Prelude



Programs:

e In this course we will use an adaptive step 4(5) order Runge-Kutta
method with a shooting strategy.

e You will need a C compiler and a 11+ Mathematica.
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o The required files for the hands on lecture can be downloaded in


https://drive.google.com/file/d/17QXLMJ5gcG493VQHwr5ngAvZGfFJWlUN/view?usp=sharing

Programs:

e If you have a linux machine it is already installed (a priori) and can be
run in the terminal.

e If you use a Windows/Mac operating system, you need to install a
proper compiler:

e Please follow the tutorial.


http://www.newthinktank.com/2013/08/how-to-install-gcc/

Programs:

e In the CODES file you have an isolated SOLUTION generator and a
DOMAIN space generator.

e Open the terminal in the desired folder and run the executable. There
is already an executable file

To run the executable: If you want to run by hand:
$ sh Exec.sh $ gcc-ofast BS.c-0 S -Im
$./S

o After generating the solutions you can go back to the initial file and run
the MATH notebooks.



Programs:

o Please run the files to test if everything is working.
e Have a nice weekend.

e See you monday.
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Introduction: Physics

e In physics, and in particular in GR, the equations that describe a system
and its evolution is described by differential equations.

e Which can be divided into ODEs and PDEs.
e There is a series of problems that do not have an algebraic solutions.

e For those problems, a numerical strategy is required for the numerical
integration and to implement proper boundary conditions.
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Introduction: Numerics

e The aim of this hands on lecture is to understand the construction of a
viable research numerical program.

e The developed program will be able to numerically solve ODEs.

e Itis writtenina C where:
o The integrator is a 4(5)™ O Runge-Kutta method;
o The BC are implemented through a secant algorithm.

e Let usimplementin the Boson Star problem.



Boson Star Equations



The Field equations

e The set of field equations that describe a spherically symmetric BS are
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The Field equations

e The set of field equations that describe a spherically symmetric BS are
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Which are written in the form:

dn
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Asymptotic approximations: Origin
At the origin,

m(0) =0, a(0) = a0, (0) = o ,

The field equations can be approximated by a power series expansion
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Asymptotic approximations: At infinity
e At infinity we require asymptotically flatness

m(o0) = M, a(o0) =1, ¢p(c0) =0,

e The above condition for the metric function g fixes the symmetry of
scale invariance {0, W} — A{0, w}, with A a positive constant.



Asymptotic approximations: At infinity
e At infinity we require asymptotically flatness

m(o0) = M, a(o0) =1, ¢p(c0) =0,

e The above condition for the metric function g fixes the symmetry of
scale invariance {0, W} — A{0, w}, with A a positive constant.

e The problem reduces to a two parameters shooting for ¢, and O



Adaptive step Runge-Kutta



Numerical Procedure:

e The integrator is based on an adaptive Runge-Kutta strategy: RK(5)6
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Numerical Procedure: Adaptive Step

e To implement an adaptive step, you need to compute the
error/changing rate of a given function

e One can do that in several ways:
o Calculate the same point with two different methods;
o Calculate with two different steps;
o Calculate the same point with two different order methods.



Dormand-Prince method
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Numerical Scheme: Integrator

ODEs functions
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Numerical Scheme:

ODEs functions

Integration for a step dx
Compute the error 4(5)
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Numerical Scheme:

ODEs functions

Integration for a step dx
Compute the error 4(5)
o o

Error is smaller than a given Error is larger than a given
tolerance tolerance
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4 $

advance and increase the
step size

$

Run the integration until a
given final domain xf

Decrease the step size dx



Shooting Strategy:

Tangente




Numerical Procedure: Shooting

e We only have two unknown parameters



Numerical Procedure: Shooting

e We only have two unknown parameters

e Theseareq, and 0,



Numerical Procedure: Shooting

e We only have two unknown parameters
e Theseareq, and 0,
o The 0, parameters can be solved by a symmetry property

e The asymptotic conditions are solved through a sechant strategy on ¢,



Numerical Scheme:

Suggest an initial guess for
the solution

$

Run the integration until a
given final domain xf



Numerical Scheme:

Suggest an initial guess for
the solution

$

Run the integration until a
given final domain xf

$

Evaluate the final value of
the scalar field



Numerical Scheme:

Suggest an initial guess for
the solution

$

Run the integration until a
given final domain xf

$

Evaluate the final value of
the scalar field

$

If the final scalar field is
large



Numerical Scheme:

Suggest an initial guess for
the solution

L 4

given final domain xf
o

the scalar field

$

If the final scalar field is
large

$

Change the initial guess




Numerical Scheme:

Suggest an initial guess for
the solution

&
Run the integration until a
given final domain xf
s
Evaluate the final value of
the scalar field
& &
If the final scalar field is
If the scalar field is small large
&
Change the initial guess



Numerical Scheme:

Suggest an initial guess for
the solution

4
4

Run the integration until a
given final domain xf
Evaluate the final value of
the scalar field
L 4 L 4

If the final scalar field is
If the scalar field is small large
Ry
Ry
. Change the initial guess
Advance for the next solution




Numerical Procedure:

function.h

Contains the ODE
equations in the function
format

Integrator.h

Contains the Dormand
Prince method

Evaluates the Step error
Noether charge

Implements the initial
conditions

BS.c

Compiles all the functions

Generates the solution or
phase space.

Contains a Secant strategy
able to implement proper
boundary conditions




Data Analysis
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Numerical Procedure:
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How we numerically solve
ODEs:

Boson Star

Thank you!
Obrigado!

pomboalexandremira@ua.pt
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How we numerically solve

ODEs:

Boson Star

pomboalexandremira@ua.pt



