A® + 2iB%, = 0,

® Therefore, we have the equations for B that will allow
us, when doing the gauge transformation, to obtain a

new A% such that A% = 0 and Aa/;u/} = 0.



® We thus guarantee that with the gauge transformation

£% = 0, the components of the wave amplitude A%
satisfy

Akg =0, Agpu’ =0, A*, =

® The above conditions are called the traceless,
transverse gauge,or T T' gauge conditions.We

will denote hllwI to h , in the TT gauge.

® Let us now analyze the components of A ;. For

simplicity, consider an observer with 4-velocity
ut = 5"0 = (1,0,0,0). For this observer it is true that

Aot = Aapd”y = Ago =0 — BRI = 0.



® |f we orient the axes of the spatial coordinates so that the
wave is travelling in the direction of the z axis

k= (w,0,0,w)
® We get

Aask? =0 = Ao+ A0 =02 Ap. =0 h1T =0.

® This result explains the origin of the term “transverse” in
the name of the gauge: A ; is transversal to the direction
of propagation.Thus, the name TT comes from the fact
that the resulting tensor is transversal (with respect to
the observer u") and the spatial part has no trace.
Additionally, since we are in the Lorenz gauge, the spatial

part of 1—123 also has zero divergence.



e Note also that since the trace of E}E vanishes

ITT _ w7 TT TTT | . ij7TT
h™" =n""h,, =n"ho +nh;; =0,

hT'T

i . This allows to eliminate the

TT _

e wegetthat/, 6 =

notation with the bar since it is no longer necessary.
Einstein's equations linearized in vacuum are thus

T _
)




e The plane wave solution for the observer u* = 5

representing a wave traveling in the z direction is

T™r itkax __ i(kot+k.z) __ —iw(t—2)
h,, =Auwe =A,e =A,e .

® \Where we have used

ko = nuok" = —k° = —w,
k: = nuk'=k = w? =k

]
T~
™
|
—
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™
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® IntheTT gauge we have that A, = A,. = 0.

Therefore, there are only 4 independent amplitude
components different from zero

/AOO AO:L' A()y A()z\ /O 0 0 O\
AT _ | Ao A Auy Aw | _ [0 A A 0
g = AyO Ay:L' Ayy A'.‘/z ; 0 Ay:L' Ayy 0
\AzO Az:l: A:l Azz/ \0 0 0 O)

e On the other hand,A|, = A
since A“, = 0, we have

1y D€iNg symmetric and

Az +Ayy =0 = Ay, = —Ag,.



® Therefore

f gl B
A(IB T

® that is, there are only two independent constants.
Therefore, in the plane wave solution only two
degrees of freedom remain, corresponding to the two
possible polarizations:

TT _ 3 TT _ 3 TT _
h’:l:;l: o h’yz o h’zz =0
hrl = —h.;,;r = A, e =2 (4 polarization)
TT TT _ —iw(t—z) TIEOT D
hy, = h,, =Axe (x polarization),

o where A, =A andA, =A,,



0 0 0 0 0O 0 0 0 0 0 0 0
0 hyf hi 0 01 0 0 0010 i (t—z"
TT _ TT x1 : - / J_—tw(l—z)'
hai = o pTT _pfT g Alo o -1 of T lo 1 0 0]
o o o o/ | \oo o o 000 0/

® |n these coordinates (TT gauge), the metric of
spacetime can be expressed as follows:

ds? = (Nag + h13 )da® da’ = —c*dt? + (14 |Ax|cos(wz — wt + ¢, ))da?
+  2|Ax|cos(wz — wt + px)drdy
+ (1 —|A4|cos(wz — wt + @) dy? + dz°.



Effect of a gravitational
wave on a particle



® |[et us consider a particle that is initially in a region
free of gravitational waves and at rest. A free particle
obeys the geodesic equation
du®

= + I}, ufu” = 0.

® Since initially the particle is at rest, the initial value of
the acceleration will be

du® |
( dr ) - FOO uu’ —5770’5(’150,0 + hog,o — hoog =0,
' 0

® since in the TT gauge, i, = 0.Therefore, the particle
will remain at rest later and will not change its
position. This does not mean that the particle does
not move but only that the chosen coordinates follow
the particle.



