Prelude

Programs: Requirements

- In this course we will use an adaptive step 4(5) order Runge-Kutta method with a shooting strategy.
- You will need a C compiler and a 11+ Mathematica.

The required files for the hands on lecture can be downloaded in

CODES

Programs: C Integrator

- If you have a linux machine it is already installed (*a priori*) and can be run in the terminal.
- If you use a Windows/Mac operating system, you need to install a proper compiler:

How To Install GCC

Please follow the tutorial.

Programs: Running

- In the CODES file you have an isolated SOLUTION generator and a DOMAIN space generator.
- Open the terminal in the desired folder and run the executable. There is already an executable file

```
To run the executable:

$ sh Exec.sh

$ gcc -ofast BS.c -o S -lm
$ ./S
```

 After generating the solutions you can go back to the initial file and run the MATH notebooks.

Programs: Final thoughts

- Please run the files to test if everything is working.
- Have a nice weekend.
- See you monday.

How we numerically solve ODEs: Boson Star

Alexandre M. Pombo

Introduction: Physics

- In physics, and in particular in GR, the equations that describe a system and its evolution is described by differential equations.
- Which can be divided into ODEs and PDEs.
- There is a series of problems that do not have an algebraic solutions.
- For those problems, a numerical strategy is required for the numerical integration and to implement proper boundary conditions.

Introduction: Physics

- In physics, and in particular in GR, the equations that describe a system and its evolution is described by differential equations.
- Which can be divided into ODEs and PDEs.
- There is a series of problems that do not have an algebraic solutions.
- For those problems, a numerical strategy is required for the numerical integration and to implement proper boundary conditions.

Introduction: Physics

- In physics, and in particular in GR, the equations that describe a system and its evolution is described by differential equations.
- Which can be divided into ODEs and PDEs.
- There is a series of problems that do not have an algebraic solutions.
- For those problems, a numerical strategy is required for the numerical integration and to implement proper boundary conditions.

- The aim of this hands on lecture is to understand the construction of a viable research numerical program.
- The developed program will be able to numerically solve ODEs.
- It is written in a C where:
 - The integrator is a 4(5)th O Runge-Kutta method;
 - The BC are implemented through a secant algorithm.
- Let us implement in the Boson Star problem.

- The aim of this hands on lecture is to understand the construction of a viable research numerical program.
- The developed program will be able to numerically solve ODEs.
- It is written in a C where:
 - The integrator is a 4(5)th O Runge-Kutta method;
 - The BC are implemented through a secant algorithm.
- Let us implement in the Boson Star problem.

- The aim of this hands on lecture is to understand the construction of a viable research numerical program.
- The developed program will be able to numerically solve ODEs.
- It is written in a C where:
 - The integrator is a 4(5)th O Runge-Kutta method;
 - The BC are implemented through a secant algorithm.
- Let us implement in the Boson Star problem.

- The aim of this hands on lecture is to understand the construction of a viable research numerical program.
- The developed program will be able to numerically solve ODEs.
- It is written in a C where:
 - The integrator is a 4(5)th O Runge-Kutta method;
 - o The BC are implemented through a secant algorithm.
- Let us implement in the Boson Star problem.

Boson Star Equations

The Field equations

The set of field equations that describe a spherically symmetric BS are

$$m'=4\pi r^2\left(N(arphi')^2+\mu^2arphi^2+rac{\omega^2arphi^2}{N\sigma^2}
ight)\,,
onumber \ \sigma'=8\pi\sigma r\left((arphi')^2+rac{\omega^2arphi^2}{N^2\sigma^2}
ight)\,,
onumber \ arphi''=-rac{2arphi'}{r}-rac{N'arphi'}{N}-rac{\sigma'arphi'}{\sigma}+rac{\mu^2arphi}{N}-rac{\omega^2arphi}{N^2\sigma^2}\,.$$

The Field equations

The set of field equations that describe a spherically symmetric BS are

$$m'=4\pi r^2\left(N(arphi')^2+\mu^2arphi^2+rac{\omega^2arphi^2}{N\sigma^2}
ight)\,,
onumber \ \sigma'=8\pi\sigma r\left((arphi')^2+rac{\omega^2arphi^2}{N^2\sigma^2}
ight)\,,
onumber \ arphi''=-rac{2arphi'}{r}-rac{N'arphi'}{N}-rac{\sigma'arphi'}{\sigma}+rac{\mu^2arphi}{N}-rac{\omega^2arphi}{N^2\sigma^2}\,.$$

Which are written in the form:

$$rac{d^n y}{dx^n} = f(x,y,y',\ldots,y^{(n)})$$

Asymptotic approximations: Origin

At the origin,

$$m(0) = 0 \; , \; \sigma(0) = \sigma_0 \; , \; arphi(0) = arphi_0 \; ,$$

The field equations can be approximated by a power series expansion

$$egin{align} m(r) &\simeq rac{4\pi(\mu^2\sigma_0^2+\omega^2)}{3\sigma_0}arphi_0^2\,r^3 + \mathcal{O}(r^5)\ , \ &\sigma(r) \simeq \sigma_0 + rac{4\pi\omegaarphi^2}{\sigma_0}r^2 + \mathcal{O}(r^4)\ , \ &arphi(r) \simeq arphi_0 + rac{1}{6}\left(\mu^2 - rac{\omega^2}{\sigma_0^2}
ight)arphi_0 r^2 + \mathcal{O}(r^4)\ . \end{split}$$

Asymptotic approximations: At infinity

At infinity we require asymptotically flatness

$$m(\infty)=M\ ,\ \sigma(\infty)=1\ ,\ arphi(\infty)=0\ ,$$

- The above condition for the metric function σ_0 fixes the symmetry of scale invariance $\{\sigma, \omega\} \rightarrow \lambda\{\sigma, \omega\}$, with λ a positive constant.
- The problem reduces to a two parameters shooting for φ_0 and σ_0

Asymptotic approximations: At infinity

At infinity we require asymptotically flatness

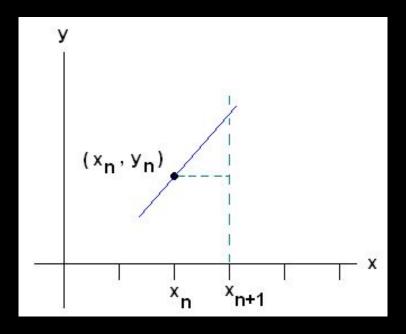
$$m(\infty)=M\ ,\ \sigma(\infty)=1\ ,\ arphi(\infty)=0\ ,$$

- The above condition for the metric function σ_0 fixes the symmetry of scale invariance $\{\sigma, \omega\} \rightarrow \lambda\{\sigma, \omega\}$, with λ a positive constant.
- The problem reduces to a two parameters shooting for φ_0 and σ_0

Adaptive step Runge-Kutta

Numerical Procedure: Integrator

• The integrator is based on an adaptive Runge-Kutta strategy: RK(5)6



- To implement an adaptive step, you need to compute the error/changing rate of a given function
- One can do that in several ways:
 - Calculate the same point with two different methods;
 - Calculate with two different steps;
 - Calculate the same point with two different order methods.

- To implement an adaptive step, you need to compute the error/changing rate of a given function
- One can do that in several ways:
 - Calculate the same point with two different methods;
 - Calculate with two different steps;
 - Calculate the same point with two different order methods.

- To implement an adaptive step, you need to compute the error/changing rate of a given function
- One can do that in several ways:
 - Calculate the same point with two different methods;
 - Calculate with two different steps;
 - Calculate the same point with two different order methods.

- To implement an adaptive step, you need to compute the error/changing rate of a given function
- One can do that in several ways:
 - Calculate the same point with two different methods;
 - Calculate with two different steps;
 - Calculate the same point with two different order methods.

- To implement an adaptive step, you need to compute the error/changing rate of a given function
- One can do that in several ways:
 - Calculate the same point with two different methods;
 - Calculate with two different steps;
 - Calculate the same point with two different order methods.