® We must obtain some magnitude that is invariant with
the coordinates. To do this, let us consider two test

particles (A and B) located along the x-axis, initially

separated by a distance A/,.The metric in the TT
gauge is

ds® = —dt* + (nij + hy; )da'da’.

® Since A and B lie on the x axis,i.e.dy = dz = 0, for a
given time (dt = 0), the line element is

ds* = dl* = (Ngy + h.)da?,

Aly

A B
®- 4 _

////!/




® The proper distance between points A and B can be

calculated as
B B B 1
Al = / Vids? = / 1+ hlldr ~ / (l + =hl ) dx ~ Al (l + —hII ),
A A A 2 2
B

o Where Alj = J dx.To make this calculation we have
A
| < 1 (linear perturbations).

used that [/,

® The measurement of the relative variation of the
proper distance between test particles is the basis for
the design of modern gravitational wave detectors.
The proper distance varies with time and it is the
proper distance that we measure with light rays, for
example using a Michelson-Morley interferometer.



® Another way to analyze the effect caused by the wave
on the particles is studying the relative acceleration
between two neighboring particles that follow
geodesics. This is done from the geodetic deviation

equation. Let £“ be the vector joining the two
particles. This vector obeys the equation

d2

ﬁ Ra ’LLMU 56

® where u = d x/dr is the 4-velocity of the particles.
In first order in 1, we have

ut = (1,0,0,0) £* = (0,¢,0,0),



® where we are considering that the first particle is at
the origin of coordinates,x = y = z = (), and the
second is at x = € and y = z = 0.Therefore, in first

order in /1, the previous equation reduces to

d? 0”

e X L Y
2 = R%)0.€ = —€Rg,0-



® Taking into account that the only non-zero components
of the Riemann tensor are

1
- TT
R 0x0 — Ryoz0 = _§h';lfl‘,007
| 1
Y _ d bl &
R” 20 Ryoz0 = _5,2’1‘%00’
1
. _ TT
R* y0 RyOyO - 2} yy,00°

® We arrive to

0?2 1 02
wf 2
0* 1 0
728 = 3@l

® Similarly, if the particles were initially separated by a
distance € in the y direction, £ = (0,0,¢,0), we have

o 1 92 1 92
ot = 3mtw = ~3tgahe
9% 1 0°

— r o __ —El_—hTT.

ot? 2 otz Y



® These equations help us describe the polarization of a gravitational wave.
Consider a test particle in a circle initially at rest, as shown in panel (a).

Suppose that the gravitational wave has 2T # Oand 2T = 0. In this case,
the test particles of the circle will move, in terms of thelr proper distance
relative to the central particle as shown in panel (b). If, on the contrary, the
gravitational wave has h #0and bl = h = (), the perturbations on the

circle of free particles would follow the pattern shown in panel (c).

e Since 1T and 4! are independent, the oscillations shown in panels (b) and
(c) of Figure 2 ptovide a graphical representation of the two linear
polarizations of a gravitational wave, and justify the notation. on used in its
name:”+" for case (b) and X" for case (c). Besides, the particles oscillate

around their original position with the frequency @ of the incident
gravitational wave.
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The generation of
gravitational waves

Quadrupolar formula



® The Einstein equations for weak field are

Ry, = —167T,, .

® We will assume the simplifying (but realistic) hypothesis that the

time dependence of the source 7, is harmonic, that is, it is a

sinusoidal oscillation with frequency €2, the real part of

. —1 2t
T#.I/ — I-Llje .

e The tensor S, only depends on the spatial coordinates,

Sy = S;w(x").We will also assume that the region of space that
generates the waves, in which § # 0, is small compared to the

wavelength of the gravitational wave of frequency €2, 27/€2.This
second hypothesis is called the small velocity hypothesis, since it
implies that the typical velocities reached within the source
region, which are given by the size of that region multiplied by
the frequency €2, should be much less than unity. Most sources of
gravitational waves satisfy this condition.