Dormand-Prince method

0							
$\frac{1}{5}$	$\frac{1}{5}$						
$\frac{3}{10}$	$\frac{3}{40}$	9 40					
<u>4</u> <u>5</u>	44 45	$-\frac{56}{15}$	<u>32</u>				
<u>8</u>	19372 6561	$-\frac{25360}{2187}$	64448 6561	$-\frac{212}{729}$			
1	9017 3168	$-\frac{355}{33}$	46732 5247	49 176	$-\frac{5103}{18656}$		
1	35 384	0	500 1113	125 192	$-\frac{2187}{6784}$	11 84	
у	35 384	0	500 1113	125 192	$-\frac{2187}{6784}$	11 84	0
ŷ	<u>5179</u> 57600	0	7571 16695	393 640	$-\frac{92097}{339200}$	187 2100	$\frac{1}{40}$

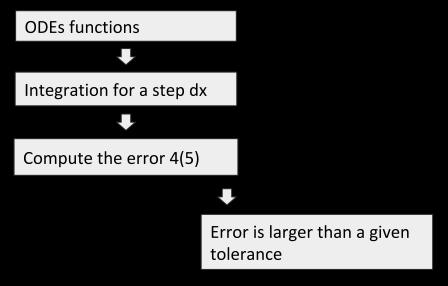
ODEs functions

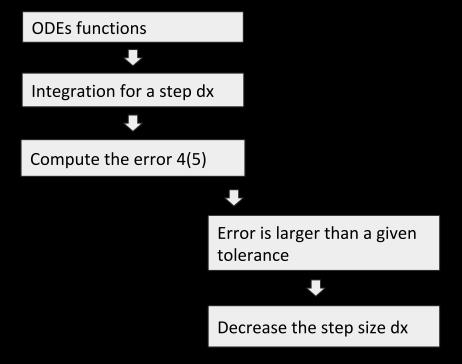
Integration for a step dx

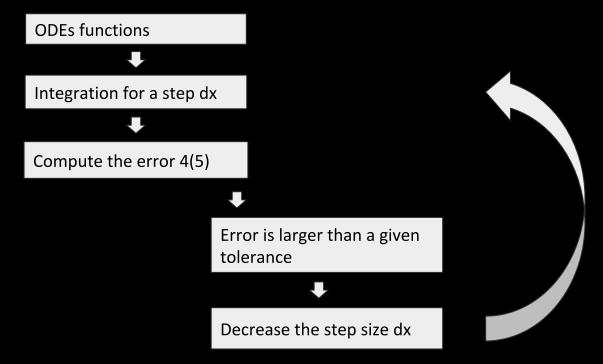
ODEs functions

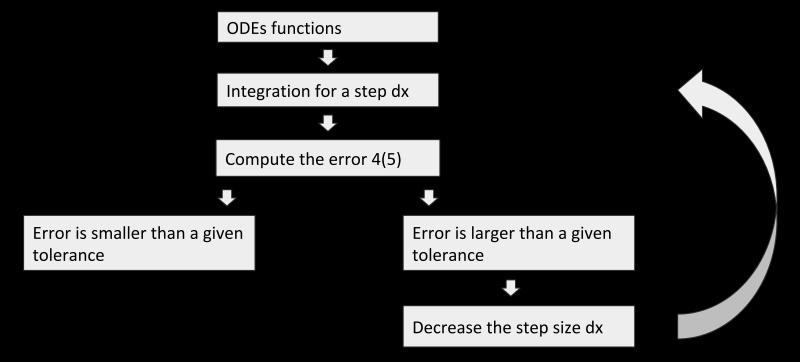
Integration for a step dx

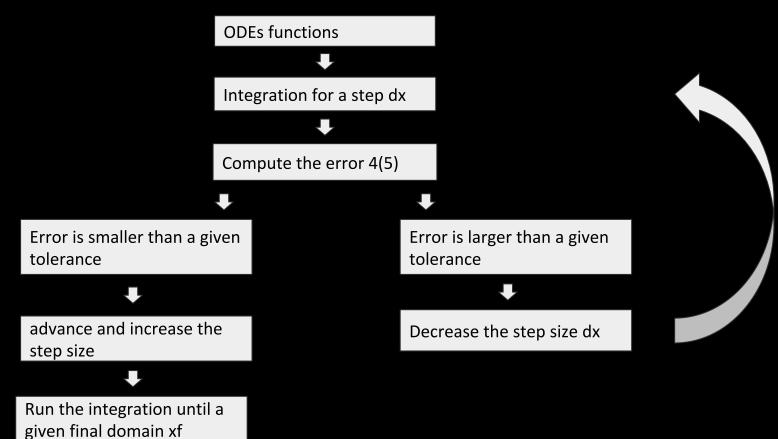
Compute the error 4(5)



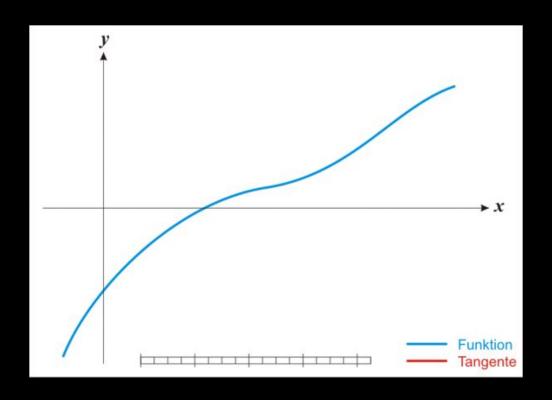








Shooting Strategy: Secant method



Numerical Procedure: Shooting

- We only have two unknown parameters
- These are φ_0 and σ_0