e We will therefore look for a solution for l—’zm/ with the
same time dependence, that is, of the form

—1Qt
h,uu = BWe 7

e where, again, B, = Blw(x"). Substituting this ansatz in
the wave equation, we arrive at the equation

(V2 +Q%)B,, = —167S,,,.

e Outside the source, that is, where §,, = (), we want a
solution B, that represents outgoing radiation away

from the source. Let r be the radial coordinate
originating at the source.The solution sought is of the

form
A n > Z 1/ y »
Buz/ — 65527 | H e zﬂfr’
r T



® Since we are looking for waves emitted by the source, that

is, outgoing, we can set Z,, = 0 and, therefore, the solution
will be of the form
A -
_ TRV Qi
B, = . e,

e To determine A, we will have to integrate the equation in

the spatial region that defines the source. For this we will
make the approximation that the source is not zero

(5,, # 0) only inside a sphere of radius € < 27/£2.We
have

/VQB;j.l/d:3I+/QQBIH/(I:SI — —].671'/ Slu/dg;l‘-.

® The second term of the left-hand-side is

g . P 47 .
/‘Qzl};tzxdlﬁaT S S2‘2|B;1‘u|max?6‘jv

e where |B is the maximum value that B reaches

v lmax
within the source.



® We can compute the first term on the left side by
applying Gauss's theorem

. . . iQr
/szl“’ ds.’?? = / v . (VB,“,) (13;’1‘ = f n - vB,“,dS = f n - A,“,\—/ (e ) (IS

-
: Ji8dr
d [ et .
= A,, dme?.
dr r _
r=¢

® On the other hand

Qr Ve i 27 i
d [é : Qre*" —e : g i
( ) 4e’ = ( 4me? = (iQe — 1)e**4n ~ —4n,
r=e¢ r=e¢

dr r r?

Q
e Since 62— <K 1 = A > e.Therefore, we have
T

/VZB“,,CZ?’:C ~ —4mA,,.



® Moreover, if we denote

Juy = /Su,,,d?’a:,

® we have that, in the limit ¢ — 0, the integral can be
written as

47 .
_47TA/1.1/ . Qzl-B/u/|max7ﬂ-6‘3 — —1671"]/“, — A/u/ — 4']/wo

L

® Therefore, we arrive at the following solution for the
gravitational wave: iQ(r—t)
e ,

B = 4id

T



® We can simplify this equation using the relation
between J,, and the tensor 7, . Integrating in the 3-

volume

, v —iQt 3., —iQt v g3 —if
Tyw = Suve — / Twd’z=e / S d’x =e Juv-

® from where we get ¢ ¥ JH0 — /T“’O d*z.
® Deriving this last expression with respect to time

Ay, —iQt 70 _ pn0 43
—1{de J —/T oad’x.

® From the conservation law of the stress-energy
tensor, we have

. . 10 puk
™ ,=0=T",+T", =0,

® and, therefore, Qe " 0 = / TH® Pz = %T"""nkd&



® |n the last step we have applied Gauss's theorem on a
volume that completely contains the source. This
means that 7#¥ = () on the surface (of integration)
that encloses said volume, so the right hand side of
the previous expression is identically null. Therefore, if
Q2 # 0, we conclude that

JW =0 = " =0.

® On the other hand, we can obtain the expression of
J),, using the so-called tensor virial theorem:

o ,
d” . o
3 / TOpl ™3y = 92 / T B .
i

® Therefore, we have

it 12
~ Jdm ; - . & d = .
Jlm /‘Slmd.im ezSZt /“Tlm([';;l,' s Jlm 5 It) /T””;’l"’;l'm([';;l.'.
i at= |




® For a source with small velocities (not relativistic),
T ~ p, where p is the mass density. The integral is
the so-called quadrupole moment tensor of the mass

distribution

' ' ‘ —1 M ge ,—1QL Hylm
Ilm, — /TOOLL'ZIL'deLL' — e 1St /SOO.’L'IZEmdjiL' — ! tDIm.