- The σ_0 parameters can be solved by a symmetry property
- \bullet The asymptotic conditions are solved through a sechant strategy on $\varphi_{\rm 0}$

Numerical Procedure: Shooting

- We only have two unknown parameters
- These are φ_0 and σ_0
- The σ_0 parameters can be solved by a symmetry property
- \bullet The asymptotic conditions are solved through a sechant strategy on $\varphi_{\rm 0}$

Numerical Procedure: Shooting

- We only have two unknown parameters
- These are φ_0 and σ_0
- The σ_0 parameters can be solved by a symmetry property
- The asymptotic conditions are solved through a sechant strategy on φ_0

Suggest an initial guess for the solution

Run the integration until a given final domain xf

Suggest an initial guess for the solution

Run the integration until a given final domain xf

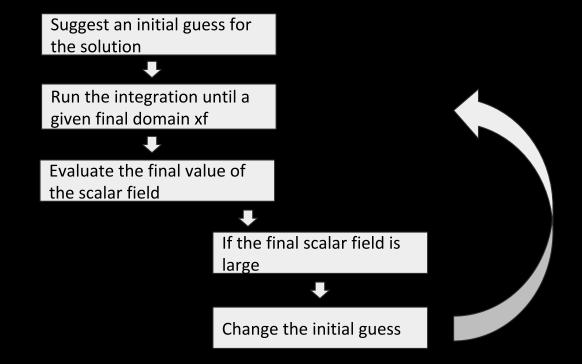
Evaluate the final value of the scalar field

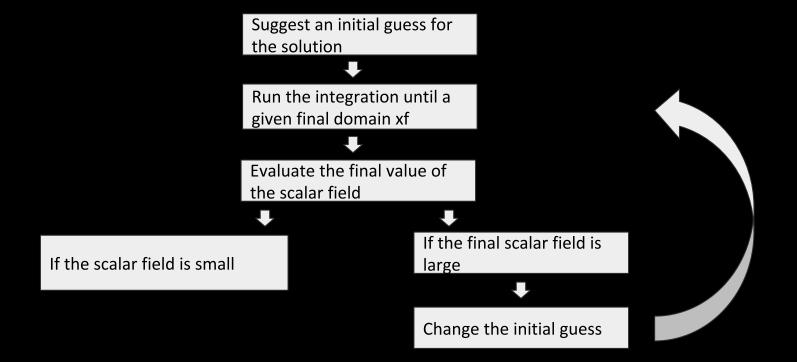
Suggest an initial guess for the solution

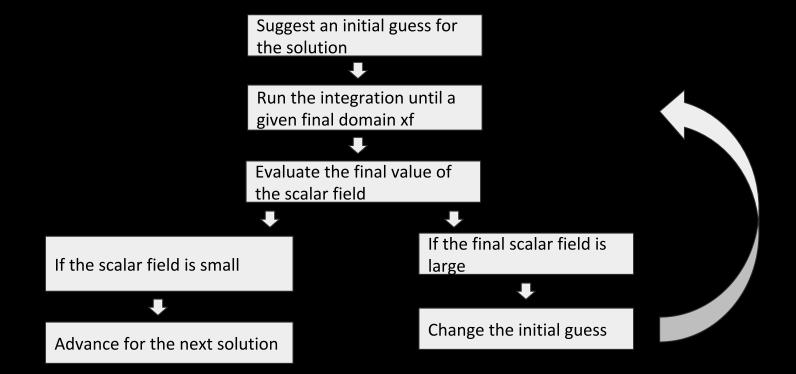
Run the integration until a given final domain xf

Evaluate the final value of the scalar field

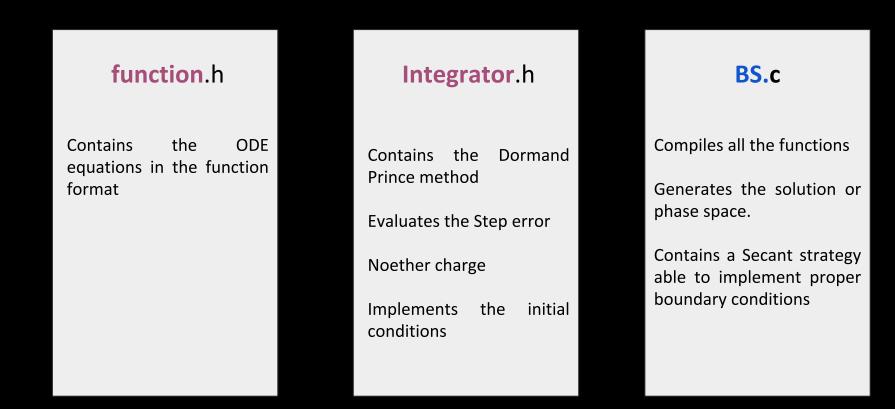
If the final scalar field is large





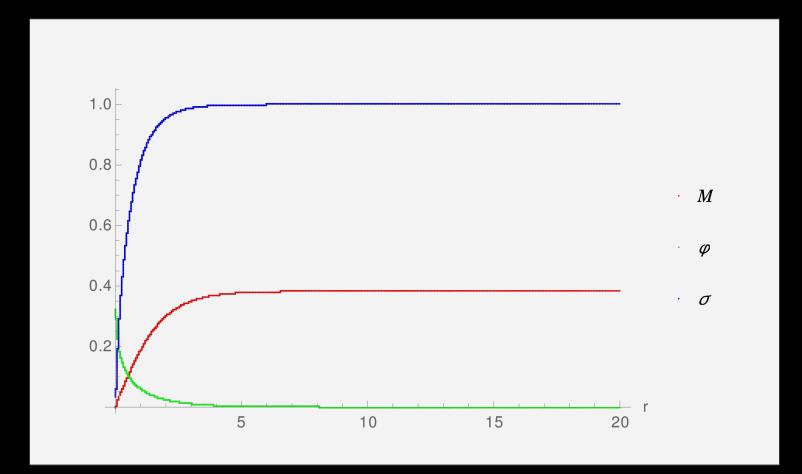


Numerical Procedure: Structure

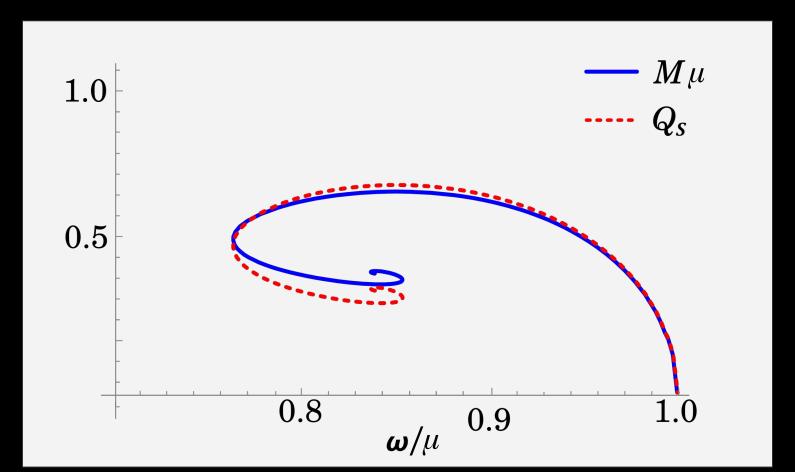


Data Analysis