® Therefore, we have

Q32 1Qt 12 2
Jlm, _ € d Im _ € d (e—iQtDl'm): _Q_Dlm
2 dt? 2 dt? 2
® and
1Q(r—1 1(r—t 2
]—? ke — 4Jk e ( ) — —ZSZQD K e ( ) — g 82 —d K
J J r By r dt2 "



® The solution that this equation provides is known as
the quadrupole approximation to gravitational
radiation, or simply the quadrupole formula. It should
be noted that if we include the appropriate factors G
and c, the last equation is written

_ 2G .o, d?
ik = rc4€ dt2 b

® which indicates that gravitational waves are
extraordinarily weak, since the factor

Glc* ~8x107s gt em™.



The quadrupole formula gives us the gravitational radiation emitted by a mass-
energy distribution that evolves in time.The result depends only on the movement
of the source and not on the forces acting on it. Furthermore, unlike
electromagnetic radiation, gravitational radiation has a quadrupole nature. In the
case of electromagnetism, for a system of accelerated charged particles, the

associated dipole moment o
dgm = E qiTi,
7

can vary in time, giving rise to dipole radiation, whose flux depends on the second
-
time derivative of d ;. For an isolated system of masses, we can define a

gravitational dipole moment in an analogous way 7 —
da = m;T;,

i
which satisfies the law of conservation of the total momentum of an isolated system,

cT d = 0. For this reason, gravitational radiation does not have a dipole
!

contribution. It should also be emphasized that a distribution of matter with
spherical or axial symmetry has a constant quadrupole moment, even though the
system is rotating. Therefore, a spherical or axisymmetric star does not emit
gravitational waves. To produce gravitational waves, a certain degree of asymmetry is
necessary, as occurs, for example, in non-radial pulsations of stars, in a non-spherical
gravitational collapse, or in collisions of massive objects in binary systems.



Next, let us obtain the quadrupole formula on gauge TT. In said gauge
we obtained that
hid 110 0,

Jh —
n h,jk = 0,

where n; is the unit vector in the direction of propagation of the
wave, that is, normal to the wave front,

L, X
n= —.
r

To move to the TT gauge, we must define the operator that projects
a vector onto the plane perpendicular to the direction of 7".This
operator is

It can be simply verified that P is symmetric, it is a projector since
Py Py = P; and it is transverse, anjk = 0.



® Next, we define the transverse traceless projector:

1
ijmn = ijpkzn — 5 jkPm'ru

® that extracts” the tranverse and traceless part of

tensor of type (g)

® We want to compute

E;F;;F = (Ph) jk = Pjkimhim.

® We have

- 2G 2@
}-L‘]k — ijlrrn}]ll'rn’ —_ _e 2P}Al7rbllrfl -

rct d 'rc4

dt



Introducing the reduced quadrupolar moment tensor:

A

1
Lij = I;j — géijla

with [ =1 = tr(/;), we can rewrite the expression
above as

_ 2G d2
h;r,? = ——¥! I TT

rct d -

It is straightforward to show that

L:" = Piimlij = Ly

t]

as the reduced quadrupole moment tensor is a
traceless tensor, by definition.



Introducing the reduced quadrupolar moment tensor:

A

1
Lij = I;j — géijla

with [ =1 = tr(/;), we can rewrite the expression
above as

_ 2G d2
h;r,? = ——¥! I TT

rct d -

It is straightforward to show that

L:" = Piimlij = Ly

t]

as the reduced quadrupole moment tensor is a
traceless tensor, by definition.



® As a particular case, let us consider a gravitational
wave propagating in the z direction, so that

—

n =— =(0,0,1).The projector operator is
r
1 0 0 0 1 0 0
Pjp =6 —myng=10 1 0] =0 (0 0 1)={0 1 0
0 0 1 1 0 0 0
® We have

1
IﬁT = Pikimlim = (ijpk:m — §ijplm,> L1,



® whose components turn out to be

T
I;r;r. = (Rnlprm o=

Ty
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d2 I_} k
dt?