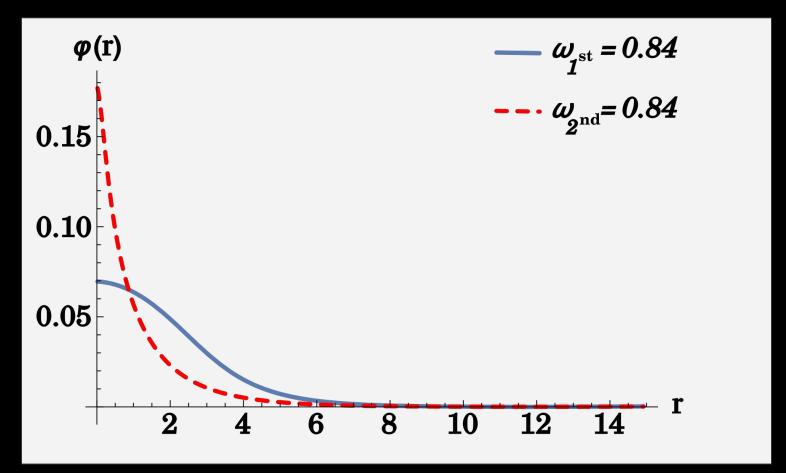
Numerical Procedure: Solution profile



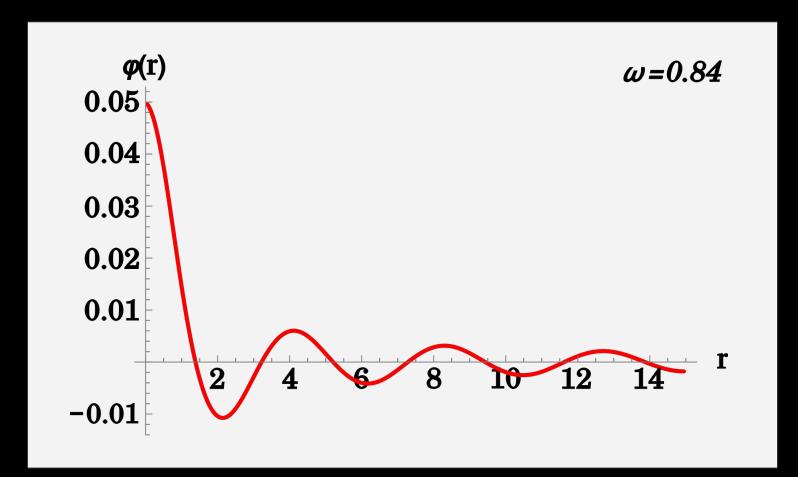
Numerical Procedure: Domain of existence



Numerical Procedure: Solution profile



Numerical Procedure: Excited States



How we numerically solve ODEs: Boson Star

Thank you! Obrigado!

pomboalexandremira@ua.pt

How we numerically solve ODEs: Boson Star