® The previous expressions reduce to

® Finally, from — _Q2Djk€—iﬂt — _QQIjk-

P TT G 2 iar

h’:)::L‘ — __452 € (I.LL o Iyy)a
re

_ 20 g _

1 11 2 iQry _ pTT

re

ETE

h,, = 0,

P TT . TT

hy, = —hgy,

P TT

h,., = 0,

h;, = 0



Detection of gravitational
waves



® One of the most convenient ways to measure the
distance to a distant object is by means of a radar:a
pulse of electromagnetic radiation is sent towards the
object and it is measured how long it takes to return
after being reflected from the distant object. Dividing
this time by two and multiplying it by ¢, we obtain the
distance to the object. This method also provides an
excellent way to measure distances even in curved
spacetime and is the basis for laser interferometric
gravitational wave detectors.

® |et's see how to use light to measure the distance
between two freely falling objects.We will use the TT
coordinate system.We will start, first, by considering
for simplicity a wave traveling in the z direction with a
single polarization, /i, so that the metric is given by

ds* = —dt* + [1 + hy(z — t)]dz? + [1 — hy(t — 2)|dy? + d2?,



Suppose, again for simplicity, that the two objects lie on the x-axis,
one of them at the origin x = 0 and the other at the position x = L.
In the TT coordinates, the objects remain in those coordinate
positions. all the time.To make our measurement, the object at the
origin sends a photon along the x-axis to the other object, which
reflects it back. The first object measures the amount of proper
time that has elapsed since the photon was emitted. Since a photon
traveling along the x-axis moves along a null universe line (ds” = 0)

with dy = dz = 0, we can calculate its effective velocity
2 -
dx |
dt | 1+ hy

Although this speed is not equal to one, relativity is not
contradicted, since it is a coordinate speed.A photon emitted at
time £, ; from the origin reaches a point of coordinate x at time 7(x).
Integrating the effective speed of light from the previous equation,
we obtain the coordinate time in which the photon reaches the

object located at the far end, in the position x = L,

L
tear = ting + / 1+ h+(t(:1:))]1/2d:1:.
Jo



® This is an implicit equation, since the function we are
looking for, t(x), is inside the integral. We can use the fact
that /2 is small to integrate it, making #(x) = f,; + x
inside the integral and expanding the square root.The
result is the following explicit equation

1 L
0
® After being reflected, the light returns to x = 0. Using

the same argument, we can obtain the total round trip
coordinate time:

1 L 1 (L
thnal = tini + 2L + 5 / hy(tini + x)dx + 5 / hi(tini + L + x)dx.
Jo Jo

® Since in the TT coordinates the coordinate time is the

proper time, the above equation gives a quantity that can
be measured.



® We are interested in using this equation in some way to
measure the metric of the wave.The simplest thing is to derive
tina1 With respect to £, ;, that is, to monitor the rate at which
the lap time changes as the gravitational wave passes. The
integral with respect to x will be an integral of the derivative of
h, with respect to its argument, which simply produces 5,
again. Therefore, it has to

dtfinal

1
dtini =1+ §[h+ (tini + 2L) — h+ (tini)]-

® This result indicates that the rate of change of the return time
depends only on the metric of the wave at the moment the
photon was emitted and the moment it was received again at
the origin. In particular, the amplitude of the wave when the
photon is reflected off the farthest object plays no role.



® |[f instead of a single photon, a continuous electromagnetic wave
of frequency v is emitted from the origin, each crest of the
wave can be interpreted as another ray of light or photon being
sent and collected back.The derivative of the time it takes for
these rays to return to the origin is not more than the change
in the frequency of the electromagnetic wave,

dtﬁnal Vfinal

Atin; Vini

® Thus, changes in the redshift of the return wave, which we can
monitor, are directly related to changes in the amplitude of the
gravitational waves.



® The above discussion has assumed a special distribution of the
objects and the wave: the wave traveled in the direction
perpendicular to the separation of the two objects. If the wave
were to travel at an arbitrary angle € with the z axis in the xz
plane, the derivative of the return time would involve the
amplitude of the wave at the moment of reflection on the
farthest object,

dtﬁnal
dl‘ini

1 . , :
=1+3 [(1—sin @) hy (tini+2L)—(1+sin 0)h (tini)+2 sin O (tini+(1—sin @) L)).



